/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include "prlink.h" #include "prmem.h" #include "prenv.h" #include "gfxPrefs.h" #include "nsString.h" #include "mozilla/dom/ScreenOrientation.h" #include "mozilla/Preferences.h" #include "mozilla/Hal.h" #include "gfxVRCardboard.h" #include "nsServiceManagerUtils.h" #include "nsIScreenManager.h" #ifdef ANDROID #include #define LOG(args...) __android_log_print(ANDROID_LOG_INFO, "GeckoVR" , ## args) #else #define LOG(...) do { } while(0) #endif // 1/sqrt(2) (aka sqrt(2)/2) #ifndef M_SQRT1_2 # define M_SQRT1_2 0.70710678118654752440 #endif using namespace mozilla::dom; using namespace mozilla::gfx; using namespace mozilla::gfx::impl; namespace { // some utility functions // This remaps axes in the given matrix to a new configuration based on the // screen orientation. Similar to what Android SensorManager.remapCoordinateSystem // does, except only for a fixed number of transforms that we need. Matrix4x4 RemapMatrixForOrientation(ScreenOrientationInternal screenConfig, const Matrix4x4& aMatrix) { Matrix4x4 out; const float *in = &aMatrix._11; float *o = &out._11; if (screenConfig == eScreenOrientation_LandscapePrimary) { // remap X,Y -> Y,-X o[0] = -in[1]; o[1] = in[0]; o[2] = in[2]; o[4] = -in[5]; o[5] = in[4]; o[6] = in[6]; o[8] = -in[9]; o[9] = in[8]; o[10] = in[10]; } else if (screenConfig == eScreenOrientation_LandscapeSecondary) { // remap X,Y -> -Y,X o[0] = in[1]; o[1] = -in[0]; o[2] = in[2]; o[4] = in[5]; o[5] = -in[4]; o[6] = in[6]; o[8] = in[9]; o[9] = -in[8]; o[10] = in[10]; } else if (screenConfig == eScreenOrientation_PortraitPrimary) { out = aMatrix; } else if (screenConfig == eScreenOrientation_PortraitSecondary) { // remap X,Y -> X,-Z o[0] = in[0]; o[1] = in[2]; o[2] = -in[1]; o[4] = in[4]; o[5] = in[6]; o[6] = -in[5]; o[8] = in[8]; o[9] = in[10]; o[10] = -in[9]; } else { MOZ_ASSERT(0, "gfxVRCardboard::RemapMatrixForOrientation invalid screenConfig"); } return out; } } // namespace HMDInfoCardboard::HMDInfoCardboard() : VRHMDInfo(VRHMDType::Cardboard) , mStartCount(0) , mOrient(eScreenOrientation_PortraitPrimary) { MOZ_ASSERT(sizeof(HMDInfoCardboard::DistortionVertex) == sizeof(VRDistortionVertex), "HMDInfoCardboard::DistortionVertex must match the size of VRDistortionVertex"); MOZ_COUNT_CTOR_INHERITED(HMDInfoCardboard, VRHMDInfo); mDeviceName.AssignLiteral("Phone Sensor (Cardboard) HMD"); mSupportedSensorBits = State_Orientation; mRecommendedEyeFOV[Eye_Left] = VRFieldOfView(45.0, 45.0, 45.0, 45.0); mRecommendedEyeFOV[Eye_Right] = VRFieldOfView(45.0, 45.0, 45.0, 45.0); mMaximumEyeFOV[Eye_Left] = VRFieldOfView(45.0, 45.0, 45.0, 45.0); mMaximumEyeFOV[Eye_Right] = VRFieldOfView(45.0, 45.0, 45.0, 45.0); SetFOV(mRecommendedEyeFOV[Eye_Left], mRecommendedEyeFOV[Eye_Right], 0.01, 10000.0); #if 1 int32_t xcoord = 0; if (PR_GetEnv("FAKE_CARDBOARD_SCREEN")) { const char *env = PR_GetEnv("FAKE_CARDBOARD_SCREEN"); nsresult err; xcoord = nsCString(env).ToInteger(&err); if (err != NS_OK) xcoord = 0; } mScreen = VRHMDManager::MakeFakeScreen(xcoord, 0, 1920, 1080); #endif } bool HMDInfoCardboard::StartSensorTracking() { LOG("HMDInfoCardboard::StartSensorTracking %d\n", mStartCount); if (mStartCount == 0) { // it's never been started before; initialize observers and // initial state. mozilla::hal::ScreenConfiguration sconfig; mozilla::hal::GetCurrentScreenConfiguration(&sconfig); this->Notify(sconfig); mozilla::hal::RegisterSensorObserver(mozilla::hal::SENSOR_GAME_ROTATION_VECTOR, this); mozilla::hal::RegisterScreenConfigurationObserver(this); mLastSensorState.Clear(); } mStartCount++; return true; } // Android sends us events that have a 90-degree rotation about // the x axis compared to what we want (phone flat vs. phone held in front of the eyes). // Correct for this by applying a transform to undo this rotation. void HMDInfoCardboard::Notify(const mozilla::hal::ScreenConfiguration& config) { mOrient = config.orientation(); if (mOrient == eScreenOrientation_LandscapePrimary) { mScreenTransform = Quaternion(-0.5f, 0.5f, 0.5f, 0.5f); } else if (mOrient == eScreenOrientation_LandscapeSecondary) { mScreenTransform = Quaternion(-0.5f, -0.5f, -0.5f, 0.5f); } else if (mOrient == eScreenOrientation_PortraitPrimary) { mScreenTransform = Quaternion((float) -M_SQRT1_2, 0.f, 0.f, (float) M_SQRT1_2); } else if (mOrient == eScreenOrientation_PortraitSecondary) { // Currently, PortraitSecondary event doesn't be triggered. mScreenTransform = Quaternion((float) M_SQRT1_2, 0.f, 0.f, (float) M_SQRT1_2); } } void HMDInfoCardboard::Notify(const mozilla::hal::SensorData& data) { if (data.sensor() != mozilla::hal::SENSOR_GAME_ROTATION_VECTOR) return; const nsTArray& sensorValues = data.values(); // This is super chatty //LOG("HMDInfoCardboard::Notify %f %f %f %f\n", sensorValues[0], sensorValues[1], sensorValues[2], sensorValues[3]); mSavedLastSensor.Set(sensorValues[0], sensorValues[1], sensorValues[2], sensorValues[3]); mSavedLastSensorTime = data.timestamp(); mNeedsSensorCompute = true; } void HMDInfoCardboard::ComputeStateFromLastSensor() { if (!mNeedsSensorCompute) return; // apply the zero orientation Quaternion q = mSensorZeroInverse * mSavedLastSensor; // make a matrix from the quat Matrix4x4 qm; qm.SetRotationFromQuaternion(q); // remap the coordinate space, based on the orientation Matrix4x4 qmRemapped = RemapMatrixForOrientation(mOrient, qm); // turn it back into a quat q.SetFromRotationMatrix(qmRemapped); // apply adjustment based on what's been done to the screen and the original zero // position of the base coordinate space q = mScreenTransform * q; VRHMDSensorState& state = mLastSensorState; state.flags |= State_Orientation; state.orientation[0] = q.x; state.orientation[1] = q.y; state.orientation[2] = q.z; state.orientation[3] = q.w; state.timestamp = mSavedLastSensorTime / 1000000.0; mNeedsSensorCompute = false; } VRHMDSensorState HMDInfoCardboard::GetSensorState(double timeOffset) { ComputeStateFromLastSensor(); return mLastSensorState; } void HMDInfoCardboard::StopSensorTracking() { LOG("HMDInfoCardboard::StopSensorTracking, count %d\n", mStartCount); if (--mStartCount == 0) { mozilla::hal::UnregisterScreenConfigurationObserver(this); mozilla::hal::UnregisterSensorObserver(mozilla::hal::SENSOR_GAME_ROTATION_VECTOR, this); } } void HMDInfoCardboard::ZeroSensor() { mSensorZeroInverse = mSavedLastSensor; mSensorZeroInverse.Invert(); } bool HMDInfoCardboard::SetFOV(const VRFieldOfView& aFOVLeft, const VRFieldOfView& aFOVRight, double zNear, double zFar) { const float standardIPD = 0.064f; for (uint32_t eye = 0; eye < NumEyes; eye++) { mEyeFOV[eye] = eye == Eye_Left ? aFOVLeft : aFOVRight; mEyeTranslation[eye] = Point3D(standardIPD * (eye == Eye_Left ? -1.0 : 1.0), 0.0, 0.0); mEyeProjectionMatrix[eye] = mEyeFOV[eye].ConstructProjectionMatrix(zNear, zFar, true); mDistortionMesh[eye].mVertices.SetLength(4); mDistortionMesh[eye].mIndices.SetLength(6); HMDInfoCardboard::DistortionVertex *destv = reinterpret_cast(mDistortionMesh[eye].mVertices.Elements()); float xoffs = eye == Eye_Left ? 0.0f : 1.0f; float txoffs = eye == Eye_Left ? 0.0f : 0.5f; destv[0].pos[0] = -1.0 + xoffs; destv[0].pos[1] = -1.0; destv[0].texR[0] = destv[0].texG[0] = destv[0].texB[0] = 0.0 + txoffs; destv[0].texR[1] = destv[0].texG[1] = destv[0].texB[1] = 1.0; destv[0].padding[0] = 1.0; // vignette factor destv[1].pos[0] = 0.0 + xoffs; destv[1].pos[1] = -1.0; destv[1].texR[0] = destv[1].texG[0] = destv[1].texB[0] = 0.5 + txoffs; destv[1].texR[1] = destv[1].texG[1] = destv[1].texB[1] = 1.0; destv[1].padding[0] = 1.0; // vignette factor destv[2].pos[0] = 0.0 + xoffs; destv[2].pos[1] = 1.0; destv[2].texR[0] = destv[2].texG[0] = destv[2].texB[0] = 0.5 + txoffs; destv[2].texR[1] = destv[2].texG[1] = destv[2].texB[1] = 0.0; destv[2].padding[0] = 1.0; // vignette factor destv[3].pos[0] = -1.0 + xoffs; destv[3].pos[1] = 1.0; destv[3].texR[0] = destv[3].texG[0] = destv[3].texB[0] = 0.0 + txoffs; destv[3].texR[1] = destv[3].texG[1] = destv[3].texB[1] = 0.0; destv[3].padding[0] = 1.0; // vignette factor uint16_t *iv = mDistortionMesh[eye].mIndices.Elements(); iv[0] = 0; iv[1] = 1; iv[2] = 2; iv[3] = 2; iv[4] = 3; iv[5] = 0; } // XXX find out the default screen size and use that mEyeResolution.width = 1920 / 2; mEyeResolution.height = 1080; if (PR_GetEnv("FAKE_CARDBOARD_SCREEN")) { // for testing, make the eye resolution 2x of the screen mEyeResolution.width *= 2; mEyeResolution.height *= 2; } mConfiguration.hmdType = mType; mConfiguration.value = 0; mConfiguration.fov[0] = aFOVLeft; mConfiguration.fov[1] = aFOVRight; return true; } void HMDInfoCardboard::FillDistortionConstants(uint32_t whichEye, const IntSize& textureSize, const IntRect& eyeViewport, const Size& destViewport, const Rect& destRect, VRDistortionConstants& values) { // these modify the texture coordinates; texcoord * zw + xy values.eyeToSourceScaleAndOffset[0] = 0.0; values.eyeToSourceScaleAndOffset[1] = 0.0; if (PR_GetEnv("FAKE_CARDBOARD_SCREEN")) { values.eyeToSourceScaleAndOffset[2] = 2.0; values.eyeToSourceScaleAndOffset[3] = 2.0; } else { values.eyeToSourceScaleAndOffset[2] = 1.0; values.eyeToSourceScaleAndOffset[3] = 1.0; } // Our mesh positions are in the [-1..1] clip space; we give appropriate offset // and scaling for the right viewport. (In the 0..2 space for sanity) // this is the destRect in clip space float x0 = destRect.x / destViewport.width * 2.0 - 1.0; float x1 = (destRect.x + destRect.width) / destViewport.width * 2.0 - 1.0; float y0 = destRect.y / destViewport.height * 2.0 - 1.0; float y1 = (destRect.y + destRect.height) / destViewport.height * 2.0 - 1.0; // offset values.destinationScaleAndOffset[0] = (x0+x1) / 2.0; values.destinationScaleAndOffset[1] = (y0+y1) / 2.0; // scale values.destinationScaleAndOffset[2] = destRect.width / destViewport.width; values.destinationScaleAndOffset[3] = destRect.height / destViewport.height; } void HMDInfoCardboard::Destroy() { } bool VRHMDManagerCardboard::PlatformInit() { return gfxPrefs::VREnabled() && gfxPrefs::VRCardboardEnabled(); } bool VRHMDManagerCardboard::Init() { if (mCardboardInitialized) return true; RefPtr hmd = new HMDInfoCardboard(); mCardboardHMDs.AppendElement(hmd); mCardboardInitialized = true; return true; } void VRHMDManagerCardboard::Destroy() { if (!mCardboardInitialized) return; for (size_t i = 0; i < mCardboardHMDs.Length(); ++i) { mCardboardHMDs[i]->Destroy(); } mCardboardHMDs.Clear(); mCardboardInitialized = false; } void VRHMDManagerCardboard::GetHMDs(nsTArray>& aHMDResult) { Init(); for (size_t i = 0; i < mCardboardHMDs.Length(); ++i) { aHMDResult.AppendElement(mCardboardHMDs[i]); } }