/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * A class that computes and caches the indices used for :nth-* pseudo-class * matching. */ #include "nsNthIndexCache.h" #include "mozilla/dom/Element.h" #include "mozilla/dom/NodeInfoInlines.h" nsNthIndexCache::nsNthIndexCache() { } nsNthIndexCache::~nsNthIndexCache() { } void nsNthIndexCache::Reset() { mCaches[0][0].clear(); mCaches[0][1].clear(); mCaches[1][0].clear(); mCaches[1][1].clear(); } inline bool nsNthIndexCache::SiblingMatchesElement(nsIContent* aSibling, Element* aElement, bool aIsOfType) { return aSibling->IsElement() && (!aIsOfType || aSibling->NodeInfo()->NameAndNamespaceEquals(aElement->NodeInfo())); } inline bool nsNthIndexCache::IndexDeterminedFromPreviousSibling(nsIContent* aSibling, Element* aChild, bool aIsOfType, bool aIsFromEnd, const Cache& aCache, int32_t& aResult) { if (SiblingMatchesElement(aSibling, aChild, aIsOfType)) { Cache::Ptr siblingEntry = aCache.lookup(aSibling); if (siblingEntry) { int32_t siblingIndex = siblingEntry->value(); NS_ASSERTION(siblingIndex != 0, "How can a non-anonymous node have an anonymous sibling?"); if (siblingIndex > 0) { // At this point, aResult is a count of how many elements matching // aChild we have seen after aSibling, including aChild itself. // |siblingIndex| is the index of aSibling. // So if aIsFromEnd, we want |aResult = siblingIndex - aResult| and // otherwise we want |aResult = siblingIndex + aResult|. aResult = siblingIndex + aResult * (1 - 2 * aIsFromEnd); return true; } } ++aResult; } return false; } int32_t nsNthIndexCache::GetNthIndex(Element* aChild, bool aIsOfType, bool aIsFromEnd, bool aCheckEdgeOnly) { NS_ASSERTION(aChild->GetParent(), "caller should check GetParent()"); if (aChild->IsRootOfAnonymousSubtree()) { return 0; } Cache &cache = mCaches[aIsOfType][aIsFromEnd]; if (!cache.initialized() && !cache.init()) { // Give up and just don't match. return 0; } Cache::AddPtr entry = cache.lookupForAdd(aChild); // Default the value to -2 when adding if (!entry && !cache.add(entry, aChild, -2)) { // No good; don't match. return 0; } int32_t &slot = entry->value(); if (slot != -2 && (slot != -1 || aCheckEdgeOnly)) { return slot; } int32_t result = 1; if (aCheckEdgeOnly) { // The caller only cares whether or not the result is 1, so we can // stop as soon as we see any other elements that match us. if (aIsFromEnd) { for (nsIContent *cur = aChild->GetNextSibling(); cur; cur = cur->GetNextSibling()) { if (SiblingMatchesElement(cur, aChild, aIsOfType)) { result = -1; break; } } } else { for (nsIContent *cur = aChild->GetPreviousSibling(); cur; cur = cur->GetPreviousSibling()) { if (SiblingMatchesElement(cur, aChild, aIsOfType)) { result = -1; break; } } } } else { // In the common case, we already have a cached index for one of // our previous siblings, so check that first. for (nsIContent *cur = aChild->GetPreviousSibling(); cur; cur = cur->GetPreviousSibling()) { if (IndexDeterminedFromPreviousSibling(cur, aChild, aIsOfType, aIsFromEnd, cache, result)) { slot = result; return result; } } // Now if aIsFromEnd we lose: need to actually compute our index, // since looking at previous siblings wouldn't have told us // anything about it. Note that it doesn't make sense to do cache // lookups on our following siblings, since chances are the cache // is not primed for them. if (aIsFromEnd) { result = 1; for (nsIContent *cur = aChild->GetNextSibling(); cur; cur = cur->GetNextSibling()) { if (SiblingMatchesElement(cur, aChild, aIsOfType)) { ++result; } } } } slot = result; return result; }