/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "libyuv/compare.h" #include "libyuv/convert.h" #include "libyuv/convert_argb.h" #include "libyuv/convert_from.h" #include "libyuv/convert_from_argb.h" #include "libyuv/cpu_id.h" #include "libyuv/format_conversion.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "libyuv/row.h" #include "../unit_test/unit_test.h" #if defined(_MSC_VER) #define SIMD_ALIGNED(var) __declspec(align(16)) var #else // __GNUC__ #define SIMD_ALIGNED(var) var __attribute__((aligned(16))) #endif namespace libyuv { #define SUBSAMPLE(v, a) ((((v) + (a) - 1)) / (a)) #define TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \ TEST_F(libyuvTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ align_buffer_64(src_y, kWidth * kHeight + OFF); \ align_buffer_64(src_u, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \ align_buffer_64(src_v, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \ align_buffer_64(dst_y_c, kWidth * kHeight); \ align_buffer_64(dst_u_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_v_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_y_opt, kWidth * kHeight); \ align_buffer_64(dst_u_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_v_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[(i * kWidth) + j + OFF] = (random() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (random() & 0xff); \ src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (random() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth * kHeight); \ memset(dst_u_c, 2, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth * kHeight); \ memset(dst_u_opt, 102, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(0); \ SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \ src_u + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ dst_y_c, kWidth, \ dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X), \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \ src_u + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ dst_y_opt, kWidth, \ dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = \ abs(static_cast(dst_y_c[i * kWidth + j]) - \ static_cast(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 0); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_u_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast(dst_u_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_v_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast(dst_v_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ free_aligned_buffer_64(dst_y_c); \ free_aligned_buffer_64(dst_u_c); \ free_aligned_buffer_64(dst_v_c); \ free_aligned_buffer_64(dst_y_opt); \ free_aligned_buffer_64(dst_u_opt); \ free_aligned_buffer_64(dst_v_opt); \ free_aligned_buffer_64(src_y); \ free_aligned_buffer_64(src_u); \ free_aligned_buffer_64(src_v); \ } #define TESTPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, _Any, +, 0) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Unaligned, +, 1) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Invert, -, 0) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Opt, +, 0) TESTPLANARTOP(I420, 2, 2, I420, 2, 2) TESTPLANARTOP(I422, 2, 1, I420, 2, 2) TESTPLANARTOP(I444, 1, 1, I420, 2, 2) TESTPLANARTOP(I411, 4, 1, I420, 2, 2) TESTPLANARTOP(I420, 2, 2, I422, 2, 1) TESTPLANARTOP(I420, 2, 2, I444, 1, 1) TESTPLANARTOP(I420, 2, 2, I411, 4, 1) TESTPLANARTOP(I420, 2, 2, I420Mirror, 2, 2) TESTPLANARTOP(I422, 2, 1, I422, 2, 1) TESTPLANARTOP(I444, 1, 1, I444, 1, 1) #define TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \ TEST_F(libyuvTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ align_buffer_64(src_y, kWidth * kHeight + OFF); \ align_buffer_64(src_u, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \ align_buffer_64(src_v, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \ align_buffer_64(dst_y_c, kWidth * kHeight); \ align_buffer_64(dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_y_opt, kWidth * kHeight); \ align_buffer_64(dst_uv_opt, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[(i * kWidth) + j + OFF] = (random() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (random() & 0xff); \ src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (random() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth * kHeight); \ memset(dst_uv_c, 2, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth * kHeight); \ memset(dst_uv_opt, 102, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(0); \ SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \ src_u + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ dst_y_c, kWidth, \ dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X), \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \ src_u + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ dst_y_opt, kWidth, \ dst_uv_opt, \ SUBSAMPLE(kWidth * 2, SUBSAMP_X), \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = \ abs(static_cast(dst_y_c[i * kWidth + j]) - \ static_cast(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth * 2, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_uv_c[i * \ SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j]) - \ static_cast(dst_uv_opt[i * \ SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ free_aligned_buffer_64(dst_y_c); \ free_aligned_buffer_64(dst_uv_c); \ free_aligned_buffer_64(dst_y_opt); \ free_aligned_buffer_64(dst_uv_opt); \ free_aligned_buffer_64(src_y); \ free_aligned_buffer_64(src_u); \ free_aligned_buffer_64(src_v); \ } #define TESTPLANARTOBP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, _Any, +, 0) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Unaligned, +, 1) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Invert, -, 0) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Opt, +, 0) TESTPLANARTOBP(I420, 2, 2, NV12, 2, 2) TESTPLANARTOBP(I420, 2, 2, NV21, 2, 2) #define TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \ TEST_F(libyuvTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ align_buffer_64(src_y, kWidth * kHeight + OFF); \ align_buffer_64(src_uv, 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \ align_buffer_64(dst_y_c, kWidth * kHeight); \ align_buffer_64(dst_u_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_v_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_y_opt, kWidth * kHeight); \ align_buffer_64(dst_u_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_v_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[(i * kWidth) + j + OFF] = (random() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_uv[(i * 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (random() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth * kHeight); \ memset(dst_u_c, 2, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth * kHeight); \ memset(dst_u_opt, 102, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(0); \ SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \ src_uv + OFF, \ 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ dst_y_c, kWidth, \ dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X), \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \ src_uv + OFF, \ 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ dst_y_opt, kWidth, \ dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = \ abs(static_cast(dst_y_c[i * kWidth + j]) - \ static_cast(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_u_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast(dst_u_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_v_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast(dst_v_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ free_aligned_buffer_64(dst_y_c); \ free_aligned_buffer_64(dst_u_c); \ free_aligned_buffer_64(dst_v_c); \ free_aligned_buffer_64(dst_y_opt); \ free_aligned_buffer_64(dst_u_opt); \ free_aligned_buffer_64(dst_v_opt); \ free_aligned_buffer_64(src_y); \ free_aligned_buffer_64(src_uv); \ } #define TESTBIPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, _Any, +, 0) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Unaligned, +, 1) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Invert, -, 0) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Opt, +, 0) TESTBIPLANARTOP(NV12, 2, 2, I420, 2, 2) TESTBIPLANARTOP(NV21, 2, 2, I420, 2, 2) #define ALIGNINT(V, ALIGN) (((V) + (ALIGN) - 1) / (ALIGN) * (ALIGN)) #define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C) \ TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \ const int kSizeUV = \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y); \ align_buffer_64(src_y, kWidth * kHeight + OFF); \ align_buffer_64(src_u, kSizeUV + OFF); \ align_buffer_64(src_v, kSizeUV + OFF); \ align_buffer_64(dst_argb_c, kStrideB * kHeight); \ align_buffer_64(dst_argb_opt, kStrideB * kHeight); \ srandom(time(NULL)); \ for (int i = 0; i < kWidth * kHeight; ++i) { \ src_y[i + OFF] = (random() & 0xff); \ } \ for (int i = 0; i < kSizeUV; ++i) { \ src_u[i + OFF] = (random() & 0xff); \ src_v[i + OFF] = (random() & 0xff); \ } \ memset(dst_argb_c, 1, kStrideB * kHeight); \ memset(dst_argb_opt, 101, kStrideB * kHeight); \ MaskCpuFlags(0); \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \ src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_argb_c, kStrideB, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \ src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_argb_opt, kStrideB, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ /* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \ align_buffer_64(dst_argb32_c, kWidth * BPP_C * kHeight); \ align_buffer_64(dst_argb32_opt, kWidth * BPP_C * kHeight); \ memset(dst_argb32_c, 2, kWidth * BPP_C * kHeight); \ memset(dst_argb32_opt, 102, kWidth * BPP_C * kHeight); \ FMT_B##To##FMT_C(dst_argb_c, kStrideB, \ dst_argb32_c, kWidth * BPP_C , \ kWidth, kHeight); \ FMT_B##To##FMT_C(dst_argb_opt, kStrideB, \ dst_argb32_opt, kWidth * BPP_C , \ kWidth, kHeight); \ for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) { \ int abs_diff = \ abs(static_cast(dst_argb32_c[i]) - \ static_cast(dst_argb32_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_64(src_y); \ free_aligned_buffer_64(src_u); \ free_aligned_buffer_64(src_v); \ free_aligned_buffer_64(dst_argb_c); \ free_aligned_buffer_64(dst_argb_opt); \ free_aligned_buffer_64(dst_argb32_c); \ free_aligned_buffer_64(dst_argb32_opt); \ } #define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, DIFF, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C) // TODO(fbarchard): Make vertical alignment unnecessary on bayer. TESTPLANARTOB(I420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BGRA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RGBA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RAW, 3, 3, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RGB24, 3, 3, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4) TESTPLANARTOB(I420, 2, 2, ARGB1555, 2, 2, 1, 9, ARGB, 4) TESTPLANARTOB(I420, 2, 2, ARGB4444, 2, 2, 1, 17, ARGB, 4) TESTPLANARTOB(I422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I422, 2, 1, BGRA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I422, 2, 1, RGBA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I411, 4, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, YUY2, 2, 4, 1, 1, ARGB, 4) TESTPLANARTOB(I420, 2, 2, UYVY, 2, 4, 1, 1, ARGB, 4) TESTPLANARTOB(I422, 2, 1, YUY2, 2, 4, 1, 0, ARGB, 4) TESTPLANARTOB(I422, 2, 1, UYVY, 2, 4, 1, 0, ARGB, 4) TESTPLANARTOB(I420, 2, 2, I400, 1, 1, 1, 0, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BayerBGGR, 1, 2, 2, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BayerRGGB, 1, 2, 2, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BayerGBRG, 1, 2, 2, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BayerGRBG, 1, 2, 2, 2, ARGB, 4) #define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ W1280, DIFF, N, NEG, OFF) \ TEST_F(libyuvTest, FMT_PLANAR##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStrideB = kWidth * BPP_B; \ align_buffer_64(src_y, kWidth * kHeight + OFF); \ align_buffer_64(src_uv, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y) * 2 + OFF); \ align_buffer_64(dst_argb_c, kStrideB * kHeight); \ align_buffer_64(dst_argb_opt, kStrideB * kHeight); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[(i * kWidth) + j + OFF] = (random() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X) * 2; ++j) { \ src_uv[(i * SUBSAMPLE(kWidth, SUBSAMP_X)) * 2 + j + OFF] = \ (random() & 0xff); \ } \ } \ memset(dst_argb_c, 1, kStrideB * kHeight); \ memset(dst_argb_opt, 101, kStrideB * kHeight); \ MaskCpuFlags(0); \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \ src_uv + OFF, SUBSAMPLE(kWidth, SUBSAMP_X) * 2, \ dst_argb_c, kWidth * BPP_B, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \ src_uv + OFF, SUBSAMPLE(kWidth, SUBSAMP_X) * 2, \ dst_argb_opt, kWidth * BPP_B, \ kWidth, NEG kHeight); \ } \ /* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \ align_buffer_64(dst_argb32_c, kWidth * 4 * kHeight); \ align_buffer_64(dst_argb32_opt, kWidth * 4 * kHeight); \ memset(dst_argb32_c, 2, kWidth * 4 * kHeight); \ memset(dst_argb32_opt, 102, kWidth * 4 * kHeight); \ FMT_B##ToARGB(dst_argb_c, kStrideB, \ dst_argb32_c, kWidth * 4, \ kWidth, kHeight); \ FMT_B##ToARGB(dst_argb_opt, kStrideB, \ dst_argb32_opt, kWidth * 4, \ kWidth, kHeight); \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth * 4; ++j) { \ int abs_diff = \ abs(static_cast(dst_argb32_c[i * kWidth * 4 + j]) - \ static_cast(dst_argb32_opt[i * kWidth * 4 + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_64(src_y); \ free_aligned_buffer_64(src_uv); \ free_aligned_buffer_64(dst_argb_c); \ free_aligned_buffer_64(dst_argb_opt); \ free_aligned_buffer_64(dst_argb32_c); \ free_aligned_buffer_64(dst_argb32_opt); \ } #define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_, DIFF, _Invert, -, 0) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_, DIFF, _Opt, +, 0) TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4, 2) TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4, 2) TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2, 9) TESTBIPLANARTOB(NV21, 2, 2, RGB565, 2, 9) #define TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ W1280, DIFF, N, NEG, OFF) \ TEST_F(libyuvTest, FMT_A##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStride = \ (SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMP_X * 8 * BPP_A + 7) / 8; \ align_buffer_64(src_argb, kStride * kHeight + OFF); \ align_buffer_64(dst_y_c, kWidth * kHeight); \ align_buffer_64(dst_u_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_v_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_y_opt, kWidth * kHeight); \ align_buffer_64(dst_u_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_v_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_c, 1, kWidth * kHeight); \ memset(dst_u_c, 2, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth * kHeight); \ memset(dst_u_opt, 102, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kStride; ++j) \ src_argb[(i * kStride) + j + OFF] = (random() & 0xff); \ MaskCpuFlags(0); \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \ dst_y_c, kWidth, \ dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X), \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \ dst_y_opt, kWidth, \ dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = \ abs(static_cast(dst_y_c[i * kWidth + j]) - \ static_cast(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, DIFF); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_u_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast(dst_u_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, DIFF); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast(dst_v_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast(dst_v_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_64(dst_y_c); \ free_aligned_buffer_64(dst_u_c); \ free_aligned_buffer_64(dst_v_c); \ free_aligned_buffer_64(dst_y_opt); \ free_aligned_buffer_64(dst_u_opt); \ free_aligned_buffer_64(dst_v_opt); \ free_aligned_buffer_64(src_argb); \ } #define TESTATOPLANAR(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ DIFF) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, DIFF, _Invert, -, 0) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, DIFF, _Opt, +, 0) TESTATOPLANAR(ARGB, 4, 1, I420, 2, 2, 4) #ifdef __arm__ TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 4) #else TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 0) #endif TESTATOPLANAR(BGRA, 4, 1, I420, 2, 2, 4) TESTATOPLANAR(ABGR, 4, 1, I420, 2, 2, 4) TESTATOPLANAR(RGBA, 4, 1, I420, 2, 2, 4) TESTATOPLANAR(RAW, 3, 1, I420, 2, 2, 4) TESTATOPLANAR(RGB24, 3, 1, I420, 2, 2, 4) TESTATOPLANAR(RGB565, 2, 1, I420, 2, 2, 5) // TODO(fbarchard): Make 1555 neon work same as C code, reduce to diff 9. TESTATOPLANAR(ARGB1555, 2, 1, I420, 2, 2, 15) TESTATOPLANAR(ARGB4444, 2, 1, I420, 2, 2, 17) TESTATOPLANAR(ARGB, 4, 1, I411, 4, 1, 4) TESTATOPLANAR(ARGB, 4, 1, I422, 2, 1, 2) TESTATOPLANAR(ARGB, 4, 1, I444, 1, 1, 2) TESTATOPLANAR(YUY2, 2, 1, I420, 2, 2, 2) TESTATOPLANAR(UYVY, 2, 1, I420, 2, 2, 2) TESTATOPLANAR(YUY2, 2, 1, I422, 2, 1, 2) TESTATOPLANAR(UYVY, 2, 1, I422, 2, 1, 2) TESTATOPLANAR(I400, 1, 1, I420, 2, 2, 2) TESTATOPLANAR(BayerBGGR, 1, 2, I420, 2, 2, 4) TESTATOPLANAR(BayerRGGB, 1, 2, I420, 2, 2, 4) TESTATOPLANAR(BayerGBRG, 1, 2, I420, 2, 2, 4) TESTATOPLANAR(BayerGRBG, 1, 2, I420, 2, 2, 4) #define TESTATOBIPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ W1280, N, NEG, OFF) \ TEST_F(libyuvTest, FMT_A##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStride = (kWidth * 8 * BPP_A + 7) / 8; \ align_buffer_64(src_argb, kStride * kHeight + OFF); \ align_buffer_64(dst_y_c, kWidth * kHeight); \ align_buffer_64(dst_uv_c, \ SUBSAMPLE(kWidth, SUBSAMP_X) * 2 * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_64(dst_y_opt, kWidth * kHeight); \ align_buffer_64(dst_uv_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X) * 2 * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ srandom(time(NULL)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kStride; ++j) \ src_argb[(i * kStride) + j + OFF] = (random() & 0xff); \ memset(dst_y_c, 1, kWidth * kHeight); \ memset(dst_uv_c, 2, SUBSAMPLE(kWidth, SUBSAMP_X) * 2 * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth * kHeight); \ memset(dst_uv_opt, 102, SUBSAMPLE(kWidth, SUBSAMP_X) * 2 * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(0); \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \ dst_y_c, kWidth, \ dst_uv_c, SUBSAMPLE(kWidth, SUBSAMP_X) * 2, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \ dst_y_opt, kWidth, \ dst_uv_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * 2, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = \ abs(static_cast(dst_y_c[i * kWidth + j]) - \ static_cast(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 4); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X) * 2; ++j) { \ int abs_diff = \ abs(static_cast(dst_uv_c[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) * 2 + j]) - \ static_cast(dst_uv_opt[i * \ SUBSAMPLE(kWidth, SUBSAMP_X) * 2 + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 4); \ free_aligned_buffer_64(dst_y_c); \ free_aligned_buffer_64(dst_uv_c); \ free_aligned_buffer_64(dst_y_opt); \ free_aligned_buffer_64(dst_uv_opt); \ free_aligned_buffer_64(src_argb); \ } #define TESTATOBIPLANAR(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTATOBIPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, _Any, +, 0) \ TESTATOBIPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Unaligned, +, 1) \ TESTATOBIPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Invert, -, 0) \ TESTATOBIPLANARI(FMT_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Opt, +, 0) TESTATOBIPLANAR(ARGB, 4, NV12, 2, 2) TESTATOBIPLANAR(ARGB, 4, NV21, 2, 2) #define TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \ W1280, DIFF, N, NEG, OFF) \ TEST_F(libyuvTest, FMT_A##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \ const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \ align_buffer_64(src_argb, kStrideA * kHeightA + OFF); \ align_buffer_64(dst_argb_c, kStrideB * kHeightB); \ align_buffer_64(dst_argb_opt, kStrideB * kHeightB); \ srandom(time(NULL)); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i + OFF] = (random() & 0xff); \ } \ memset(dst_argb_c, 1, kStrideB * kHeightB); \ memset(dst_argb_opt, 101, kStrideB * kHeightB); \ MaskCpuFlags(0); \ FMT_A##To##FMT_B(src_argb + OFF, kStrideA, \ dst_argb_c, kStrideB, \ kWidth, NEG kHeight); \ MaskCpuFlags(-1); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_B(src_argb + OFF, kStrideA, \ dst_argb_opt, kStrideB, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kStrideB * kHeightB; ++i) { \ int abs_diff = \ abs(static_cast(dst_argb_c[i]) - \ static_cast(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_64(src_argb); \ free_aligned_buffer_64(dst_argb_c); \ free_aligned_buffer_64(dst_argb_opt); \ } #define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) \ TEST_F(libyuvTest, FMT_A##To##FMT_B##_Random) { \ srandom(time(NULL)); \ for (int times = 0; times < benchmark_iterations_; ++times) { \ const int kWidth = (random() & 63) + 1; \ const int kHeight = (random() & 31) + 1; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \ const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;\ const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;\ align_buffer_page_end(src_argb, kStrideA * kHeightA); \ align_buffer_page_end(dst_argb_c, kStrideB * kHeightB); \ align_buffer_page_end(dst_argb_opt, kStrideB * kHeightB); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i] = (random() & 0xff); \ } \ memset(dst_argb_c, 123, kStrideB * kHeightB); \ memset(dst_argb_opt, 123, kStrideB * kHeightB); \ MaskCpuFlags(0); \ FMT_A##To##FMT_B(src_argb, kStrideA, \ dst_argb_c, kStrideB, \ kWidth, kHeight); \ MaskCpuFlags(-1); \ FMT_A##To##FMT_B(src_argb, kStrideA, \ dst_argb_opt, kStrideB, \ kWidth, kHeight); \ int max_diff = 0; \ for (int i = 0; i < kStrideB * kHeightB; ++i) { \ int abs_diff = \ abs(static_cast(dst_argb_c[i]) - \ static_cast(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_argb); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } \ } #define TESTATOB(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \ benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \ benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \ benchmark_width_, DIFF, _Invert, -, 0) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \ benchmark_width_, DIFF, _Opt, +, 0) \ TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \ FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) TESTATOB(ARGB, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, BGRA, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, ABGR, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, RGBA, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, RAW, 3, 3, 1, 0) TESTATOB(ARGB, 4, 4, 1, RGB24, 3, 3, 1, 0) TESTATOB(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0) TESTATOB(ARGB, 4, 4, 1, ARGB1555, 2, 2, 1, 0) TESTATOB(ARGB, 4, 4, 1, ARGB4444, 2, 2, 1, 0) TESTATOB(ARGB, 4, 4, 1, BayerBGGR, 1, 1, 1, 0) TESTATOB(ARGB, 4, 4, 1, BayerRGGB, 1, 1, 1, 0) TESTATOB(ARGB, 4, 4, 1, BayerGBRG, 1, 1, 1, 0) TESTATOB(ARGB, 4, 4, 1, BayerGRBG, 1, 1, 1, 0) TESTATOB(ARGB, 4, 4, 1, YUY2, 2, 4, 1, 4) TESTATOB(ARGB, 4, 4, 1, UYVY, 2, 4, 1, 4) TESTATOB(ARGB, 4, 4, 1, I400, 1, 1, 1, 2) TESTATOB(ARGB, 4, 4, 1, J400, 1, 1, 1, 2) TESTATOB(BGRA, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(ABGR, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(RGBA, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(RAW, 3, 3, 1, ARGB, 4, 4, 1, 0) TESTATOB(RGB24, 3, 3, 1, ARGB, 4, 4, 1, 0) TESTATOB(RGB565, 2, 2, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB1555, 2, 2, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB4444, 2, 2, 1, ARGB, 4, 4, 1, 0) TESTATOB(YUY2, 2, 4, 1, ARGB, 4, 4, 1, 4) TESTATOB(UYVY, 2, 4, 1, ARGB, 4, 4, 1, 4) TESTATOB(BayerBGGR, 1, 2, 2, ARGB, 4, 4, 1, 0) TESTATOB(BayerRGGB, 1, 2, 2, ARGB, 4, 4, 1, 0) TESTATOB(BayerGBRG, 1, 2, 2, ARGB, 4, 4, 1, 0) TESTATOB(BayerGRBG, 1, 2, 2, ARGB, 4, 4, 1, 0) TESTATOB(I400, 1, 1, 1, ARGB, 4, 4, 1, 0) TESTATOB(I400, 1, 1, 1, I400, 1, 1, 1, 0) TESTATOB(I400, 1, 1, 1, I400Mirror, 1, 1, 1, 0) TESTATOB(Y, 1, 1, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, ARGBMirror, 4, 4, 1, 0) TEST_F(libyuvTest, Test565) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 pixels565[256][2]); for (int i = 0; i < 256; ++i) { for (int j = 0; j < 4; ++j) { orig_pixels[i][j] = i; } } ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1); uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381); EXPECT_EQ(610919429u, checksum); } #ifdef HAVE_JPEG TEST_F(libyuvTest, ValidateJpeg) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; align_buffer_64(orig_pixels, kSize); // No SOI or EOI. Expect fail. memset(orig_pixels, 0, kSize); // EOI, SOI. Expect pass. orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. for (int times = 0; times < benchmark_iterations_; ++times) { EXPECT_TRUE(ValidateJpeg(orig_pixels, kSize)); } free_aligned_buffer_page_end(orig_pixels); } TEST_F(libyuvTest, InvalidateJpeg) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; align_buffer_64(orig_pixels, kSize); // No SOI or EOI. Expect fail. memset(orig_pixels, 0, kSize); EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); // SOI but no EOI. Expect fail. orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. for (int times = 0; times < benchmark_iterations_; ++times) { EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); } // EOI but no SOI. Expect fail. orig_pixels[0] = 0; orig_pixels[1] = 0; orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); free_aligned_buffer_page_end(orig_pixels); } #endif } // namespace libyuv