/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // // This file implements a garbage-cycle collector based on the paper // // Concurrent Cycle Collection in Reference Counted Systems // Bacon & Rajan (2001), ECOOP 2001 / Springer LNCS vol 2072 // // We are not using the concurrent or acyclic cases of that paper; so // the green, red and orange colors are not used. // // The collector is based on tracking pointers of four colors: // // Black nodes are definitely live. If we ever determine a node is // black, it's ok to forget about, drop from our records. // // White nodes are definitely garbage cycles. Once we finish with our // scanning, we unlink all the white nodes and expect that by // unlinking them they will self-destruct (since a garbage cycle is // only keeping itself alive with internal links, by definition). // // Snow-white is an addition to the original algorithm. Snow-white object // has reference count zero and is just waiting for deletion. // // Grey nodes are being scanned. Nodes that turn grey will turn // either black if we determine that they're live, or white if we // determine that they're a garbage cycle. After the main collection // algorithm there should be no grey nodes. // // Purple nodes are *candidates* for being scanned. They are nodes we // haven't begun scanning yet because they're not old enough, or we're // still partway through the algorithm. // // XPCOM objects participating in garbage-cycle collection are obliged // to inform us when they ought to turn purple; that is, when their // refcount transitions from N+1 -> N, for nonzero N. Furthermore we // require that *after* an XPCOM object has informed us of turning // purple, they will tell us when they either transition back to being // black (incremented refcount) or are ultimately deleted. // Incremental cycle collection // // Beyond the simple state machine required to implement incremental // collection, the CC needs to be able to compensate for things the browser // is doing during the collection. There are two kinds of problems. For each // of these, there are two cases to deal with: purple-buffered C++ objects // and JS objects. // The first problem is that an object in the CC's graph can become garbage. // This is bad because the CC touches the objects in its graph at every // stage of its operation. // // All cycle collected C++ objects that die during a cycle collection // will end up actually getting deleted by the SnowWhiteKiller. Before // the SWK deletes an object, it checks if an ICC is running, and if so, // if the object is in the graph. If it is, the CC clears mPointer and // mParticipant so it does not point to the raw object any more. Because // objects could die any time the CC returns to the mutator, any time the CC // accesses a PtrInfo it must perform a null check on mParticipant to // ensure the object has not gone away. // // JS objects don't always run finalizers, so the CC can't remove them from // the graph when they die. Fortunately, JS objects can only die during a GC, // so if a GC is begun during an ICC, the browser synchronously finishes off // the ICC, which clears the entire CC graph. If the GC and CC are scheduled // properly, this should be rare. // // The second problem is that objects in the graph can be changed, say by // being addrefed or released, or by having a field updated, after the object // has been added to the graph. The problem is that ICC can miss a newly // created reference to an object, and end up unlinking an object that is // actually alive. // // The basic idea of the solution, from "An on-the-fly Reference Counting // Garbage Collector for Java" by Levanoni and Petrank, is to notice if an // object has had an additional reference to it created during the collection, // and if so, don't collect it during the current collection. This avoids having // to rerun the scan as in Bacon & Rajan 2001. // // For cycle collected C++ objects, we modify AddRef to place the object in // the purple buffer, in addition to Release. Then, in the CC, we treat any // objects in the purple buffer as being alive, after graph building has // completed. Because they are in the purple buffer, they will be suspected // in the next CC, so there's no danger of leaks. This is imprecise, because // we will treat as live an object that has been Released but not AddRefed // during graph building, but that's probably rare enough that the additional // bookkeeping overhead is not worthwhile. // // For JS objects, the cycle collector is only looking at gray objects. If a // gray object is touched during ICC, it will be made black by UnmarkGray. // Thus, if a JS object has become black during the ICC, we treat it as live. // Merged JS zones have to be handled specially: we scan all zone globals. // If any are black, we treat the zone as being black. // Safety // // An XPCOM object is either scan-safe or scan-unsafe, purple-safe or // purple-unsafe. // // An nsISupports object is scan-safe if: // // - It can be QI'ed to |nsXPCOMCycleCollectionParticipant|, though // this operation loses ISupports identity (like nsIClassInfo). // - Additionally, the operation |traverse| on the resulting // nsXPCOMCycleCollectionParticipant does not cause *any* refcount // adjustment to occur (no AddRef / Release calls). // // A non-nsISupports ("native") object is scan-safe by explicitly // providing its nsCycleCollectionParticipant. // // An object is purple-safe if it satisfies the following properties: // // - The object is scan-safe. // // When we receive a pointer |ptr| via // |nsCycleCollector::suspect(ptr)|, we assume it is purple-safe. We // can check the scan-safety, but have no way to ensure the // purple-safety; objects must obey, or else the entire system falls // apart. Don't involve an object in this scheme if you can't // guarantee its purple-safety. The easiest way to ensure that an // object is purple-safe is to use nsCycleCollectingAutoRefCnt. // // When we have a scannable set of purple nodes ready, we begin // our walks. During the walks, the nodes we |traverse| should only // feed us more scan-safe nodes, and should not adjust the refcounts // of those nodes. // // We do not |AddRef| or |Release| any objects during scanning. We // rely on the purple-safety of the roots that call |suspect| to // hold, such that we will clear the pointer from the purple buffer // entry to the object before it is destroyed. The pointers that are // merely scan-safe we hold only for the duration of scanning, and // there should be no objects released from the scan-safe set during // the scan. // // We *do* call |Root| and |Unroot| on every white object, on // either side of the calls to |Unlink|. This keeps the set of white // objects alive during the unlinking. // #if !defined(__MINGW32__) #ifdef WIN32 #include #include #endif #endif #include "base/process_util.h" #include "mozilla/ArrayUtils.h" #include "mozilla/AutoRestore.h" #include "mozilla/CycleCollectedJSRuntime.h" #include "mozilla/DebugOnly.h" #include "mozilla/HoldDropJSObjects.h" /* This must occur *after* base/process_util.h to avoid typedefs conflicts. */ #include "mozilla/LinkedList.h" #include "mozilla/MemoryReporting.h" #include "mozilla/SegmentedVector.h" #include "nsCycleCollectionParticipant.h" #include "nsCycleCollectionNoteRootCallback.h" #include "nsDeque.h" #include "nsCycleCollector.h" #include "nsThreadUtils.h" #include "nsXULAppAPI.h" #include "prenv.h" #include "nsPrintfCString.h" #include "nsTArray.h" #include "nsIConsoleService.h" #include "mozilla/Attributes.h" #include "nsICycleCollectorListener.h" #include "nsIMemoryReporter.h" #include "nsIFile.h" #include "nsDumpUtils.h" #include "xpcpublic.h" #include "GeckoProfiler.h" #include #include #include "mozilla/AutoGlobalTimelineMarker.h" #include "mozilla/Likely.h" #include "mozilla/PoisonIOInterposer.h" #include "mozilla/ThreadLocal.h" using namespace mozilla; //#define COLLECT_TIME_DEBUG // Enable assertions that are useful for diagnosing errors in graph construction. //#define DEBUG_CC_GRAPH #define DEFAULT_SHUTDOWN_COLLECTIONS 5 // One to do the freeing, then another to detect there is no more work to do. #define NORMAL_SHUTDOWN_COLLECTIONS 2 // Cycle collector environment variables // // MOZ_CC_LOG_ALL: If defined, always log cycle collector heaps. // // MOZ_CC_LOG_SHUTDOWN: If defined, log cycle collector heaps at shutdown. // // MOZ_CC_LOG_THREAD: If set to "main", only automatically log main thread // CCs. If set to "worker", only automatically log worker CCs. If set to "all", // log either. The default value is "all". This must be used with either // MOZ_CC_LOG_ALL or MOZ_CC_LOG_SHUTDOWN for it to do anything. // // MOZ_CC_LOG_PROCESS: If set to "main", only automatically log main process // CCs. If set to "content", only automatically log tab CCs. If set to // "plugins", only automatically log plugin CCs. If set to "all", log // everything. The default value is "all". This must be used with either // MOZ_CC_LOG_ALL or MOZ_CC_LOG_SHUTDOWN for it to do anything. // // MOZ_CC_ALL_TRACES: If set to "all", any cycle collector // logging done will be WantAllTraces, which disables // various cycle collector optimizations to give a fuller picture of // the heap. If set to "shutdown", only shutdown logging will be WantAllTraces. // The default is none. // // MOZ_CC_RUN_DURING_SHUTDOWN: In non-DEBUG or builds, if this is set, // run cycle collections at shutdown. // // MOZ_CC_LOG_DIRECTORY: The directory in which logs are placed (such as // logs from MOZ_CC_LOG_ALL and MOZ_CC_LOG_SHUTDOWN, or other uses // of nsICycleCollectorListener) // Various parameters of this collector can be tuned using environment // variables. struct nsCycleCollectorParams { bool mLogAll; bool mLogShutdown; bool mAllTracesAll; bool mAllTracesShutdown; bool mLogThisThread; nsCycleCollectorParams() : mLogAll(PR_GetEnv("MOZ_CC_LOG_ALL") != nullptr), mLogShutdown(PR_GetEnv("MOZ_CC_LOG_SHUTDOWN") != nullptr), mAllTracesAll(false), mAllTracesShutdown(false) { const char* logThreadEnv = PR_GetEnv("MOZ_CC_LOG_THREAD"); bool threadLogging = true; if (logThreadEnv && !!strcmp(logThreadEnv, "all")) { if (NS_IsMainThread()) { threadLogging = !strcmp(logThreadEnv, "main"); } else { threadLogging = !strcmp(logThreadEnv, "worker"); } } const char* logProcessEnv = PR_GetEnv("MOZ_CC_LOG_PROCESS"); bool processLogging = true; if (logProcessEnv && !!strcmp(logProcessEnv, "all")) { switch (XRE_GetProcessType()) { case GeckoProcessType_Default: processLogging = !strcmp(logProcessEnv, "main"); break; case GeckoProcessType_Plugin: processLogging = !strcmp(logProcessEnv, "plugins"); break; case GeckoProcessType_Content: processLogging = !strcmp(logProcessEnv, "content"); break; default: processLogging = false; break; } } mLogThisThread = threadLogging && processLogging; const char* allTracesEnv = PR_GetEnv("MOZ_CC_ALL_TRACES"); if (allTracesEnv) { if (!strcmp(allTracesEnv, "all")) { mAllTracesAll = true; } else if (!strcmp(allTracesEnv, "shutdown")) { mAllTracesShutdown = true; } } } bool LogThisCC(bool aIsShutdown) { return (mLogAll || (aIsShutdown && mLogShutdown)) && mLogThisThread; } bool AllTracesThisCC(bool aIsShutdown) { return mAllTracesAll || (aIsShutdown && mAllTracesShutdown); } }; #ifdef COLLECT_TIME_DEBUG class TimeLog { public: TimeLog() : mLastCheckpoint(TimeStamp::Now()) { } void Checkpoint(const char* aEvent) { TimeStamp now = TimeStamp::Now(); double dur = (now - mLastCheckpoint).ToMilliseconds(); if (dur >= 0.5) { printf("cc: %s took %.1fms\n", aEvent, dur); } mLastCheckpoint = now; } private: TimeStamp mLastCheckpoint; }; #else class TimeLog { public: TimeLog() { } void Checkpoint(const char* aEvent) { } }; #endif //////////////////////////////////////////////////////////////////////// // Base types //////////////////////////////////////////////////////////////////////// struct PtrInfo; class EdgePool { public: // EdgePool allocates arrays of void*, primarily to hold PtrInfo*. // However, at the end of a block, the last two pointers are a null // and then a void** pointing to the next block. This allows // EdgePool::Iterators to be a single word but still capable of crossing // block boundaries. EdgePool() { mSentinelAndBlocks[0].block = nullptr; mSentinelAndBlocks[1].block = nullptr; } ~EdgePool() { MOZ_ASSERT(!mSentinelAndBlocks[0].block && !mSentinelAndBlocks[1].block, "Didn't call Clear()?"); } void Clear() { Block* b = Blocks(); while (b) { Block* next = b->Next(); delete b; b = next; } mSentinelAndBlocks[0].block = nullptr; mSentinelAndBlocks[1].block = nullptr; } #ifdef DEBUG bool IsEmpty() { return !mSentinelAndBlocks[0].block && !mSentinelAndBlocks[1].block; } #endif private: struct Block; union PtrInfoOrBlock { // Use a union to avoid reinterpret_cast and the ensuing // potential aliasing bugs. PtrInfo* ptrInfo; Block* block; }; struct Block { enum { BlockSize = 16 * 1024 }; PtrInfoOrBlock mPointers[BlockSize]; Block() { mPointers[BlockSize - 2].block = nullptr; // sentinel mPointers[BlockSize - 1].block = nullptr; // next block pointer } Block*& Next() { return mPointers[BlockSize - 1].block; } PtrInfoOrBlock* Start() { return &mPointers[0]; } PtrInfoOrBlock* End() { return &mPointers[BlockSize - 2]; } }; // Store the null sentinel so that we can have valid iterators // before adding any edges and without adding any blocks. PtrInfoOrBlock mSentinelAndBlocks[2]; Block*& Blocks() { return mSentinelAndBlocks[1].block; } Block* Blocks() const { return mSentinelAndBlocks[1].block; } public: class Iterator { public: Iterator() : mPointer(nullptr) {} explicit Iterator(PtrInfoOrBlock* aPointer) : mPointer(aPointer) {} Iterator(const Iterator& aOther) : mPointer(aOther.mPointer) {} Iterator& operator++() { if (!mPointer->ptrInfo) { // Null pointer is a sentinel for link to the next block. mPointer = (mPointer + 1)->block->mPointers; } ++mPointer; return *this; } PtrInfo* operator*() const { if (!mPointer->ptrInfo) { // Null pointer is a sentinel for link to the next block. return (mPointer + 1)->block->mPointers->ptrInfo; } return mPointer->ptrInfo; } bool operator==(const Iterator& aOther) const { return mPointer == aOther.mPointer; } bool operator!=(const Iterator& aOther) const { return mPointer != aOther.mPointer; } #ifdef DEBUG_CC_GRAPH bool Initialized() const { return mPointer != nullptr; } #endif private: PtrInfoOrBlock* mPointer; }; class Builder; friend class Builder; class Builder { public: explicit Builder(EdgePool& aPool) : mCurrent(&aPool.mSentinelAndBlocks[0]) , mBlockEnd(&aPool.mSentinelAndBlocks[0]) , mNextBlockPtr(&aPool.Blocks()) { } Iterator Mark() { return Iterator(mCurrent); } void Add(PtrInfo* aEdge) { if (mCurrent == mBlockEnd) { Block* b = new Block(); *mNextBlockPtr = b; mCurrent = b->Start(); mBlockEnd = b->End(); mNextBlockPtr = &b->Next(); } (mCurrent++)->ptrInfo = aEdge; } private: // mBlockEnd points to space for null sentinel PtrInfoOrBlock* mCurrent; PtrInfoOrBlock* mBlockEnd; Block** mNextBlockPtr; }; size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t n = 0; Block* b = Blocks(); while (b) { n += aMallocSizeOf(b); b = b->Next(); } return n; } }; #ifdef DEBUG_CC_GRAPH #define CC_GRAPH_ASSERT(b) MOZ_ASSERT(b) #else #define CC_GRAPH_ASSERT(b) #endif enum NodeColor { black, white, grey }; // This structure should be kept as small as possible; we may expect // hundreds of thousands of them to be allocated and touched // repeatedly during each cycle collection. struct PtrInfo { void* mPointer; nsCycleCollectionParticipant* mParticipant; uint32_t mColor : 2; uint32_t mInternalRefs : 30; uint32_t mRefCount; private: EdgePool::Iterator mFirstChild; static const uint32_t kInitialRefCount = UINT32_MAX - 1; public: PtrInfo(void* aPointer, nsCycleCollectionParticipant* aParticipant) : mPointer(aPointer), mParticipant(aParticipant), mColor(grey), mInternalRefs(0), mRefCount(kInitialRefCount), mFirstChild() { MOZ_ASSERT(aParticipant); // We initialize mRefCount to a large non-zero value so // that it doesn't look like a JS object to the cycle collector // in the case where the object dies before being traversed. MOZ_ASSERT(!IsGrayJS() && !IsBlackJS()); } // Allow NodePool::Block's constructor to compile. PtrInfo() { NS_NOTREACHED("should never be called"); } bool IsGrayJS() const { return mRefCount == 0; } bool IsBlackJS() const { return mRefCount == UINT32_MAX; } bool WasTraversed() const { return mRefCount != kInitialRefCount; } EdgePool::Iterator FirstChild() const { CC_GRAPH_ASSERT(mFirstChild.Initialized()); return mFirstChild; } // this PtrInfo must be part of a NodePool EdgePool::Iterator LastChild() const { CC_GRAPH_ASSERT((this + 1)->mFirstChild.Initialized()); return (this + 1)->mFirstChild; } void SetFirstChild(EdgePool::Iterator aFirstChild) { CC_GRAPH_ASSERT(aFirstChild.Initialized()); mFirstChild = aFirstChild; } // this PtrInfo must be part of a NodePool void SetLastChild(EdgePool::Iterator aLastChild) { CC_GRAPH_ASSERT(aLastChild.Initialized()); (this + 1)->mFirstChild = aLastChild; } }; /** * A structure designed to be used like a linked list of PtrInfo, except * that allocates the PtrInfo 32K-at-a-time. */ class NodePool { private: // The -2 allows us to use |BlockSize + 1| for |mEntries|, and fit |mNext|, // all without causing slop. enum { BlockSize = 8 * 1024 - 2 }; struct Block { // We create and destroy Block using moz_xmalloc/free rather // than new and delete to avoid calling its constructor and // destructor. Block() { NS_NOTREACHED("should never be called"); // Ensure Block is the right size (see the comment on BlockSize above). static_assert( sizeof(Block) == 163824 || // 32-bit; equals 39.997 pages sizeof(Block) == 262120, // 64-bit; equals 63.994 pages "ill-sized NodePool::Block" ); } ~Block() { NS_NOTREACHED("should never be called"); } Block* mNext; PtrInfo mEntries[BlockSize + 1]; // +1 to store last child of last node }; public: NodePool() : mBlocks(nullptr) , mLast(nullptr) { } ~NodePool() { MOZ_ASSERT(!mBlocks, "Didn't call Clear()?"); } void Clear() { Block* b = mBlocks; while (b) { Block* n = b->mNext; free(b); b = n; } mBlocks = nullptr; mLast = nullptr; } #ifdef DEBUG bool IsEmpty() { return !mBlocks && !mLast; } #endif class Builder; friend class Builder; class Builder { public: explicit Builder(NodePool& aPool) : mNextBlock(&aPool.mBlocks) , mNext(aPool.mLast) , mBlockEnd(nullptr) { MOZ_ASSERT(!aPool.mBlocks && !aPool.mLast, "pool not empty"); } PtrInfo* Add(void* aPointer, nsCycleCollectionParticipant* aParticipant) { if (mNext == mBlockEnd) { Block* block = static_cast(moz_xmalloc(sizeof(Block))); *mNextBlock = block; mNext = block->mEntries; mBlockEnd = block->mEntries + BlockSize; block->mNext = nullptr; mNextBlock = &block->mNext; } return new (mNext++) PtrInfo(aPointer, aParticipant); } private: Block** mNextBlock; PtrInfo*& mNext; PtrInfo* mBlockEnd; }; class Enumerator; friend class Enumerator; class Enumerator { public: explicit Enumerator(NodePool& aPool) : mFirstBlock(aPool.mBlocks) , mCurBlock(nullptr) , mNext(nullptr) , mBlockEnd(nullptr) , mLast(aPool.mLast) { } bool IsDone() const { return mNext == mLast; } bool AtBlockEnd() const { return mNext == mBlockEnd; } PtrInfo* GetNext() { MOZ_ASSERT(!IsDone(), "calling GetNext when done"); if (mNext == mBlockEnd) { Block* nextBlock = mCurBlock ? mCurBlock->mNext : mFirstBlock; mNext = nextBlock->mEntries; mBlockEnd = mNext + BlockSize; mCurBlock = nextBlock; } return mNext++; } private: // mFirstBlock is a reference to allow an Enumerator to be constructed // for an empty graph. Block*& mFirstBlock; Block* mCurBlock; // mNext is the next value we want to return, unless mNext == mBlockEnd // NB: mLast is a reference to allow enumerating while building! PtrInfo* mNext; PtrInfo* mBlockEnd; PtrInfo*& mLast; }; size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { // We don't measure the things pointed to by mEntries[] because those // pointers are non-owning. size_t n = 0; Block* b = mBlocks; while (b) { n += aMallocSizeOf(b); b = b->mNext; } return n; } private: Block* mBlocks; PtrInfo* mLast; }; // Declarations for mPtrToNodeMap. struct PtrToNodeEntry : public PLDHashEntryHdr { // The key is mNode->mPointer PtrInfo* mNode; }; static bool PtrToNodeMatchEntry(PLDHashTable* aTable, const PLDHashEntryHdr* aEntry, const void* aKey) { const PtrToNodeEntry* n = static_cast(aEntry); return n->mNode->mPointer == aKey; } static PLDHashTableOps PtrNodeOps = { PLDHashTable::HashVoidPtrKeyStub, PtrToNodeMatchEntry, PLDHashTable::MoveEntryStub, PLDHashTable::ClearEntryStub, nullptr }; struct WeakMapping { // map and key will be null if the corresponding objects are GC marked PtrInfo* mMap; PtrInfo* mKey; PtrInfo* mKeyDelegate; PtrInfo* mVal; }; class CCGraphBuilder; struct CCGraph { NodePool mNodes; EdgePool mEdges; nsTArray mWeakMaps; uint32_t mRootCount; private: PLDHashTable mPtrToNodeMap; bool mOutOfMemory; static const uint32_t kInitialMapLength = 16384; public: CCGraph() : mRootCount(0) , mPtrToNodeMap(&PtrNodeOps, sizeof(PtrToNodeEntry), kInitialMapLength) , mOutOfMemory(false) {} ~CCGraph() {} void Init() { MOZ_ASSERT(IsEmpty(), "Failed to call CCGraph::Clear"); } void Clear() { mNodes.Clear(); mEdges.Clear(); mWeakMaps.Clear(); mRootCount = 0; mPtrToNodeMap.ClearAndPrepareForLength(kInitialMapLength); mOutOfMemory = false; } #ifdef DEBUG bool IsEmpty() { return mNodes.IsEmpty() && mEdges.IsEmpty() && mWeakMaps.IsEmpty() && mRootCount == 0 && mPtrToNodeMap.EntryCount() == 0; } #endif PtrInfo* FindNode(void* aPtr); PtrToNodeEntry* AddNodeToMap(void* aPtr); void RemoveObjectFromMap(void* aObject); uint32_t MapCount() const { return mPtrToNodeMap.EntryCount(); } size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t n = 0; n += mNodes.SizeOfExcludingThis(aMallocSizeOf); n += mEdges.SizeOfExcludingThis(aMallocSizeOf); // We don't measure what the WeakMappings point to, because the // pointers are non-owning. n += mWeakMaps.ShallowSizeOfExcludingThis(aMallocSizeOf); n += mPtrToNodeMap.ShallowSizeOfExcludingThis(aMallocSizeOf); return n; } private: PtrToNodeEntry* FindNodeEntry(void* aPtr) { return static_cast(mPtrToNodeMap.Search(aPtr)); } }; PtrInfo* CCGraph::FindNode(void* aPtr) { PtrToNodeEntry* e = FindNodeEntry(aPtr); return e ? e->mNode : nullptr; } PtrToNodeEntry* CCGraph::AddNodeToMap(void* aPtr) { JS::AutoSuppressGCAnalysis suppress; if (mOutOfMemory) { return nullptr; } auto e = static_cast(mPtrToNodeMap.Add(aPtr, fallible)); if (!e) { mOutOfMemory = true; MOZ_ASSERT(false, "Ran out of memory while building cycle collector graph"); return nullptr; } return e; } void CCGraph::RemoveObjectFromMap(void* aObj) { PtrToNodeEntry* e = FindNodeEntry(aObj); PtrInfo* pinfo = e ? e->mNode : nullptr; if (pinfo) { mPtrToNodeMap.RemoveEntry(e); pinfo->mPointer = nullptr; pinfo->mParticipant = nullptr; } } static nsISupports* CanonicalizeXPCOMParticipant(nsISupports* aIn) { nsISupports* out = nullptr; aIn->QueryInterface(NS_GET_IID(nsCycleCollectionISupports), reinterpret_cast(&out)); return out; } static inline void ToParticipant(nsISupports* aPtr, nsXPCOMCycleCollectionParticipant** aCp); static void CanonicalizeParticipant(void** aParti, nsCycleCollectionParticipant** aCp) { // If the participant is null, this is an nsISupports participant, // so we must QI to get the real participant. if (!*aCp) { nsISupports* nsparti = static_cast(*aParti); nsparti = CanonicalizeXPCOMParticipant(nsparti); NS_ASSERTION(nsparti, "Don't add objects that don't participate in collection!"); nsXPCOMCycleCollectionParticipant* xcp; ToParticipant(nsparti, &xcp); *aParti = nsparti; *aCp = xcp; } } struct nsPurpleBufferEntry { union { void* mObject; // when low bit unset nsPurpleBufferEntry* mNextInFreeList; // when low bit set }; nsCycleCollectingAutoRefCnt* mRefCnt; nsCycleCollectionParticipant* mParticipant; // nullptr for nsISupports }; class nsCycleCollector; struct nsPurpleBuffer { private: struct Block { Block* mNext; // Try to match the size of a jemalloc bucket, to minimize slop bytes. // - On 32-bit platforms sizeof(nsPurpleBufferEntry) is 12, so mEntries // is 16,380 bytes, which leaves 4 bytes for mNext. // - On 64-bit platforms sizeof(nsPurpleBufferEntry) is 24, so mEntries // is 32,544 bytes, which leaves 8 bytes for mNext. nsPurpleBufferEntry mEntries[1365]; Block() : mNext(nullptr) { // Ensure Block is the right size (see above). static_assert( sizeof(Block) == 16384 || // 32-bit sizeof(Block) == 32768, // 64-bit "ill-sized nsPurpleBuffer::Block" ); } template void VisitEntries(nsPurpleBuffer& aBuffer, PurpleVisitor& aVisitor) { nsPurpleBufferEntry* eEnd = ArrayEnd(mEntries); for (nsPurpleBufferEntry* e = mEntries; e != eEnd; ++e) { MOZ_ASSERT(e->mObject, "There should be no null mObject when we iterate over the purple buffer"); if (!(uintptr_t(e->mObject) & uintptr_t(1)) && e->mObject) { aVisitor.Visit(aBuffer, e); } } } }; // This class wraps a linked list of the elements in the purple // buffer. uint32_t mCount; Block mFirstBlock; nsPurpleBufferEntry* mFreeList; public: nsPurpleBuffer() { InitBlocks(); } ~nsPurpleBuffer() { FreeBlocks(); } template void VisitEntries(PurpleVisitor& aVisitor) { for (Block* b = &mFirstBlock; b; b = b->mNext) { b->VisitEntries(*this, aVisitor); } } void InitBlocks() { mCount = 0; mFreeList = nullptr; StartBlock(&mFirstBlock); } void StartBlock(Block* aBlock) { MOZ_ASSERT(!mFreeList, "should not have free list"); // Put all the entries in the block on the free list. nsPurpleBufferEntry* entries = aBlock->mEntries; mFreeList = entries; for (uint32_t i = 1; i < ArrayLength(aBlock->mEntries); ++i) { entries[i - 1].mNextInFreeList = (nsPurpleBufferEntry*)(uintptr_t(entries + i) | 1); } entries[ArrayLength(aBlock->mEntries) - 1].mNextInFreeList = (nsPurpleBufferEntry*)1; } void FreeBlocks() { if (mCount > 0) { UnmarkRemainingPurple(&mFirstBlock); } Block* b = mFirstBlock.mNext; while (b) { if (mCount > 0) { UnmarkRemainingPurple(b); } Block* next = b->mNext; delete b; b = next; } mFirstBlock.mNext = nullptr; } struct UnmarkRemainingPurpleVisitor { void Visit(nsPurpleBuffer& aBuffer, nsPurpleBufferEntry* aEntry) { if (aEntry->mRefCnt) { aEntry->mRefCnt->RemoveFromPurpleBuffer(); aEntry->mRefCnt = nullptr; } aEntry->mObject = nullptr; --aBuffer.mCount; } }; void UnmarkRemainingPurple(Block* aBlock) { UnmarkRemainingPurpleVisitor visitor; aBlock->VisitEntries(*this, visitor); } void SelectPointers(CCGraphBuilder& aBuilder); // RemoveSkippable removes entries from the purple buffer synchronously // (1) if aAsyncSnowWhiteFreeing is false and nsPurpleBufferEntry::mRefCnt is 0 or // (2) if the object's nsXPCOMCycleCollectionParticipant::CanSkip() returns true or // (3) if nsPurpleBufferEntry::mRefCnt->IsPurple() is false. // (4) If removeChildlessNodes is true, then any nodes in the purple buffer // that will have no children in the cycle collector graph will also be // removed. CanSkip() may be run on these children. void RemoveSkippable(nsCycleCollector* aCollector, bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing, CC_ForgetSkippableCallback aCb); MOZ_ALWAYS_INLINE nsPurpleBufferEntry* NewEntry() { if (MOZ_UNLIKELY(!mFreeList)) { Block* b = new Block; StartBlock(b); // Add the new block as the second block in the list. b->mNext = mFirstBlock.mNext; mFirstBlock.mNext = b; } nsPurpleBufferEntry* e = mFreeList; mFreeList = (nsPurpleBufferEntry*) (uintptr_t(mFreeList->mNextInFreeList) & ~uintptr_t(1)); return e; } MOZ_ALWAYS_INLINE void Put(void* aObject, nsCycleCollectionParticipant* aCp, nsCycleCollectingAutoRefCnt* aRefCnt) { nsPurpleBufferEntry* e = NewEntry(); ++mCount; e->mObject = aObject; e->mRefCnt = aRefCnt; e->mParticipant = aCp; } void Remove(nsPurpleBufferEntry* aEntry) { MOZ_ASSERT(mCount != 0, "must have entries"); if (aEntry->mRefCnt) { aEntry->mRefCnt->RemoveFromPurpleBuffer(); aEntry->mRefCnt = nullptr; } aEntry->mNextInFreeList = (nsPurpleBufferEntry*)(uintptr_t(mFreeList) | uintptr_t(1)); mFreeList = aEntry; --mCount; } uint32_t Count() const { return mCount; } size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t n = 0; // Don't measure mFirstBlock because it's within |this|. const Block* block = mFirstBlock.mNext; while (block) { n += aMallocSizeOf(block); block = block->mNext; } // mFreeList is deliberately not measured because it points into // the purple buffer, which is within mFirstBlock and thus within |this|. // // We also don't measure the things pointed to by mEntries[] because // those pointers are non-owning. return n; } }; static bool AddPurpleRoot(CCGraphBuilder& aBuilder, void* aRoot, nsCycleCollectionParticipant* aParti); struct SelectPointersVisitor { explicit SelectPointersVisitor(CCGraphBuilder& aBuilder) : mBuilder(aBuilder) { } void Visit(nsPurpleBuffer& aBuffer, nsPurpleBufferEntry* aEntry) { MOZ_ASSERT(aEntry->mObject, "Null object in purple buffer"); MOZ_ASSERT(aEntry->mRefCnt->get() != 0, "SelectPointersVisitor: snow-white object in the purple buffer"); if (!aEntry->mRefCnt->IsPurple() || AddPurpleRoot(mBuilder, aEntry->mObject, aEntry->mParticipant)) { aBuffer.Remove(aEntry); } } private: CCGraphBuilder& mBuilder; }; void nsPurpleBuffer::SelectPointers(CCGraphBuilder& aBuilder) { SelectPointersVisitor visitor(aBuilder); VisitEntries(visitor); NS_ASSERTION(mCount == 0, "AddPurpleRoot failed"); if (mCount == 0) { FreeBlocks(); InitBlocks(); } } enum ccPhase { IdlePhase, GraphBuildingPhase, ScanAndCollectWhitePhase, CleanupPhase }; enum ccType { SliceCC, /* If a CC is in progress, continue it. Otherwise, start a new one. */ ManualCC, /* Explicitly triggered. */ ShutdownCC /* Shutdown CC, used for finding leaks. */ }; #ifdef MOZ_NUWA_PROCESS #include "ipc/Nuwa.h" #endif //////////////////////////////////////////////////////////////////////// // Top level structure for the cycle collector. //////////////////////////////////////////////////////////////////////// using js::SliceBudget; class JSPurpleBuffer; class nsCycleCollector : public nsIMemoryReporter { public: NS_DECL_ISUPPORTS NS_DECL_NSIMEMORYREPORTER private: bool mActivelyCollecting; bool mFreeingSnowWhite; // mScanInProgress should be false when we're collecting white objects. bool mScanInProgress; CycleCollectorResults mResults; TimeStamp mCollectionStart; CycleCollectedJSRuntime* mJSRuntime; ccPhase mIncrementalPhase; CCGraph mGraph; nsAutoPtr mBuilder; RefPtr mLogger; DebugOnly mThread; nsCycleCollectorParams mParams; uint32_t mWhiteNodeCount; CC_BeforeUnlinkCallback mBeforeUnlinkCB; CC_ForgetSkippableCallback mForgetSkippableCB; nsPurpleBuffer mPurpleBuf; uint32_t mUnmergedNeeded; uint32_t mMergedInARow; RefPtr mJSPurpleBuffer; private: virtual ~nsCycleCollector(); public: nsCycleCollector(); void RegisterJSRuntime(CycleCollectedJSRuntime* aJSRuntime); void ForgetJSRuntime(); void SetBeforeUnlinkCallback(CC_BeforeUnlinkCallback aBeforeUnlinkCB) { CheckThreadSafety(); mBeforeUnlinkCB = aBeforeUnlinkCB; } void SetForgetSkippableCallback(CC_ForgetSkippableCallback aForgetSkippableCB) { CheckThreadSafety(); mForgetSkippableCB = aForgetSkippableCB; } void Suspect(void* aPtr, nsCycleCollectionParticipant* aCp, nsCycleCollectingAutoRefCnt* aRefCnt); uint32_t SuspectedCount(); void ForgetSkippable(bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing); bool FreeSnowWhite(bool aUntilNoSWInPurpleBuffer); // This method assumes its argument is already canonicalized. void RemoveObjectFromGraph(void* aPtr); void PrepareForGarbageCollection(); void FinishAnyCurrentCollection(); bool Collect(ccType aCCType, SliceBudget& aBudget, nsICycleCollectorListener* aManualListener, bool aPreferShorterSlices = false); void Shutdown(); bool IsIdle() const { return mIncrementalPhase == IdlePhase; } void SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf, size_t* aObjectSize, size_t* aGraphSize, size_t* aPurpleBufferSize) const; JSPurpleBuffer* GetJSPurpleBuffer(); private: void CheckThreadSafety(); void ShutdownCollect(); void FixGrayBits(bool aForceGC, TimeLog& aTimeLog); bool IsIncrementalGCInProgress(); void FinishAnyIncrementalGCInProgress(); bool ShouldMergeZones(ccType aCCType); void BeginCollection(ccType aCCType, nsICycleCollectorListener* aManualListener); void MarkRoots(SliceBudget& aBudget); void ScanRoots(bool aFullySynchGraphBuild); void ScanIncrementalRoots(); void ScanWhiteNodes(bool aFullySynchGraphBuild); void ScanBlackNodes(); void ScanWeakMaps(); // returns whether anything was collected bool CollectWhite(); void CleanupAfterCollection(); }; NS_IMPL_ISUPPORTS(nsCycleCollector, nsIMemoryReporter) /** * GraphWalker is templatized over a Visitor class that must provide * the following two methods: * * bool ShouldVisitNode(PtrInfo const *pi); * void VisitNode(PtrInfo *pi); */ template class GraphWalker { private: Visitor mVisitor; void DoWalk(nsDeque& aQueue); void CheckedPush(nsDeque& aQueue, PtrInfo* aPi) { if (!aPi) { MOZ_CRASH(); } if (!aQueue.Push(aPi, fallible)) { mVisitor.Failed(); } } public: void Walk(PtrInfo* aPi); void WalkFromRoots(CCGraph& aGraph); // copy-constructing the visitor should be cheap, and less // indirection than using a reference explicit GraphWalker(const Visitor aVisitor) : mVisitor(aVisitor) { } }; //////////////////////////////////////////////////////////////////////// // The static collector struct //////////////////////////////////////////////////////////////////////// struct CollectorData { RefPtr mCollector; CycleCollectedJSRuntime* mRuntime; }; static mozilla::ThreadLocal sCollectorData; //////////////////////////////////////////////////////////////////////// // Utility functions //////////////////////////////////////////////////////////////////////// static inline void ToParticipant(nsISupports* aPtr, nsXPCOMCycleCollectionParticipant** aCp) { // We use QI to move from an nsISupports to an // nsXPCOMCycleCollectionParticipant, which is a per-class singleton helper // object that implements traversal and unlinking logic for the nsISupports // in question. *aCp = nullptr; CallQueryInterface(aPtr, aCp); } template MOZ_NEVER_INLINE void GraphWalker::Walk(PtrInfo* aPi) { nsDeque queue; CheckedPush(queue, aPi); DoWalk(queue); } template MOZ_NEVER_INLINE void GraphWalker::WalkFromRoots(CCGraph& aGraph) { nsDeque queue; NodePool::Enumerator etor(aGraph.mNodes); for (uint32_t i = 0; i < aGraph.mRootCount; ++i) { CheckedPush(queue, etor.GetNext()); } DoWalk(queue); } template MOZ_NEVER_INLINE void GraphWalker::DoWalk(nsDeque& aQueue) { // Use a aQueue to match the breadth-first traversal used when we // built the graph, for hopefully-better locality. while (aQueue.GetSize() > 0) { PtrInfo* pi = static_cast(aQueue.PopFront()); if (pi->WasTraversed() && mVisitor.ShouldVisitNode(pi)) { mVisitor.VisitNode(pi); for (EdgePool::Iterator child = pi->FirstChild(), child_end = pi->LastChild(); child != child_end; ++child) { CheckedPush(aQueue, *child); } } } } struct CCGraphDescriber : public LinkedListElement { CCGraphDescriber() : mAddress("0x"), mCnt(0), mType(eUnknown) { } enum Type { eRefCountedObject, eGCedObject, eGCMarkedObject, eEdge, eRoot, eGarbage, eUnknown }; nsCString mAddress; nsCString mName; nsCString mCompartmentOrToAddress; uint32_t mCnt; Type mType; }; class nsCycleCollectorLogSinkToFile final : public nsICycleCollectorLogSink { public: NS_DECL_ISUPPORTS nsCycleCollectorLogSinkToFile() : mProcessIdentifier(base::GetCurrentProcId()), mGCLog("gc-edges"), mCCLog("cc-edges") { } NS_IMETHOD GetFilenameIdentifier(nsAString& aIdentifier) override { aIdentifier = mFilenameIdentifier; return NS_OK; } NS_IMETHOD SetFilenameIdentifier(const nsAString& aIdentifier) override { mFilenameIdentifier = aIdentifier; return NS_OK; } NS_IMETHOD GetProcessIdentifier(int32_t* aIdentifier) override { *aIdentifier = mProcessIdentifier; return NS_OK; } NS_IMETHOD SetProcessIdentifier(int32_t aIdentifier) override { mProcessIdentifier = aIdentifier; return NS_OK; } NS_IMETHOD GetGcLog(nsIFile** aPath) override { NS_IF_ADDREF(*aPath = mGCLog.mFile); return NS_OK; } NS_IMETHOD GetCcLog(nsIFile** aPath) override { NS_IF_ADDREF(*aPath = mCCLog.mFile); return NS_OK; } NS_IMETHOD Open(FILE** aGCLog, FILE** aCCLog) override { nsresult rv; if (mGCLog.mStream || mCCLog.mStream) { return NS_ERROR_UNEXPECTED; } rv = OpenLog(&mGCLog); NS_ENSURE_SUCCESS(rv, rv); *aGCLog = mGCLog.mStream; rv = OpenLog(&mCCLog); NS_ENSURE_SUCCESS(rv, rv); *aCCLog = mCCLog.mStream; return NS_OK; } NS_IMETHOD CloseGCLog() override { if (!mGCLog.mStream) { return NS_ERROR_UNEXPECTED; } CloseLog(&mGCLog, NS_LITERAL_STRING("Garbage")); return NS_OK; } NS_IMETHOD CloseCCLog() override { if (!mCCLog.mStream) { return NS_ERROR_UNEXPECTED; } CloseLog(&mCCLog, NS_LITERAL_STRING("Cycle")); return NS_OK; } private: ~nsCycleCollectorLogSinkToFile() { if (mGCLog.mStream) { MozillaUnRegisterDebugFILE(mGCLog.mStream); fclose(mGCLog.mStream); } if (mCCLog.mStream) { MozillaUnRegisterDebugFILE(mCCLog.mStream); fclose(mCCLog.mStream); } } struct FileInfo { const char* const mPrefix; nsCOMPtr mFile; FILE* mStream; explicit FileInfo(const char* aPrefix) : mPrefix(aPrefix), mStream(nullptr) { } }; /** * Create a new file named something like aPrefix.$PID.$IDENTIFIER.log in * $MOZ_CC_LOG_DIRECTORY or in the system's temp directory. No existing * file will be overwritten; if aPrefix.$PID.$IDENTIFIER.log exists, we'll * try a file named something like aPrefix.$PID.$IDENTIFIER-1.log, and so * on. */ already_AddRefed CreateTempFile(const char* aPrefix) { nsPrintfCString filename("%s.%d%s%s.log", aPrefix, mProcessIdentifier, mFilenameIdentifier.IsEmpty() ? "" : ".", NS_ConvertUTF16toUTF8(mFilenameIdentifier).get()); // Get the log directory either from $MOZ_CC_LOG_DIRECTORY or from // the fallback directories in OpenTempFile. We don't use an nsCOMPtr // here because OpenTempFile uses an in/out param and getter_AddRefs // wouldn't work. nsIFile* logFile = nullptr; if (char* env = PR_GetEnv("MOZ_CC_LOG_DIRECTORY")) { NS_NewNativeLocalFile(nsCString(env), /* followLinks = */ true, &logFile); } // On Android or B2G, this function will open a file named // aFilename under a memory-reporting-specific folder // (/data/local/tmp/memory-reports). Otherwise, it will open a // file named aFilename under "NS_OS_TEMP_DIR". nsresult rv = nsDumpUtils::OpenTempFile(filename, &logFile, NS_LITERAL_CSTRING("memory-reports")); if (NS_FAILED(rv)) { NS_IF_RELEASE(logFile); return nullptr; } return dont_AddRef(logFile); } nsresult OpenLog(FileInfo* aLog) { // Initially create the log in a file starting with "incomplete-". // We'll move the file and strip off the "incomplete-" once the dump // completes. (We do this because we don't want scripts which poll // the filesystem looking for GC/CC dumps to grab a file before we're // finished writing to it.) nsAutoCString incomplete; incomplete += "incomplete-"; incomplete += aLog->mPrefix; MOZ_ASSERT(!aLog->mFile); aLog->mFile = CreateTempFile(incomplete.get()); if (NS_WARN_IF(!aLog->mFile)) { return NS_ERROR_UNEXPECTED; } MOZ_ASSERT(!aLog->mStream); aLog->mFile->OpenANSIFileDesc("w", &aLog->mStream); if (NS_WARN_IF(!aLog->mStream)) { return NS_ERROR_UNEXPECTED; } MozillaRegisterDebugFILE(aLog->mStream); return NS_OK; } nsresult CloseLog(FileInfo* aLog, const nsAString& aCollectorKind) { MOZ_ASSERT(aLog->mStream); MOZ_ASSERT(aLog->mFile); MozillaUnRegisterDebugFILE(aLog->mStream); fclose(aLog->mStream); aLog->mStream = nullptr; // Strip off "incomplete-". nsCOMPtr logFileFinalDestination = CreateTempFile(aLog->mPrefix); if (NS_WARN_IF(!logFileFinalDestination)) { return NS_ERROR_UNEXPECTED; } nsAutoString logFileFinalDestinationName; logFileFinalDestination->GetLeafName(logFileFinalDestinationName); if (NS_WARN_IF(logFileFinalDestinationName.IsEmpty())) { return NS_ERROR_UNEXPECTED; } aLog->mFile->MoveTo(/* directory */ nullptr, logFileFinalDestinationName); // Save the file path. aLog->mFile = logFileFinalDestination; // Log to the error console. nsCOMPtr cs = do_GetService(NS_CONSOLESERVICE_CONTRACTID); if (cs) { // Copy out the path. nsAutoString logPath; logFileFinalDestination->GetPath(logPath); nsString msg = aCollectorKind + NS_LITERAL_STRING(" Collector log dumped to ") + logPath; cs->LogStringMessage(msg.get()); } return NS_OK; } int32_t mProcessIdentifier; nsString mFilenameIdentifier; FileInfo mGCLog; FileInfo mCCLog; }; NS_IMPL_ISUPPORTS(nsCycleCollectorLogSinkToFile, nsICycleCollectorLogSink) class nsCycleCollectorLogger final : public nsICycleCollectorListener { ~nsCycleCollectorLogger() { ClearDescribers(); } public: nsCycleCollectorLogger() : mLogSink(nsCycleCollector_createLogSink()) , mWantAllTraces(false) , mDisableLog(false) , mWantAfterProcessing(false) , mCCLog(nullptr) { } NS_DECL_ISUPPORTS void SetAllTraces() { mWantAllTraces = true; } bool IsAllTraces() { return mWantAllTraces; } NS_IMETHOD AllTraces(nsICycleCollectorListener** aListener) override { SetAllTraces(); NS_ADDREF(*aListener = this); return NS_OK; } NS_IMETHOD GetWantAllTraces(bool* aAllTraces) override { *aAllTraces = mWantAllTraces; return NS_OK; } NS_IMETHOD GetDisableLog(bool* aDisableLog) override { *aDisableLog = mDisableLog; return NS_OK; } NS_IMETHOD SetDisableLog(bool aDisableLog) override { mDisableLog = aDisableLog; return NS_OK; } NS_IMETHOD GetWantAfterProcessing(bool* aWantAfterProcessing) override { *aWantAfterProcessing = mWantAfterProcessing; return NS_OK; } NS_IMETHOD SetWantAfterProcessing(bool aWantAfterProcessing) override { mWantAfterProcessing = aWantAfterProcessing; return NS_OK; } NS_IMETHOD GetLogSink(nsICycleCollectorLogSink** aLogSink) override { NS_ADDREF(*aLogSink = mLogSink); return NS_OK; } NS_IMETHOD SetLogSink(nsICycleCollectorLogSink* aLogSink) override { if (!aLogSink) { return NS_ERROR_INVALID_ARG; } mLogSink = aLogSink; return NS_OK; } nsresult Begin() { nsresult rv; mCurrentAddress.AssignLiteral("0x"); ClearDescribers(); if (mDisableLog) { return NS_OK; } FILE* gcLog; rv = mLogSink->Open(&gcLog, &mCCLog); NS_ENSURE_SUCCESS(rv, rv); // Dump the JS heap. CollectorData* data = sCollectorData.get(); if (data && data->mRuntime) { data->mRuntime->DumpJSHeap(gcLog); } rv = mLogSink->CloseGCLog(); NS_ENSURE_SUCCESS(rv, rv); fprintf(mCCLog, "# WantAllTraces=%s\n", mWantAllTraces ? "true" : "false"); return NS_OK; } void NoteRefCountedObject(uint64_t aAddress, uint32_t aRefCount, const char* aObjectDescription) { if (!mDisableLog) { fprintf(mCCLog, "%p [rc=%u] %s\n", (void*)aAddress, aRefCount, aObjectDescription); } if (mWantAfterProcessing) { CCGraphDescriber* d = new CCGraphDescriber(); mDescribers.insertBack(d); mCurrentAddress.AssignLiteral("0x"); mCurrentAddress.AppendInt(aAddress, 16); d->mType = CCGraphDescriber::eRefCountedObject; d->mAddress = mCurrentAddress; d->mCnt = aRefCount; d->mName.Append(aObjectDescription); } } void NoteGCedObject(uint64_t aAddress, bool aMarked, const char* aObjectDescription, uint64_t aCompartmentAddress) { if (!mDisableLog) { fprintf(mCCLog, "%p [gc%s] %s\n", (void*)aAddress, aMarked ? ".marked" : "", aObjectDescription); } if (mWantAfterProcessing) { CCGraphDescriber* d = new CCGraphDescriber(); mDescribers.insertBack(d); mCurrentAddress.AssignLiteral("0x"); mCurrentAddress.AppendInt(aAddress, 16); d->mType = aMarked ? CCGraphDescriber::eGCMarkedObject : CCGraphDescriber::eGCedObject; d->mAddress = mCurrentAddress; d->mName.Append(aObjectDescription); if (aCompartmentAddress) { d->mCompartmentOrToAddress.AssignLiteral("0x"); d->mCompartmentOrToAddress.AppendInt(aCompartmentAddress, 16); } else { d->mCompartmentOrToAddress.SetIsVoid(true); } } } void NoteEdge(uint64_t aToAddress, const char* aEdgeName) { if (!mDisableLog) { fprintf(mCCLog, "> %p %s\n", (void*)aToAddress, aEdgeName); } if (mWantAfterProcessing) { CCGraphDescriber* d = new CCGraphDescriber(); mDescribers.insertBack(d); d->mType = CCGraphDescriber::eEdge; d->mAddress = mCurrentAddress; d->mCompartmentOrToAddress.AssignLiteral("0x"); d->mCompartmentOrToAddress.AppendInt(aToAddress, 16); d->mName.Append(aEdgeName); } } void NoteWeakMapEntry(uint64_t aMap, uint64_t aKey, uint64_t aKeyDelegate, uint64_t aValue) { if (!mDisableLog) { fprintf(mCCLog, "WeakMapEntry map=%p key=%p keyDelegate=%p value=%p\n", (void*)aMap, (void*)aKey, (void*)aKeyDelegate, (void*)aValue); } // We don't support after-processing for weak map entries. } void NoteIncrementalRoot(uint64_t aAddress) { if (!mDisableLog) { fprintf(mCCLog, "IncrementalRoot %p\n", (void*)aAddress); } // We don't support after-processing for incremental roots. } void BeginResults() { if (!mDisableLog) { fputs("==========\n", mCCLog); } } void DescribeRoot(uint64_t aAddress, uint32_t aKnownEdges) { if (!mDisableLog) { fprintf(mCCLog, "%p [known=%u]\n", (void*)aAddress, aKnownEdges); } if (mWantAfterProcessing) { CCGraphDescriber* d = new CCGraphDescriber(); mDescribers.insertBack(d); d->mType = CCGraphDescriber::eRoot; d->mAddress.AppendInt(aAddress, 16); d->mCnt = aKnownEdges; } } void DescribeGarbage(uint64_t aAddress) { if (!mDisableLog) { fprintf(mCCLog, "%p [garbage]\n", (void*)aAddress); } if (mWantAfterProcessing) { CCGraphDescriber* d = new CCGraphDescriber(); mDescribers.insertBack(d); d->mType = CCGraphDescriber::eGarbage; d->mAddress.AppendInt(aAddress, 16); } } void End() { if (!mDisableLog) { mCCLog = nullptr; NS_WARN_IF(NS_FAILED(mLogSink->CloseCCLog())); } } NS_IMETHOD ProcessNext(nsICycleCollectorHandler* aHandler, bool* aCanContinue) override { if (NS_WARN_IF(!aHandler) || NS_WARN_IF(!mWantAfterProcessing)) { return NS_ERROR_UNEXPECTED; } CCGraphDescriber* d = mDescribers.popFirst(); if (d) { switch (d->mType) { case CCGraphDescriber::eRefCountedObject: aHandler->NoteRefCountedObject(d->mAddress, d->mCnt, d->mName); break; case CCGraphDescriber::eGCedObject: case CCGraphDescriber::eGCMarkedObject: aHandler->NoteGCedObject(d->mAddress, d->mType == CCGraphDescriber::eGCMarkedObject, d->mName, d->mCompartmentOrToAddress); break; case CCGraphDescriber::eEdge: aHandler->NoteEdge(d->mAddress, d->mCompartmentOrToAddress, d->mName); break; case CCGraphDescriber::eRoot: aHandler->DescribeRoot(d->mAddress, d->mCnt); break; case CCGraphDescriber::eGarbage: aHandler->DescribeGarbage(d->mAddress); break; case CCGraphDescriber::eUnknown: NS_NOTREACHED("CCGraphDescriber::eUnknown"); break; } delete d; } if (!(*aCanContinue = !mDescribers.isEmpty())) { mCurrentAddress.AssignLiteral("0x"); } return NS_OK; } NS_IMETHOD AsLogger(nsCycleCollectorLogger** aRetVal) override { RefPtr rval = this; rval.forget(aRetVal); return NS_OK; } private: void ClearDescribers() { CCGraphDescriber* d; while ((d = mDescribers.popFirst())) { delete d; } } nsCOMPtr mLogSink; bool mWantAllTraces; bool mDisableLog; bool mWantAfterProcessing; nsCString mCurrentAddress; mozilla::LinkedList mDescribers; FILE* mCCLog; }; NS_IMPL_ISUPPORTS(nsCycleCollectorLogger, nsICycleCollectorListener) nsresult nsCycleCollectorLoggerConstructor(nsISupports* aOuter, const nsIID& aIID, void** aInstancePtr) { if (NS_WARN_IF(aOuter)) { return NS_ERROR_NO_AGGREGATION; } nsISupports* logger = new nsCycleCollectorLogger(); return logger->QueryInterface(aIID, aInstancePtr); } static bool GCThingIsGrayCCThing(JS::GCCellPtr thing) { return AddToCCKind(thing.kind()) && JS::GCThingIsMarkedGray(thing); } static bool ValueIsGrayCCThing(const JS::Value& value) { return AddToCCKind(value.traceKind()) && JS::GCThingIsMarkedGray(value.toGCCellPtr()); } //////////////////////////////////////////////////////////////////////// // Bacon & Rajan's |MarkRoots| routine. //////////////////////////////////////////////////////////////////////// class CCGraphBuilder final : public nsCycleCollectionTraversalCallback, public nsCycleCollectionNoteRootCallback { private: CCGraph& mGraph; CycleCollectorResults& mResults; NodePool::Builder mNodeBuilder; EdgePool::Builder mEdgeBuilder; PtrInfo* mCurrPi; nsCycleCollectionParticipant* mJSParticipant; nsCycleCollectionParticipant* mJSZoneParticipant; nsCString mNextEdgeName; RefPtr mLogger; bool mMergeZones; nsAutoPtr mCurrNode; public: CCGraphBuilder(CCGraph& aGraph, CycleCollectorResults& aResults, CycleCollectedJSRuntime* aJSRuntime, nsCycleCollectorLogger* aLogger, bool aMergeZones); virtual ~CCGraphBuilder(); bool WantAllTraces() const { return nsCycleCollectionNoteRootCallback::WantAllTraces(); } bool AddPurpleRoot(void* aRoot, nsCycleCollectionParticipant* aParti); // This is called when all roots have been added to the graph, to prepare for BuildGraph(). void DoneAddingRoots(); // Do some work traversing nodes in the graph. Returns true if this graph building is finished. bool BuildGraph(SliceBudget& aBudget); private: PtrInfo* AddNode(void* aPtr, nsCycleCollectionParticipant* aParticipant); PtrInfo* AddWeakMapNode(JS::GCCellPtr aThing); PtrInfo* AddWeakMapNode(JSObject* aObject); void SetFirstChild() { mCurrPi->SetFirstChild(mEdgeBuilder.Mark()); } void SetLastChild() { mCurrPi->SetLastChild(mEdgeBuilder.Mark()); } public: // nsCycleCollectionNoteRootCallback methods. NS_IMETHOD_(void) NoteXPCOMRoot(nsISupports* aRoot); NS_IMETHOD_(void) NoteJSRoot(JSObject* aRoot); NS_IMETHOD_(void) NoteNativeRoot(void* aRoot, nsCycleCollectionParticipant* aParticipant); NS_IMETHOD_(void) NoteWeakMapping(JSObject* aMap, JS::GCCellPtr aKey, JSObject* aKdelegate, JS::GCCellPtr aVal); // nsCycleCollectionTraversalCallback methods. NS_IMETHOD_(void) DescribeRefCountedNode(nsrefcnt aRefCount, const char* aObjName); NS_IMETHOD_(void) DescribeGCedNode(bool aIsMarked, const char* aObjName, uint64_t aCompartmentAddress); NS_IMETHOD_(void) NoteXPCOMChild(nsISupports* aChild); NS_IMETHOD_(void) NoteJSObject(JSObject* aChild); NS_IMETHOD_(void) NoteJSScript(JSScript* aChild); NS_IMETHOD_(void) NoteNativeChild(void* aChild, nsCycleCollectionParticipant* aParticipant); NS_IMETHOD_(void) NoteNextEdgeName(const char* aName); private: void NoteJSChild(JS::GCCellPtr aChild); NS_IMETHOD_(void) NoteRoot(void* aRoot, nsCycleCollectionParticipant* aParticipant) { MOZ_ASSERT(aRoot); MOZ_ASSERT(aParticipant); if (!aParticipant->CanSkipInCC(aRoot) || MOZ_UNLIKELY(WantAllTraces())) { AddNode(aRoot, aParticipant); } } NS_IMETHOD_(void) NoteChild(void* aChild, nsCycleCollectionParticipant* aCp, nsCString& aEdgeName) { PtrInfo* childPi = AddNode(aChild, aCp); if (!childPi) { return; } mEdgeBuilder.Add(childPi); if (mLogger) { mLogger->NoteEdge((uint64_t)aChild, aEdgeName.get()); } ++childPi->mInternalRefs; } JS::Zone* MergeZone(JS::GCCellPtr aGcthing) { if (!mMergeZones) { return nullptr; } JS::Zone* zone = JS::GetTenuredGCThingZone(aGcthing); if (js::IsSystemZone(zone)) { return nullptr; } return zone; } }; CCGraphBuilder::CCGraphBuilder(CCGraph& aGraph, CycleCollectorResults& aResults, CycleCollectedJSRuntime* aJSRuntime, nsCycleCollectorLogger* aLogger, bool aMergeZones) : mGraph(aGraph) , mResults(aResults) , mNodeBuilder(aGraph.mNodes) , mEdgeBuilder(aGraph.mEdges) , mJSParticipant(nullptr) , mJSZoneParticipant(nullptr) , mLogger(aLogger) , mMergeZones(aMergeZones) { if (aJSRuntime) { mJSParticipant = aJSRuntime->GCThingParticipant(); mJSZoneParticipant = aJSRuntime->ZoneParticipant(); } if (mLogger) { mFlags |= nsCycleCollectionTraversalCallback::WANT_DEBUG_INFO; if (mLogger->IsAllTraces()) { mFlags |= nsCycleCollectionTraversalCallback::WANT_ALL_TRACES; mWantAllTraces = true; // for nsCycleCollectionNoteRootCallback } } mMergeZones = mMergeZones && MOZ_LIKELY(!WantAllTraces()); MOZ_ASSERT(nsCycleCollectionNoteRootCallback::WantAllTraces() == nsCycleCollectionTraversalCallback::WantAllTraces()); } CCGraphBuilder::~CCGraphBuilder() { } PtrInfo* CCGraphBuilder::AddNode(void* aPtr, nsCycleCollectionParticipant* aParticipant) { PtrToNodeEntry* e = mGraph.AddNodeToMap(aPtr); if (!e) { return nullptr; } PtrInfo* result; if (!e->mNode) { // New entry. result = mNodeBuilder.Add(aPtr, aParticipant); e->mNode = result; NS_ASSERTION(result, "mNodeBuilder.Add returned null"); } else { result = e->mNode; MOZ_ASSERT(result->mParticipant == aParticipant, "nsCycleCollectionParticipant shouldn't change!"); } return result; } bool CCGraphBuilder::AddPurpleRoot(void* aRoot, nsCycleCollectionParticipant* aParti) { CanonicalizeParticipant(&aRoot, &aParti); if (WantAllTraces() || !aParti->CanSkipInCC(aRoot)) { PtrInfo* pinfo = AddNode(aRoot, aParti); if (!pinfo) { return false; } } return true; } void CCGraphBuilder::DoneAddingRoots() { // We've finished adding roots, and everything in the graph is a root. mGraph.mRootCount = mGraph.MapCount(); mCurrNode = new NodePool::Enumerator(mGraph.mNodes); } MOZ_NEVER_INLINE bool CCGraphBuilder::BuildGraph(SliceBudget& aBudget) { const intptr_t kNumNodesBetweenTimeChecks = 1000; const intptr_t kStep = SliceBudget::CounterReset / kNumNodesBetweenTimeChecks; MOZ_ASSERT(mCurrNode); while (!aBudget.isOverBudget() && !mCurrNode->IsDone()) { PtrInfo* pi = mCurrNode->GetNext(); if (!pi) { MOZ_CRASH(); } mCurrPi = pi; // We need to call SetFirstChild() even on deleted nodes, to set their // firstChild() that may be read by a prior non-deleted neighbor. SetFirstChild(); if (pi->mParticipant) { nsresult rv = pi->mParticipant->Traverse(pi->mPointer, *this); MOZ_RELEASE_ASSERT(!NS_FAILED(rv), "Cycle collector Traverse method failed"); } if (mCurrNode->AtBlockEnd()) { SetLastChild(); } aBudget.step(kStep); } if (!mCurrNode->IsDone()) { return false; } if (mGraph.mRootCount > 0) { SetLastChild(); } mCurrNode = nullptr; return true; } NS_IMETHODIMP_(void) CCGraphBuilder::NoteXPCOMRoot(nsISupports* aRoot) { aRoot = CanonicalizeXPCOMParticipant(aRoot); NS_ASSERTION(aRoot, "Don't add objects that don't participate in collection!"); nsXPCOMCycleCollectionParticipant* cp; ToParticipant(aRoot, &cp); NoteRoot(aRoot, cp); } NS_IMETHODIMP_(void) CCGraphBuilder::NoteJSRoot(JSObject* aRoot) { if (JS::Zone* zone = MergeZone(JS::GCCellPtr(aRoot))) { NoteRoot(zone, mJSZoneParticipant); } else { NoteRoot(aRoot, mJSParticipant); } } NS_IMETHODIMP_(void) CCGraphBuilder::NoteNativeRoot(void* aRoot, nsCycleCollectionParticipant* aParticipant) { NoteRoot(aRoot, aParticipant); } NS_IMETHODIMP_(void) CCGraphBuilder::DescribeRefCountedNode(nsrefcnt aRefCount, const char* aObjName) { MOZ_RELEASE_ASSERT(aRefCount != 0, "CCed refcounted object has zero refcount"); MOZ_RELEASE_ASSERT(aRefCount != UINT32_MAX, "CCed refcounted object has overflowing refcount"); mResults.mVisitedRefCounted++; if (mLogger) { mLogger->NoteRefCountedObject((uint64_t)mCurrPi->mPointer, aRefCount, aObjName); } mCurrPi->mRefCount = aRefCount; } NS_IMETHODIMP_(void) CCGraphBuilder::DescribeGCedNode(bool aIsMarked, const char* aObjName, uint64_t aCompartmentAddress) { uint32_t refCount = aIsMarked ? UINT32_MAX : 0; mResults.mVisitedGCed++; if (mLogger) { mLogger->NoteGCedObject((uint64_t)mCurrPi->mPointer, aIsMarked, aObjName, aCompartmentAddress); } mCurrPi->mRefCount = refCount; } NS_IMETHODIMP_(void) CCGraphBuilder::NoteXPCOMChild(nsISupports* aChild) { nsCString edgeName; if (WantDebugInfo()) { edgeName.Assign(mNextEdgeName); mNextEdgeName.Truncate(); } if (!aChild || !(aChild = CanonicalizeXPCOMParticipant(aChild))) { return; } nsXPCOMCycleCollectionParticipant* cp; ToParticipant(aChild, &cp); if (cp && (!cp->CanSkipThis(aChild) || WantAllTraces())) { NoteChild(aChild, cp, edgeName); } } NS_IMETHODIMP_(void) CCGraphBuilder::NoteNativeChild(void* aChild, nsCycleCollectionParticipant* aParticipant) { nsCString edgeName; if (WantDebugInfo()) { edgeName.Assign(mNextEdgeName); mNextEdgeName.Truncate(); } if (!aChild) { return; } MOZ_ASSERT(aParticipant, "Need a nsCycleCollectionParticipant!"); if (!aParticipant->CanSkipThis(aChild) || WantAllTraces()) { NoteChild(aChild, aParticipant, edgeName); } } NS_IMETHODIMP_(void) CCGraphBuilder::NoteJSObject(JSObject* aChild) { return NoteJSChild(JS::GCCellPtr(aChild)); } NS_IMETHODIMP_(void) CCGraphBuilder::NoteJSScript(JSScript* aChild) { return NoteJSChild(JS::GCCellPtr(aChild)); } void CCGraphBuilder::NoteJSChild(JS::GCCellPtr aChild) { if (!aChild) { return; } nsCString edgeName; if (MOZ_UNLIKELY(WantDebugInfo())) { edgeName.Assign(mNextEdgeName); mNextEdgeName.Truncate(); } if (GCThingIsGrayCCThing(aChild) || MOZ_UNLIKELY(WantAllTraces())) { if (JS::Zone* zone = MergeZone(aChild)) { NoteChild(zone, mJSZoneParticipant, edgeName); } else { NoteChild(aChild.asCell(), mJSParticipant, edgeName); } } } NS_IMETHODIMP_(void) CCGraphBuilder::NoteNextEdgeName(const char* aName) { if (WantDebugInfo()) { mNextEdgeName = aName; } } PtrInfo* CCGraphBuilder::AddWeakMapNode(JS::GCCellPtr aNode) { MOZ_ASSERT(aNode, "Weak map node should be non-null."); if (!GCThingIsGrayCCThing(aNode) && !WantAllTraces()) { return nullptr; } if (JS::Zone* zone = MergeZone(aNode)) { return AddNode(zone, mJSZoneParticipant); } return AddNode(aNode.asCell(), mJSParticipant); } PtrInfo* CCGraphBuilder::AddWeakMapNode(JSObject* aObject) { return AddWeakMapNode(JS::GCCellPtr(aObject)); } NS_IMETHODIMP_(void) CCGraphBuilder::NoteWeakMapping(JSObject* aMap, JS::GCCellPtr aKey, JSObject* aKdelegate, JS::GCCellPtr aVal) { // Don't try to optimize away the entry here, as we've already attempted to // do that in TraceWeakMapping in nsXPConnect. WeakMapping* mapping = mGraph.mWeakMaps.AppendElement(); mapping->mMap = aMap ? AddWeakMapNode(aMap) : nullptr; mapping->mKey = aKey ? AddWeakMapNode(aKey) : nullptr; mapping->mKeyDelegate = aKdelegate ? AddWeakMapNode(aKdelegate) : mapping->mKey; mapping->mVal = aVal ? AddWeakMapNode(aVal) : nullptr; if (mLogger) { mLogger->NoteWeakMapEntry((uint64_t)aMap, aKey.unsafeAsInteger(), (uint64_t)aKdelegate, aVal.unsafeAsInteger()); } } static bool AddPurpleRoot(CCGraphBuilder& aBuilder, void* aRoot, nsCycleCollectionParticipant* aParti) { return aBuilder.AddPurpleRoot(aRoot, aParti); } // MayHaveChild() will be false after a Traverse if the object does // not have any children the CC will visit. class ChildFinder : public nsCycleCollectionTraversalCallback { public: ChildFinder() : mMayHaveChild(false) { } // The logic of the Note*Child functions must mirror that of their // respective functions in CCGraphBuilder. NS_IMETHOD_(void) NoteXPCOMChild(nsISupports* aChild); NS_IMETHOD_(void) NoteNativeChild(void* aChild, nsCycleCollectionParticipant* aHelper); NS_IMETHOD_(void) NoteJSObject(JSObject* aChild); NS_IMETHOD_(void) NoteJSScript(JSScript* aChild); NS_IMETHOD_(void) DescribeRefCountedNode(nsrefcnt aRefcount, const char* aObjname) { } NS_IMETHOD_(void) DescribeGCedNode(bool aIsMarked, const char* aObjname, uint64_t aCompartmentAddress) { } NS_IMETHOD_(void) NoteNextEdgeName(const char* aName) { } bool MayHaveChild() { return mMayHaveChild; } private: bool mMayHaveChild; }; NS_IMETHODIMP_(void) ChildFinder::NoteXPCOMChild(nsISupports* aChild) { if (!aChild || !(aChild = CanonicalizeXPCOMParticipant(aChild))) { return; } nsXPCOMCycleCollectionParticipant* cp; ToParticipant(aChild, &cp); if (cp && !cp->CanSkip(aChild, true)) { mMayHaveChild = true; } } NS_IMETHODIMP_(void) ChildFinder::NoteNativeChild(void* aChild, nsCycleCollectionParticipant* aHelper) { if (!aChild) { return; } MOZ_ASSERT(aHelper, "Native child must have a participant"); if (!aHelper->CanSkip(aChild, true)) { mMayHaveChild = true; } } NS_IMETHODIMP_(void) ChildFinder::NoteJSObject(JSObject* aChild) { if (aChild && JS::ObjectIsMarkedGray(aChild)) { mMayHaveChild = true; } } NS_IMETHODIMP_(void) ChildFinder::NoteJSScript(JSScript* aChild) { if (aChild && JS::ScriptIsMarkedGray(aChild)) { mMayHaveChild = true; } } static bool MayHaveChild(void* aObj, nsCycleCollectionParticipant* aCp) { ChildFinder cf; aCp->Traverse(aObj, cf); return cf.MayHaveChild(); } // JSPurpleBuffer keeps references to GCThings which might affect the // next cycle collection. It is owned only by itself and during unlink its // self reference is broken down and the object ends up killing itself. // If GC happens before CC, references to GCthings and the self reference are // removed. class JSPurpleBuffer { ~JSPurpleBuffer() { MOZ_ASSERT(mValues.IsEmpty()); MOZ_ASSERT(mObjects.IsEmpty()); } public: explicit JSPurpleBuffer(RefPtr& aReferenceToThis) : mReferenceToThis(aReferenceToThis) , mValues(kSegmentSize) , mObjects(kSegmentSize) { mReferenceToThis = this; mozilla::HoldJSObjects(this); } void Destroy() { mReferenceToThis = nullptr; mValues.Clear(); mObjects.Clear(); mozilla::DropJSObjects(this); } NS_INLINE_DECL_CYCLE_COLLECTING_NATIVE_REFCOUNTING(JSPurpleBuffer) NS_DECL_CYCLE_COLLECTION_SCRIPT_HOLDER_NATIVE_CLASS(JSPurpleBuffer) RefPtr& mReferenceToThis; // These are raw pointers instead of Heap because we only need Heap for // pointers which may point into the nursery. The purple buffer never contains // pointers to the nursery because nursery gcthings can never be gray and only // gray things can be inserted into the purple buffer. static const size_t kSegmentSize = 512; SegmentedVector mValues; SegmentedVector mObjects; }; NS_IMPL_CYCLE_COLLECTION_CLASS(JSPurpleBuffer) NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(JSPurpleBuffer) tmp->Destroy(); NS_IMPL_CYCLE_COLLECTION_UNLINK_END NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(JSPurpleBuffer) CycleCollectionNoteChild(cb, tmp, "self"); NS_IMPL_CYCLE_COLLECTION_TRAVERSE_SCRIPT_OBJECTS NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END #define NS_TRACE_SEGMENTED_ARRAY(_field, _type) \ { \ for (auto iter = tmp->_field.Iter(); !iter.Done(); iter.Next()) { \ js::gc::CallTraceCallbackOnNonHeap<_type, TraceCallbacks>( \ &iter.Get(), aCallbacks, #_field, aClosure); \ } \ } NS_IMPL_CYCLE_COLLECTION_TRACE_BEGIN(JSPurpleBuffer) NS_TRACE_SEGMENTED_ARRAY(mValues, JS::Value) NS_TRACE_SEGMENTED_ARRAY(mObjects, JSObject*) NS_IMPL_CYCLE_COLLECTION_TRACE_END NS_IMPL_CYCLE_COLLECTION_ROOT_NATIVE(JSPurpleBuffer, AddRef) NS_IMPL_CYCLE_COLLECTION_UNROOT_NATIVE(JSPurpleBuffer, Release) class SnowWhiteKiller : public TraceCallbacks { struct SnowWhiteObject { void* mPointer; nsCycleCollectionParticipant* mParticipant; nsCycleCollectingAutoRefCnt* mRefCnt; }; // Segments are 4 KiB on 32-bit and 8 KiB on 64-bit. static const size_t kSegmentSize = sizeof(void*) * 1024; typedef SegmentedVector ObjectsVector; public: SnowWhiteKiller(nsCycleCollector* aCollector, uint32_t aMaxCount) : mCollector(aCollector) , mObjects(kSegmentSize) { MOZ_ASSERT(mCollector, "Calling SnowWhiteKiller after nsCC went away"); } ~SnowWhiteKiller() { for (auto iter = mObjects.Iter(); !iter.Done(); iter.Next()) { SnowWhiteObject& o = iter.Get(); if (!o.mRefCnt->get() && !o.mRefCnt->IsInPurpleBuffer()) { mCollector->RemoveObjectFromGraph(o.mPointer); o.mRefCnt->stabilizeForDeletion(); o.mParticipant->Trace(o.mPointer, *this, nullptr); o.mParticipant->DeleteCycleCollectable(o.mPointer); } } } void Visit(nsPurpleBuffer& aBuffer, nsPurpleBufferEntry* aEntry) { MOZ_ASSERT(aEntry->mObject, "Null object in purple buffer"); if (!aEntry->mRefCnt->get()) { void* o = aEntry->mObject; nsCycleCollectionParticipant* cp = aEntry->mParticipant; CanonicalizeParticipant(&o, &cp); SnowWhiteObject swo = { o, cp, aEntry->mRefCnt }; mObjects.InfallibleAppend(swo); aBuffer.Remove(aEntry); } } bool HasSnowWhiteObjects() const { return !mObjects.IsEmpty(); } virtual void Trace(JS::Heap* aValue, const char* aName, void* aClosure) const { if (aValue->isMarkable() && ValueIsGrayCCThing(*aValue)) { MOZ_ASSERT(!js::gc::IsInsideNursery(aValue->toGCThing())); mCollector->GetJSPurpleBuffer()->mValues.InfallibleAppend(*aValue); } } virtual void Trace(JS::Heap* aId, const char* aName, void* aClosure) const { } void AppendJSObjectToPurpleBuffer(JSObject* obj) const { if (obj && JS::ObjectIsMarkedGray(obj)) { MOZ_ASSERT(JS::ObjectIsTenured(obj)); mCollector->GetJSPurpleBuffer()->mObjects.InfallibleAppend(obj); } } virtual void Trace(JS::Heap* aObject, const char* aName, void* aClosure) const { AppendJSObjectToPurpleBuffer(*aObject); } virtual void Trace(JS::TenuredHeap* aObject, const char* aName, void* aClosure) const { AppendJSObjectToPurpleBuffer(*aObject); } virtual void Trace(JS::Heap* aString, const char* aName, void* aClosure) const { } virtual void Trace(JS::Heap* aScript, const char* aName, void* aClosure) const { } virtual void Trace(JS::Heap* aFunction, const char* aName, void* aClosure) const { } private: RefPtr mCollector; ObjectsVector mObjects; }; class RemoveSkippableVisitor : public SnowWhiteKiller { public: RemoveSkippableVisitor(nsCycleCollector* aCollector, uint32_t aMaxCount, bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing, CC_ForgetSkippableCallback aCb) : SnowWhiteKiller(aCollector, aAsyncSnowWhiteFreeing ? 0 : aMaxCount) , mRemoveChildlessNodes(aRemoveChildlessNodes) , mAsyncSnowWhiteFreeing(aAsyncSnowWhiteFreeing) , mDispatchedDeferredDeletion(false) , mCallback(aCb) { } ~RemoveSkippableVisitor() { // Note, we must call the callback before SnowWhiteKiller calls // DeleteCycleCollectable! if (mCallback) { mCallback(); } if (HasSnowWhiteObjects()) { // Effectively a continuation. nsCycleCollector_dispatchDeferredDeletion(true); } } void Visit(nsPurpleBuffer& aBuffer, nsPurpleBufferEntry* aEntry) { MOZ_ASSERT(aEntry->mObject, "null mObject in purple buffer"); if (!aEntry->mRefCnt->get()) { if (!mAsyncSnowWhiteFreeing) { SnowWhiteKiller::Visit(aBuffer, aEntry); } else if (!mDispatchedDeferredDeletion) { mDispatchedDeferredDeletion = true; nsCycleCollector_dispatchDeferredDeletion(false); } return; } void* o = aEntry->mObject; nsCycleCollectionParticipant* cp = aEntry->mParticipant; CanonicalizeParticipant(&o, &cp); if (aEntry->mRefCnt->IsPurple() && !cp->CanSkip(o, false) && (!mRemoveChildlessNodes || MayHaveChild(o, cp))) { return; } aBuffer.Remove(aEntry); } private: bool mRemoveChildlessNodes; bool mAsyncSnowWhiteFreeing; bool mDispatchedDeferredDeletion; CC_ForgetSkippableCallback mCallback; }; void nsPurpleBuffer::RemoveSkippable(nsCycleCollector* aCollector, bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing, CC_ForgetSkippableCallback aCb) { RemoveSkippableVisitor visitor(aCollector, Count(), aRemoveChildlessNodes, aAsyncSnowWhiteFreeing, aCb); VisitEntries(visitor); } bool nsCycleCollector::FreeSnowWhite(bool aUntilNoSWInPurpleBuffer) { CheckThreadSafety(); if (mFreeingSnowWhite) { return false; } AutoRestore ar(mFreeingSnowWhite); mFreeingSnowWhite = true; bool hadSnowWhiteObjects = false; do { SnowWhiteKiller visitor(this, mPurpleBuf.Count()); mPurpleBuf.VisitEntries(visitor); hadSnowWhiteObjects = hadSnowWhiteObjects || visitor.HasSnowWhiteObjects(); if (!visitor.HasSnowWhiteObjects()) { break; } } while (aUntilNoSWInPurpleBuffer); return hadSnowWhiteObjects; } void nsCycleCollector::ForgetSkippable(bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing) { CheckThreadSafety(); if (mFreeingSnowWhite) { return; } mozilla::Maybe marker; if (NS_IsMainThread()) { marker.emplace("nsCycleCollector::ForgetSkippable", MarkerStackRequest::NO_STACK); } // If we remove things from the purple buffer during graph building, we may // lose track of an object that was mutated during graph building. MOZ_ASSERT(IsIdle()); if (mJSRuntime) { mJSRuntime->PrepareForForgetSkippable(); } MOZ_ASSERT(!mScanInProgress, "Don't forget skippable or free snow-white while scan is in progress."); mPurpleBuf.RemoveSkippable(this, aRemoveChildlessNodes, aAsyncSnowWhiteFreeing, mForgetSkippableCB); } MOZ_NEVER_INLINE void nsCycleCollector::MarkRoots(SliceBudget& aBudget) { TimeLog timeLog; AutoRestore ar(mScanInProgress); MOZ_ASSERT(!mScanInProgress); mScanInProgress = true; MOZ_ASSERT(mIncrementalPhase == GraphBuildingPhase); bool doneBuilding = mBuilder->BuildGraph(aBudget); if (!doneBuilding) { timeLog.Checkpoint("MarkRoots()"); return; } mBuilder = nullptr; mIncrementalPhase = ScanAndCollectWhitePhase; timeLog.Checkpoint("MarkRoots()"); } //////////////////////////////////////////////////////////////////////// // Bacon & Rajan's |ScanRoots| routine. //////////////////////////////////////////////////////////////////////// struct ScanBlackVisitor { ScanBlackVisitor(uint32_t& aWhiteNodeCount, bool& aFailed) : mWhiteNodeCount(aWhiteNodeCount), mFailed(aFailed) { } bool ShouldVisitNode(PtrInfo const* aPi) { return aPi->mColor != black; } MOZ_NEVER_INLINE void VisitNode(PtrInfo* aPi) { if (aPi->mColor == white) { --mWhiteNodeCount; } aPi->mColor = black; } void Failed() { mFailed = true; } private: uint32_t& mWhiteNodeCount; bool& mFailed; }; static void FloodBlackNode(uint32_t& aWhiteNodeCount, bool& aFailed, PtrInfo* aPi) { GraphWalker(ScanBlackVisitor(aWhiteNodeCount, aFailed)).Walk(aPi); MOZ_ASSERT(aPi->mColor == black || !aPi->WasTraversed(), "FloodBlackNode should make aPi black"); } // Iterate over the WeakMaps. If we mark anything while iterating // over the WeakMaps, we must iterate over all of the WeakMaps again. void nsCycleCollector::ScanWeakMaps() { bool anyChanged; bool failed = false; do { anyChanged = false; for (uint32_t i = 0; i < mGraph.mWeakMaps.Length(); i++) { WeakMapping* wm = &mGraph.mWeakMaps[i]; // If any of these are null, the original object was marked black. uint32_t mColor = wm->mMap ? wm->mMap->mColor : black; uint32_t kColor = wm->mKey ? wm->mKey->mColor : black; uint32_t kdColor = wm->mKeyDelegate ? wm->mKeyDelegate->mColor : black; uint32_t vColor = wm->mVal ? wm->mVal->mColor : black; MOZ_ASSERT(mColor != grey, "Uncolored weak map"); MOZ_ASSERT(kColor != grey, "Uncolored weak map key"); MOZ_ASSERT(kdColor != grey, "Uncolored weak map key delegate"); MOZ_ASSERT(vColor != grey, "Uncolored weak map value"); if (mColor == black && kColor != black && kdColor == black) { FloodBlackNode(mWhiteNodeCount, failed, wm->mKey); anyChanged = true; } if (mColor == black && kColor == black && vColor != black) { FloodBlackNode(mWhiteNodeCount, failed, wm->mVal); anyChanged = true; } } } while (anyChanged); if (failed) { MOZ_ASSERT(false, "Ran out of memory in ScanWeakMaps"); } } // Flood black from any objects in the purple buffer that are in the CC graph. class PurpleScanBlackVisitor { public: PurpleScanBlackVisitor(CCGraph& aGraph, nsCycleCollectorLogger* aLogger, uint32_t& aCount, bool& aFailed) : mGraph(aGraph), mLogger(aLogger), mCount(aCount), mFailed(aFailed) { } void Visit(nsPurpleBuffer& aBuffer, nsPurpleBufferEntry* aEntry) { MOZ_ASSERT(aEntry->mObject, "Entries with null mObject shouldn't be in the purple buffer."); MOZ_ASSERT(aEntry->mRefCnt->get() != 0, "Snow-white objects shouldn't be in the purple buffer."); void* obj = aEntry->mObject; if (!aEntry->mParticipant) { obj = CanonicalizeXPCOMParticipant(static_cast(obj)); MOZ_ASSERT(obj, "Don't add objects that don't participate in collection!"); } PtrInfo* pi = mGraph.FindNode(obj); if (!pi) { return; } MOZ_ASSERT(pi->mParticipant, "No dead objects should be in the purple buffer."); if (MOZ_UNLIKELY(mLogger)) { mLogger->NoteIncrementalRoot((uint64_t)pi->mPointer); } if (pi->mColor == black) { return; } FloodBlackNode(mCount, mFailed, pi); } private: CCGraph& mGraph; RefPtr mLogger; uint32_t& mCount; bool& mFailed; }; // Objects that have been stored somewhere since the start of incremental graph building must // be treated as live for this cycle collection, because we may not have accurate information // about who holds references to them. void nsCycleCollector::ScanIncrementalRoots() { TimeLog timeLog; // Reference counted objects: // We cleared the purple buffer at the start of the current ICC, so if a // refcounted object is purple, it may have been AddRef'd during the current // ICC. (It may also have only been released.) If that is the case, we cannot // be sure that the set of things pointing to the object in the CC graph // is accurate. Therefore, for safety, we treat any purple objects as being // live during the current CC. We don't remove anything from the purple // buffer here, so these objects will be suspected and freed in the next CC // if they are garbage. bool failed = false; PurpleScanBlackVisitor purpleScanBlackVisitor(mGraph, mLogger, mWhiteNodeCount, failed); mPurpleBuf.VisitEntries(purpleScanBlackVisitor); timeLog.Checkpoint("ScanIncrementalRoots::fix purple"); bool hasJSRuntime = !!mJSRuntime; nsCycleCollectionParticipant* jsParticipant = hasJSRuntime ? mJSRuntime->GCThingParticipant() : nullptr; nsCycleCollectionParticipant* zoneParticipant = hasJSRuntime ? mJSRuntime->ZoneParticipant() : nullptr; bool hasLogger = !!mLogger; NodePool::Enumerator etor(mGraph.mNodes); while (!etor.IsDone()) { PtrInfo* pi = etor.GetNext(); // As an optimization, if an object has already been determined to be live, // don't consider it further. We can't do this if there is a listener, // because the listener wants to know the complete set of incremental roots. if (pi->mColor == black && MOZ_LIKELY(!hasLogger)) { continue; } // Garbage collected objects: // If a GCed object was added to the graph with a refcount of zero, and is // now marked black by the GC, it was probably gray before and was exposed // to active JS, so it may have been stored somewhere, so it needs to be // treated as live. if (pi->IsGrayJS() && MOZ_LIKELY(hasJSRuntime)) { // If the object is still marked gray by the GC, nothing could have gotten // hold of it, so it isn't an incremental root. if (pi->mParticipant == jsParticipant) { JS::GCCellPtr ptr(pi->mPointer, js::GCThingTraceKind(pi->mPointer)); if (GCThingIsGrayCCThing(ptr)) { continue; } } else if (pi->mParticipant == zoneParticipant) { JS::Zone* zone = static_cast(pi->mPointer); if (js::ZoneGlobalsAreAllGray(zone)) { continue; } } else { MOZ_ASSERT(false, "Non-JS thing with 0 refcount? Treating as live."); } } else if (!pi->mParticipant && pi->WasTraversed()) { // Dead traversed refcounted objects: // If the object was traversed, it must have been alive at the start of // the CC, and thus had a positive refcount. It is dead now, so its // refcount must have decreased at some point during the CC. Therefore, // it would be in the purple buffer if it wasn't dead, so treat it as an // incremental root. // // This should not cause leaks because as the object died it should have // released anything it held onto, which will add them to the purple // buffer, which will cause them to be considered in the next CC. } else { continue; } // At this point, pi must be an incremental root. // If there's a listener, tell it about this root. We don't bother with the // optimization of skipping the Walk() if pi is black: it will just return // without doing anything and there's no need to make this case faster. if (MOZ_UNLIKELY(hasLogger) && pi->mPointer) { // Dead objects aren't logged. See bug 1031370. mLogger->NoteIncrementalRoot((uint64_t)pi->mPointer); } FloodBlackNode(mWhiteNodeCount, failed, pi); } timeLog.Checkpoint("ScanIncrementalRoots::fix nodes"); if (failed) { NS_ASSERTION(false, "Ran out of memory in ScanIncrementalRoots"); } } // Mark nodes white and make sure their refcounts are ok. // No nodes are marked black during this pass to ensure that refcount // checking is run on all nodes not marked black by ScanIncrementalRoots. void nsCycleCollector::ScanWhiteNodes(bool aFullySynchGraphBuild) { NodePool::Enumerator nodeEnum(mGraph.mNodes); while (!nodeEnum.IsDone()) { PtrInfo* pi = nodeEnum.GetNext(); if (pi->mColor == black) { // Incremental roots can be in a nonsensical state, so don't // check them. This will miss checking nodes that are merely // reachable from incremental roots. MOZ_ASSERT(!aFullySynchGraphBuild, "In a synch CC, no nodes should be marked black early on."); continue; } MOZ_ASSERT(pi->mColor == grey); if (!pi->WasTraversed()) { // This node was deleted before it was traversed, so there's no reason // to look at it. MOZ_ASSERT(!pi->mParticipant, "Live nodes should all have been traversed"); continue; } if (pi->mInternalRefs == pi->mRefCount || pi->IsGrayJS()) { pi->mColor = white; ++mWhiteNodeCount; continue; } MOZ_RELEASE_ASSERT(pi->mInternalRefs < pi->mRefCount, "Cycle collector found more references to an object than its refcount"); // This node will get marked black in the next pass. } } // Any remaining grey nodes that haven't already been deleted must be alive, // so mark them and their children black. Any nodes that are black must have // already had their children marked black, so there's no need to look at them // again. This pass may turn some white nodes to black. void nsCycleCollector::ScanBlackNodes() { bool failed = false; NodePool::Enumerator nodeEnum(mGraph.mNodes); while (!nodeEnum.IsDone()) { PtrInfo* pi = nodeEnum.GetNext(); if (pi->mColor == grey && pi->WasTraversed()) { FloodBlackNode(mWhiteNodeCount, failed, pi); } } if (failed) { NS_ASSERTION(false, "Ran out of memory in ScanBlackNodes"); } } void nsCycleCollector::ScanRoots(bool aFullySynchGraphBuild) { AutoRestore ar(mScanInProgress); MOZ_ASSERT(!mScanInProgress); mScanInProgress = true; mWhiteNodeCount = 0; MOZ_ASSERT(mIncrementalPhase == ScanAndCollectWhitePhase); if (!aFullySynchGraphBuild) { ScanIncrementalRoots(); } TimeLog timeLog; ScanWhiteNodes(aFullySynchGraphBuild); timeLog.Checkpoint("ScanRoots::ScanWhiteNodes"); ScanBlackNodes(); timeLog.Checkpoint("ScanRoots::ScanBlackNodes"); // Scanning weak maps must be done last. ScanWeakMaps(); timeLog.Checkpoint("ScanRoots::ScanWeakMaps"); if (mLogger) { mLogger->BeginResults(); NodePool::Enumerator etor(mGraph.mNodes); while (!etor.IsDone()) { PtrInfo* pi = etor.GetNext(); if (!pi->WasTraversed()) { continue; } switch (pi->mColor) { case black: if (!pi->IsGrayJS() && !pi->IsBlackJS() && pi->mInternalRefs != pi->mRefCount) { mLogger->DescribeRoot((uint64_t)pi->mPointer, pi->mInternalRefs); } break; case white: mLogger->DescribeGarbage((uint64_t)pi->mPointer); break; case grey: MOZ_ASSERT(false, "All traversed objects should be black or white"); break; } } mLogger->End(); mLogger = nullptr; timeLog.Checkpoint("ScanRoots::listener"); } } //////////////////////////////////////////////////////////////////////// // Bacon & Rajan's |CollectWhite| routine, somewhat modified. //////////////////////////////////////////////////////////////////////// bool nsCycleCollector::CollectWhite() { // Explanation of "somewhat modified": we have no way to collect the // set of whites "all at once", we have to ask each of them to drop // their outgoing links and assume this will cause the garbage cycle // to *mostly* self-destruct (except for the reference we continue // to hold). // // To do this "safely" we must make sure that the white nodes we're // operating on are stable for the duration of our operation. So we // make 3 sets of calls to language runtimes: // // - Root(whites), which should pin the whites in memory. // - Unlink(whites), which drops outgoing links on each white. // - Unroot(whites), which returns the whites to normal GC. // Segments are 4 KiB on 32-bit and 8 KiB on 64-bit. static const size_t kSegmentSize = sizeof(void*) * 1024; SegmentedVector whiteNodes(kSegmentSize); TimeLog timeLog; MOZ_ASSERT(mIncrementalPhase == ScanAndCollectWhitePhase); uint32_t numWhiteNodes = 0; uint32_t numWhiteGCed = 0; uint32_t numWhiteJSZones = 0; bool hasJSRuntime = !!mJSRuntime; nsCycleCollectionParticipant* zoneParticipant = hasJSRuntime ? mJSRuntime->ZoneParticipant() : nullptr; NodePool::Enumerator etor(mGraph.mNodes); while (!etor.IsDone()) { PtrInfo* pinfo = etor.GetNext(); if (pinfo->mColor == white && pinfo->mParticipant) { if (pinfo->IsGrayJS()) { ++numWhiteGCed; JS::Zone* zone; if (MOZ_UNLIKELY(pinfo->mParticipant == zoneParticipant)) { ++numWhiteJSZones; zone = static_cast(pinfo->mPointer); } else { JS::GCCellPtr ptr(pinfo->mPointer, js::GCThingTraceKind(pinfo->mPointer)); zone = JS::GetTenuredGCThingZone(ptr); } mJSRuntime->AddZoneWaitingForGC(zone); } else { whiteNodes.InfallibleAppend(pinfo); pinfo->mParticipant->Root(pinfo->mPointer); ++numWhiteNodes; } } } mResults.mFreedRefCounted += numWhiteNodes; mResults.mFreedGCed += numWhiteGCed; mResults.mFreedJSZones += numWhiteJSZones; timeLog.Checkpoint("CollectWhite::Root"); if (mBeforeUnlinkCB) { mBeforeUnlinkCB(); timeLog.Checkpoint("CollectWhite::BeforeUnlinkCB"); } // Unlink() can trigger a GC, so do not touch any JS or anything // else not in whiteNodes after here. for (auto iter = whiteNodes.Iter(); !iter.Done(); iter.Next()) { PtrInfo* pinfo = iter.Get(); MOZ_ASSERT(pinfo->mParticipant, "Unlink shouldn't see objects removed from graph."); pinfo->mParticipant->Unlink(pinfo->mPointer); #ifdef DEBUG if (mJSRuntime) { mJSRuntime->AssertNoObjectsToTrace(pinfo->mPointer); } #endif } timeLog.Checkpoint("CollectWhite::Unlink"); for (auto iter = whiteNodes.Iter(); !iter.Done(); iter.Next()) { PtrInfo* pinfo = iter.Get(); MOZ_ASSERT(pinfo->mParticipant, "Unroot shouldn't see objects removed from graph."); pinfo->mParticipant->Unroot(pinfo->mPointer); } timeLog.Checkpoint("CollectWhite::Unroot"); nsCycleCollector_dispatchDeferredDeletion(false, true); timeLog.Checkpoint("CollectWhite::dispatchDeferredDeletion"); mIncrementalPhase = CleanupPhase; return numWhiteNodes > 0 || numWhiteGCed > 0 || numWhiteJSZones > 0; } //////////////////////// // Memory reporting //////////////////////// MOZ_DEFINE_MALLOC_SIZE_OF(CycleCollectorMallocSizeOf) NS_IMETHODIMP nsCycleCollector::CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData, bool aAnonymize) { size_t objectSize, graphSize, purpleBufferSize; SizeOfIncludingThis(CycleCollectorMallocSizeOf, &objectSize, &graphSize, &purpleBufferSize); #define REPORT(_path, _amount, _desc) \ do { \ size_t amount = _amount; /* evaluate |_amount| only once */ \ if (amount > 0) { \ nsresult rv; \ rv = aHandleReport->Callback(EmptyCString(), \ NS_LITERAL_CSTRING(_path), \ KIND_HEAP, UNITS_BYTES, _amount, \ NS_LITERAL_CSTRING(_desc), \ aData); \ if (NS_WARN_IF(NS_FAILED(rv))) \ return rv; \ } \ } while (0) REPORT("explicit/cycle-collector/collector-object", objectSize, "Memory used for the cycle collector object itself."); REPORT("explicit/cycle-collector/graph", graphSize, "Memory used for the cycle collector's graph. " "This should be zero when the collector is idle."); REPORT("explicit/cycle-collector/purple-buffer", purpleBufferSize, "Memory used for the cycle collector's purple buffer."); #undef REPORT return NS_OK; }; //////////////////////////////////////////////////////////////////////// // Collector implementation //////////////////////////////////////////////////////////////////////// nsCycleCollector::nsCycleCollector() : mActivelyCollecting(false), mFreeingSnowWhite(false), mScanInProgress(false), mJSRuntime(nullptr), mIncrementalPhase(IdlePhase), mThread(NS_GetCurrentThread()), mWhiteNodeCount(0), mBeforeUnlinkCB(nullptr), mForgetSkippableCB(nullptr), mUnmergedNeeded(0), mMergedInARow(0) { } nsCycleCollector::~nsCycleCollector() { UnregisterWeakMemoryReporter(this); } void nsCycleCollector::RegisterJSRuntime(CycleCollectedJSRuntime* aJSRuntime) { MOZ_RELEASE_ASSERT(!mJSRuntime, "Multiple registrations of JS runtime in cycle collector"); mJSRuntime = aJSRuntime; // We can't register as a reporter in nsCycleCollector() because that runs // before the memory reporter manager is initialized. So we do it here // instead. static bool registered = false; if (!registered) { RegisterWeakMemoryReporter(this); registered = true; } } void nsCycleCollector::ForgetJSRuntime() { MOZ_RELEASE_ASSERT(mJSRuntime, "Forgetting JS runtime in cycle collector before a JS runtime was registered"); mJSRuntime = nullptr; } #ifdef DEBUG static bool HasParticipant(void* aPtr, nsCycleCollectionParticipant* aParti) { if (aParti) { return true; } nsXPCOMCycleCollectionParticipant* xcp; ToParticipant(static_cast(aPtr), &xcp); return xcp != nullptr; } #endif MOZ_ALWAYS_INLINE void nsCycleCollector::Suspect(void* aPtr, nsCycleCollectionParticipant* aParti, nsCycleCollectingAutoRefCnt* aRefCnt) { CheckThreadSafety(); // Don't call AddRef or Release of a CCed object in a Traverse() method. MOZ_ASSERT(!mScanInProgress, "Attempted to call Suspect() while a scan was in progress"); if (MOZ_UNLIKELY(mScanInProgress)) { return; } MOZ_ASSERT(aPtr, "Don't suspect null pointers"); MOZ_ASSERT(HasParticipant(aPtr, aParti), "Suspected nsISupports pointer must QI to nsXPCOMCycleCollectionParticipant"); mPurpleBuf.Put(aPtr, aParti, aRefCnt); } void nsCycleCollector::CheckThreadSafety() { #ifdef DEBUG nsIThread* currentThread = NS_GetCurrentThread(); // XXXkhuey we can be called so late in shutdown that NS_GetCurrentThread // returns null (after the thread manager has shut down) MOZ_ASSERT(mThread == currentThread || !currentThread); #endif } // The cycle collector uses the mark bitmap to discover what JS objects // were reachable only from XPConnect roots that might participate in // cycles. We ask the JS runtime whether we need to force a GC before // this CC. It returns true on startup (before the mark bits have been set), // and also when UnmarkGray has run out of stack. We also force GCs on shut // down to collect cycles involving both DOM and JS. void nsCycleCollector::FixGrayBits(bool aForceGC, TimeLog& aTimeLog) { CheckThreadSafety(); if (!mJSRuntime) { return; } if (!aForceGC) { mJSRuntime->FixWeakMappingGrayBits(); aTimeLog.Checkpoint("FixWeakMappingGrayBits"); bool needGC = !mJSRuntime->AreGCGrayBitsValid(); // Only do a telemetry ping for non-shutdown CCs. if (!needGC) { return; } mResults.mForcedGC = true; } mJSRuntime->GarbageCollect(aForceGC ? JS::gcreason::SHUTDOWN_CC : JS::gcreason::CC_FORCED); aTimeLog.Checkpoint("FixGrayBits GC"); } bool nsCycleCollector::IsIncrementalGCInProgress() { return mJSRuntime && JS::IsIncrementalGCInProgress(mJSRuntime->Runtime()); } void nsCycleCollector::FinishAnyIncrementalGCInProgress() { if (IsIncrementalGCInProgress()) { NS_WARNING("Finishing incremental GC in progress during CC"); JS::PrepareForIncrementalGC(mJSRuntime->Runtime()); JS::FinishIncrementalGC(mJSRuntime->Runtime(), JS::gcreason::CC_FORCED); } } void nsCycleCollector::CleanupAfterCollection() { TimeLog timeLog; MOZ_ASSERT(mIncrementalPhase == CleanupPhase); mGraph.Clear(); timeLog.Checkpoint("CleanupAfterCollection::mGraph.Clear()"); #if(0) uint32_t interval = (uint32_t)((TimeStamp::Now() - mCollectionStart).ToMilliseconds()); #ifdef COLLECT_TIME_DEBUG printf("cc: total cycle collector time was %ums in %u slices\n", interval, mResults.mNumSlices); printf("cc: visited %u ref counted and %u GCed objects, freed %d ref counted and %d GCed objects", mResults.mVisitedRefCounted, mResults.mVisitedGCed, mResults.mFreedRefCounted, mResults.mFreedGCed); uint32_t numVisited = mResults.mVisitedRefCounted + mResults.mVisitedGCed; if (numVisited > 1000) { uint32_t numFreed = mResults.mFreedRefCounted + mResults.mFreedGCed; printf(" (%d%%)", 100 * numFreed / numVisited); } printf(".\ncc: \n"); #endif #endif if (mJSRuntime) { mJSRuntime->FinalizeDeferredThings(mResults.mAnyManual ? CycleCollectedJSRuntime::FinalizeNow : CycleCollectedJSRuntime::FinalizeIncrementally); mJSRuntime->EndCycleCollectionCallback(mResults); timeLog.Checkpoint("CleanupAfterCollection::EndCycleCollectionCallback()"); } mIncrementalPhase = IdlePhase; } void nsCycleCollector::ShutdownCollect() { FinishAnyIncrementalGCInProgress(); SliceBudget unlimitedBudget = SliceBudget::unlimited(); uint32_t i; for (i = 0; i < DEFAULT_SHUTDOWN_COLLECTIONS; ++i) { if (!Collect(ShutdownCC, unlimitedBudget, nullptr)) { break; } } NS_WARN_IF_FALSE(i < NORMAL_SHUTDOWN_COLLECTIONS, "Extra shutdown CC"); } static void PrintPhase(const char* aPhase) { #ifdef DEBUG_PHASES printf("cc: begin %s on %s\n", aPhase, NS_IsMainThread() ? "mainthread" : "worker"); #endif } bool nsCycleCollector::Collect(ccType aCCType, SliceBudget& aBudget, nsICycleCollectorListener* aManualListener, bool aPreferShorterSlices) { CheckThreadSafety(); // This can legitimately happen in a few cases. See bug 383651. if (mActivelyCollecting || mFreeingSnowWhite) { return false; } mActivelyCollecting = true; MOZ_ASSERT(!IsIncrementalGCInProgress()); mozilla::Maybe marker; if (NS_IsMainThread()) { marker.emplace("nsCycleCollector::Collect", MarkerStackRequest::NO_STACK); } bool startedIdle = IsIdle(); bool collectedAny = false; // If the CC started idle, it will call BeginCollection, which // will do FreeSnowWhite, so it doesn't need to be done here. if (!startedIdle) { TimeLog timeLog; FreeSnowWhite(true); timeLog.Checkpoint("Collect::FreeSnowWhite"); } if (aCCType != SliceCC) { mResults.mAnyManual = true; } ++mResults.mNumSlices; bool continueSlice = aBudget.isUnlimited() || !aPreferShorterSlices; do { switch (mIncrementalPhase) { case IdlePhase: PrintPhase("BeginCollection"); BeginCollection(aCCType, aManualListener); break; case GraphBuildingPhase: PrintPhase("MarkRoots"); MarkRoots(aBudget); // Only continue this slice if we're running synchronously or the // next phase will probably be short, to reduce the max pause for this // collection. // (There's no need to check if we've finished graph building, because // if we haven't, we've already exceeded our budget, and will finish // this slice anyways.) continueSlice = aBudget.isUnlimited() || (mResults.mNumSlices < 3 && !aPreferShorterSlices); break; case ScanAndCollectWhitePhase: // We do ScanRoots and CollectWhite in a single slice to ensure // that we won't unlink a live object if a weak reference is // promoted to a strong reference after ScanRoots has finished. // See bug 926533. PrintPhase("ScanRoots"); ScanRoots(startedIdle); PrintPhase("CollectWhite"); collectedAny = CollectWhite(); break; case CleanupPhase: PrintPhase("CleanupAfterCollection"); CleanupAfterCollection(); continueSlice = false; break; } if (continueSlice) { // Force SliceBudget::isOverBudget to check the time. aBudget.step(SliceBudget::CounterReset); continueSlice = !aBudget.isOverBudget(); } } while (continueSlice); // Clear mActivelyCollecting here to ensure that a recursive call to // Collect() does something. mActivelyCollecting = false; if (aCCType != SliceCC && !startedIdle) { // We were in the middle of an incremental CC (using its own listener). // Somebody has forced a CC, so after having finished out the current CC, // run the CC again using the new listener. MOZ_ASSERT(IsIdle()); if (Collect(aCCType, aBudget, aManualListener)) { collectedAny = true; } } MOZ_ASSERT_IF(aCCType != SliceCC, IsIdle()); return collectedAny; } // Any JS objects we have in the graph could die when we GC, but we // don't want to abandon the current CC, because the graph contains // information about purple roots. So we synchronously finish off // the current CC. void nsCycleCollector::PrepareForGarbageCollection() { if (IsIdle()) { MOZ_ASSERT(mGraph.IsEmpty(), "Non-empty graph when idle"); MOZ_ASSERT(!mBuilder, "Non-null builder when idle"); if (mJSPurpleBuffer) { mJSPurpleBuffer->Destroy(); } return; } FinishAnyCurrentCollection(); } void nsCycleCollector::FinishAnyCurrentCollection() { if (IsIdle()) { return; } SliceBudget unlimitedBudget = SliceBudget::unlimited(); PrintPhase("FinishAnyCurrentCollection"); // Use SliceCC because we only want to finish the CC in progress. Collect(SliceCC, unlimitedBudget, nullptr); // It is only okay for Collect() to have failed to finish the // current CC if we're reentering the CC at some point past // graph building. We need to be past the point where the CC will // look at JS objects so that it is safe to GC. MOZ_ASSERT(IsIdle() || (mActivelyCollecting && mIncrementalPhase != GraphBuildingPhase), "Reentered CC during graph building"); } // Don't merge too many times in a row, and do at least a minimum // number of unmerged CCs in a row. static const uint32_t kMinConsecutiveUnmerged = 3; static const uint32_t kMaxConsecutiveMerged = 3; bool nsCycleCollector::ShouldMergeZones(ccType aCCType) { if (!mJSRuntime) { return false; } MOZ_ASSERT(mUnmergedNeeded <= kMinConsecutiveUnmerged); MOZ_ASSERT(mMergedInARow <= kMaxConsecutiveMerged); if (mMergedInARow == kMaxConsecutiveMerged) { MOZ_ASSERT(mUnmergedNeeded == 0); mUnmergedNeeded = kMinConsecutiveUnmerged; } if (mUnmergedNeeded > 0) { mUnmergedNeeded--; mMergedInARow = 0; return false; } if (aCCType == SliceCC && mJSRuntime->UsefulToMergeZones()) { mMergedInARow++; return true; } else { mMergedInARow = 0; return false; } } void nsCycleCollector::BeginCollection(ccType aCCType, nsICycleCollectorListener* aManualListener) { TimeLog timeLog; MOZ_ASSERT(IsIdle()); mCollectionStart = TimeStamp::Now(); if (mJSRuntime) { mJSRuntime->BeginCycleCollectionCallback(); timeLog.Checkpoint("BeginCycleCollectionCallback()"); } bool isShutdown = (aCCType == ShutdownCC); // Set up the listener for this CC. MOZ_ASSERT_IF(isShutdown, !aManualListener); MOZ_ASSERT(!mLogger, "Forgot to clear a previous listener?"); if (aManualListener) { aManualListener->AsLogger(getter_AddRefs(mLogger)); } aManualListener = nullptr; if (!mLogger && mParams.LogThisCC(isShutdown)) { mLogger = new nsCycleCollectorLogger(); if (mParams.AllTracesThisCC(isShutdown)) { mLogger->SetAllTraces(); } } // On a WantAllTraces CC, force a synchronous global GC to prevent // hijinks from ForgetSkippable and compartmental GCs. bool forceGC = isShutdown || (mLogger && mLogger->IsAllTraces()); // BeginCycleCollectionCallback() might have started an IGC, and we need // to finish it before we run FixGrayBits. FinishAnyIncrementalGCInProgress(); timeLog.Checkpoint("Pre-FixGrayBits finish IGC"); FixGrayBits(forceGC, timeLog); FreeSnowWhite(true); timeLog.Checkpoint("BeginCollection FreeSnowWhite"); if (mLogger && NS_FAILED(mLogger->Begin())) { mLogger = nullptr; } // FreeSnowWhite could potentially have started an IGC, which we need // to finish before we look at any JS roots. FinishAnyIncrementalGCInProgress(); timeLog.Checkpoint("Post-FreeSnowWhite finish IGC"); // Set up the data structures for building the graph. mGraph.Init(); mResults.Init(); mResults.mAnyManual = (aCCType != SliceCC); bool mergeZones = ShouldMergeZones(aCCType); mResults.mMergedZones = mergeZones; MOZ_ASSERT(!mBuilder, "Forgot to clear mBuilder"); mBuilder = new CCGraphBuilder(mGraph, mResults, mJSRuntime, mLogger, mergeZones); timeLog.Checkpoint("BeginCollection prepare graph builder"); if (mJSRuntime) { mJSRuntime->TraverseRoots(*mBuilder); timeLog.Checkpoint("mJSRuntime->TraverseRoots()"); } AutoRestore ar(mScanInProgress); MOZ_ASSERT(!mScanInProgress); mScanInProgress = true; mPurpleBuf.SelectPointers(*mBuilder); timeLog.Checkpoint("SelectPointers()"); mBuilder->DoneAddingRoots(); mIncrementalPhase = GraphBuildingPhase; } uint32_t nsCycleCollector::SuspectedCount() { CheckThreadSafety(); return mPurpleBuf.Count(); } void nsCycleCollector::Shutdown() { CheckThreadSafety(); // Always delete snow white objects. FreeSnowWhite(true); #ifndef NS_FREE_PERMANENT_DATA if (PR_GetEnv("MOZ_CC_RUN_DURING_SHUTDOWN")) #endif { ShutdownCollect(); } } void nsCycleCollector::RemoveObjectFromGraph(void* aObj) { if (IsIdle()) { return; } mGraph.RemoveObjectFromMap(aObj); } void nsCycleCollector::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf, size_t* aObjectSize, size_t* aGraphSize, size_t* aPurpleBufferSize) const { *aObjectSize = aMallocSizeOf(this); *aGraphSize = mGraph.SizeOfExcludingThis(aMallocSizeOf); *aPurpleBufferSize = mPurpleBuf.SizeOfExcludingThis(aMallocSizeOf); // These fields are deliberately not measured: // - mJSRuntime: because it's non-owning and measured by JS reporters. // - mParams: because it only contains scalars. } JSPurpleBuffer* nsCycleCollector::GetJSPurpleBuffer() { if (!mJSPurpleBuffer) { // The Release call here confuses the GC analysis. JS::AutoSuppressGCAnalysis nogc; // JSPurpleBuffer keeps itself alive, but we need to create it in such way // that it ends up in the normal purple buffer. That happens when // nsRefPtr goes out of the scope and calls Release. RefPtr pb = new JSPurpleBuffer(mJSPurpleBuffer); } return mJSPurpleBuffer; } //////////////////////////////////////////////////////////////////////// // Module public API (exported in nsCycleCollector.h) // Just functions that redirect into the singleton, once it's built. //////////////////////////////////////////////////////////////////////// void nsCycleCollector_registerJSRuntime(CycleCollectedJSRuntime* aRt) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); // But we shouldn't already have a runtime. MOZ_ASSERT(!data->mRuntime); data->mRuntime = aRt; data->mCollector->RegisterJSRuntime(aRt); } void nsCycleCollector_forgetJSRuntime() { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); // And we shouldn't have already forgotten our runtime. MOZ_ASSERT(data->mRuntime); // But it may have shutdown already. if (data->mCollector) { data->mCollector->ForgetJSRuntime(); data->mRuntime = nullptr; } else { data->mRuntime = nullptr; delete data; sCollectorData.set(nullptr); } } /* static */ CycleCollectedJSRuntime* CycleCollectedJSRuntime::Get() { CollectorData* data = sCollectorData.get(); if (data) { return data->mRuntime; } return nullptr; } MOZ_NEVER_INLINE static void SuspectAfterShutdown(void* aPtr, nsCycleCollectionParticipant* aCp, nsCycleCollectingAutoRefCnt* aRefCnt, bool* aShouldDelete) { if (aRefCnt->get() == 0) { if (!aShouldDelete) { // The CC is shut down, so we can't be in the middle of an ICC. CanonicalizeParticipant(&aPtr, &aCp); aRefCnt->stabilizeForDeletion(); aCp->DeleteCycleCollectable(aPtr); } else { *aShouldDelete = true; } } else { // Make sure we'll get called again. aRefCnt->RemoveFromPurpleBuffer(); } } void NS_CycleCollectorSuspect3(void* aPtr, nsCycleCollectionParticipant* aCp, nsCycleCollectingAutoRefCnt* aRefCnt, bool* aShouldDelete) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); if (MOZ_LIKELY(data->mCollector)) { data->mCollector->Suspect(aPtr, aCp, aRefCnt); return; } SuspectAfterShutdown(aPtr, aCp, aRefCnt, aShouldDelete); } uint32_t nsCycleCollector_suspectedCount() { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); if (!data->mCollector) { return 0; } return data->mCollector->SuspectedCount(); } bool nsCycleCollector_init() { MOZ_ASSERT(NS_IsMainThread(), "Wrong thread!"); MOZ_ASSERT(!sCollectorData.initialized(), "Called twice!?"); return sCollectorData.init(); } void nsCycleCollector_startup() { MOZ_ASSERT(sCollectorData.initialized(), "Forgot to call nsCycleCollector_init!"); if (sCollectorData.get()) { MOZ_CRASH(); } CollectorData* data = new CollectorData; data->mCollector = new nsCycleCollector(); data->mRuntime = nullptr; sCollectorData.set(data); } void nsCycleCollector_setBeforeUnlinkCallback(CC_BeforeUnlinkCallback aCB) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); data->mCollector->SetBeforeUnlinkCallback(aCB); } void nsCycleCollector_setForgetSkippableCallback(CC_ForgetSkippableCallback aCB) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); data->mCollector->SetForgetSkippableCallback(aCB); } void nsCycleCollector_forgetSkippable(bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); PROFILER_LABEL("nsCycleCollector", "forgetSkippable", js::ProfileEntry::Category::CC); TimeLog timeLog; data->mCollector->ForgetSkippable(aRemoveChildlessNodes, aAsyncSnowWhiteFreeing); timeLog.Checkpoint("ForgetSkippable()"); } void nsCycleCollector_dispatchDeferredDeletion(bool aContinuation, bool aPurge) { CycleCollectedJSRuntime* rt = CycleCollectedJSRuntime::Get(); if (rt) { rt->DispatchDeferredDeletion(aContinuation, aPurge); } } bool nsCycleCollector_doDeferredDeletion() { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); MOZ_ASSERT(data->mRuntime); return data->mCollector->FreeSnowWhite(false); } already_AddRefed nsCycleCollector_createLogSink() { nsCOMPtr sink = new nsCycleCollectorLogSinkToFile(); return sink.forget(); } void nsCycleCollector_collect(nsICycleCollectorListener* aManualListener) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); PROFILER_LABEL("nsCycleCollector", "collect", js::ProfileEntry::Category::CC); SliceBudget unlimitedBudget = SliceBudget::unlimited(); data->mCollector->Collect(ManualCC, unlimitedBudget, aManualListener); } void nsCycleCollector_collectSlice(SliceBudget& budget, bool aPreferShorterSlices) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); PROFILER_LABEL("nsCycleCollector", "collectSlice", js::ProfileEntry::Category::CC); data->mCollector->Collect(SliceCC, budget, nullptr, aPreferShorterSlices); } void nsCycleCollector_prepareForGarbageCollection() { CollectorData* data = sCollectorData.get(); MOZ_ASSERT(data); if (!data->mCollector) { return; } data->mCollector->PrepareForGarbageCollection(); } void nsCycleCollector_finishAnyCurrentCollection() { CollectorData* data = sCollectorData.get(); MOZ_ASSERT(data); if (!data->mCollector) { return; } data->mCollector->FinishAnyCurrentCollection(); } void nsCycleCollector_shutdown() { CollectorData* data = sCollectorData.get(); if (data) { MOZ_ASSERT(data->mCollector); PROFILER_LABEL("nsCycleCollector", "shutdown", js::ProfileEntry::Category::CC); data->mCollector->Shutdown(); data->mCollector = nullptr; if (!data->mRuntime) { delete data; sCollectorData.set(nullptr); } } }