/*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * __Userspace__ version of /usr/src/sys/kern/kern_mbuf.c * We are initializing two zones for Mbufs and Clusters. * */ #include #include /* #include This defines MSIZE 256 */ #if !defined(SCTP_SIMPLE_ALLOCATOR) #include "umem.h" #endif #include "user_mbuf.h" #include "user_environment.h" #include "user_atomic.h" #include "netinet/sctp_pcb.h" #define KIPC_MAX_LINKHDR 4 /* int: max length of link header (see sys/sysclt.h) */ #define KIPC_MAX_PROTOHDR 5 /* int: max length of network header (see sys/sysclt.h)*/ int max_linkhdr = KIPC_MAX_LINKHDR; int max_protohdr = KIPC_MAX_PROTOHDR; /* Size of largest protocol layer header. */ /* * Zones from which we allocate. */ sctp_zone_t zone_mbuf; sctp_zone_t zone_clust; sctp_zone_t zone_ext_refcnt; /* __Userspace__ clust_mb_args will be passed as callback data to mb_ctor_clust * and mb_dtor_clust. * Note: I had to use struct clust_args as an encapsulation for an mbuf pointer. * struct mbuf * clust_mb_args; does not work. */ struct clust_args clust_mb_args; /* __Userspace__ * Local prototypes. */ static int mb_ctor_mbuf(void *, void *, int); static int mb_ctor_clust(void *, void *, int); static void mb_dtor_mbuf(void *, void *); static void mb_dtor_clust(void *, void *); /***************** Functions taken from user_mbuf.h *************/ static int mbuf_constructor_dup(struct mbuf *m, int pkthdr, short type) { int flags = pkthdr; m->m_next = NULL; m->m_nextpkt = NULL; m->m_len = 0; m->m_flags = flags; m->m_type = type; if (flags & M_PKTHDR) { m->m_data = m->m_pktdat; m->m_pkthdr.rcvif = NULL; m->m_pkthdr.len = 0; m->m_pkthdr.header = NULL; m->m_pkthdr.csum_flags = 0; m->m_pkthdr.csum_data = 0; m->m_pkthdr.tso_segsz = 0; m->m_pkthdr.ether_vtag = 0; SLIST_INIT(&m->m_pkthdr.tags); } else m->m_data = m->m_dat; return (0); } /* __Userspace__ */ struct mbuf * m_get(int how, short type) { struct mbuf *mret; #if defined(SCTP_SIMPLE_ALLOCATOR) struct mb_args mbuf_mb_args; /* The following setter function is not yet being enclosed within * #if USING_MBUF_CONSTRUCTOR - #endif, until I have thoroughly tested * mb_dtor_mbuf. See comment there */ mbuf_mb_args.flags = 0; mbuf_mb_args.type = type; #endif /* Mbuf master zone, zone_mbuf, has already been * created in mbuf_initialize() */ mret = SCTP_ZONE_GET(zone_mbuf, struct mbuf); #if defined(SCTP_SIMPLE_ALLOCATOR) mb_ctor_mbuf(mret, &mbuf_mb_args, 0); #endif /*mret = ((struct mbuf *)umem_cache_alloc(zone_mbuf, UMEM_DEFAULT));*/ /* There are cases when an object available in the current CPU's * loaded magazine and in those cases the object's constructor is not applied. * If that is the case, then we are duplicating constructor initialization here, * so that the mbuf is properly constructed before returning it. */ if (mret) { #if USING_MBUF_CONSTRUCTOR if (! (mret->m_type == type) ) { mbuf_constructor_dup(mret, 0, type); } #else mbuf_constructor_dup(mret, 0, type); #endif } return mret; } /* __Userspace__ */ struct mbuf * m_gethdr(int how, short type) { struct mbuf *mret; #if defined(SCTP_SIMPLE_ALLOCATOR) struct mb_args mbuf_mb_args; /* The following setter function is not yet being enclosed within * #if USING_MBUF_CONSTRUCTOR - #endif, until I have thoroughly tested * mb_dtor_mbuf. See comment there */ mbuf_mb_args.flags = M_PKTHDR; mbuf_mb_args.type = type; #endif mret = SCTP_ZONE_GET(zone_mbuf, struct mbuf); #if defined(SCTP_SIMPLE_ALLOCATOR) mb_ctor_mbuf(mret, &mbuf_mb_args, 0); #endif /*mret = ((struct mbuf *)umem_cache_alloc(zone_mbuf, UMEM_DEFAULT));*/ /* There are cases when an object available in the current CPU's * loaded magazine and in those cases the object's constructor is not applied. * If that is the case, then we are duplicating constructor initialization here, * so that the mbuf is properly constructed before returning it. */ if (mret) { #if USING_MBUF_CONSTRUCTOR if (! ((mret->m_flags & M_PKTHDR) && (mret->m_type == type)) ) { mbuf_constructor_dup(mret, M_PKTHDR, type); } #else mbuf_constructor_dup(mret, M_PKTHDR, type); #endif } return mret; } /* __Userspace__ */ struct mbuf * m_free(struct mbuf *m) { struct mbuf *n = m->m_next; if (m->m_flags & M_EXT) mb_free_ext(m); else if ((m->m_flags & M_NOFREE) == 0) { #if defined(SCTP_SIMPLE_ALLOCATOR) mb_dtor_mbuf(m, NULL); #endif SCTP_ZONE_FREE(zone_mbuf, m); } /*umem_cache_free(zone_mbuf, m);*/ return (n); } static void clust_constructor_dup(caddr_t m_clust, struct mbuf* m) { u_int *refcnt; int type, size; if (m == NULL) { return; } /* Assigning cluster of MCLBYTES. TODO: Add jumbo frame functionality */ type = EXT_CLUSTER; size = MCLBYTES; refcnt = SCTP_ZONE_GET(zone_ext_refcnt, u_int); /*refcnt = (u_int *)umem_cache_alloc(zone_ext_refcnt, UMEM_DEFAULT);*/ #if !defined(SCTP_SIMPLE_ALLOCATOR) if (refcnt == NULL) { umem_reap(); refcnt = SCTP_ZONE_GET(zone_ext_refcnt, u_int); /*refcnt = (u_int *)umem_cache_alloc(zone_ext_refcnt, UMEM_DEFAULT);*/ } #endif *refcnt = 1; m->m_ext.ext_buf = (caddr_t)m_clust; m->m_data = m->m_ext.ext_buf; m->m_flags |= M_EXT; m->m_ext.ext_free = NULL; m->m_ext.ext_args = NULL; m->m_ext.ext_size = size; m->m_ext.ext_type = type; m->m_ext.ref_cnt = refcnt; return; } /* __Userspace__ */ void m_clget(struct mbuf *m, int how) { caddr_t mclust_ret; #if defined(SCTP_SIMPLE_ALLOCATOR) struct clust_args clust_mb_args_l; #endif if (m->m_flags & M_EXT) { SCTPDBG(SCTP_DEBUG_USR, "%s: %p mbuf already has cluster\n", __func__, (void *)m); } m->m_ext.ext_buf = (char *)NULL; #if defined(SCTP_SIMPLE_ALLOCATOR) clust_mb_args_l.parent_mbuf = m; #endif mclust_ret = SCTP_ZONE_GET(zone_clust, char); #if defined(SCTP_SIMPLE_ALLOCATOR) mb_ctor_clust(mclust_ret, &clust_mb_args_l, 0); #endif /*mclust_ret = umem_cache_alloc(zone_clust, UMEM_DEFAULT);*/ /* On a cluster allocation failure, call umem_reap() and retry. */ if (mclust_ret == NULL) { #if !defined(SCTP_SIMPLE_ALLOCATOR) /* mclust_ret = SCTP_ZONE_GET(zone_clust, char); mb_ctor_clust(mclust_ret, &clust_mb_args, 0); #else*/ umem_reap(); mclust_ret = SCTP_ZONE_GET(zone_clust, char); #endif /*mclust_ret = umem_cache_alloc(zone_clust, UMEM_DEFAULT);*/ /* if (NULL == mclust_ret) { */ SCTPDBG(SCTP_DEBUG_USR, "Memory allocation failure in %s\n", __func__); /* } */ } #if USING_MBUF_CONSTRUCTOR if ((m->m_ext.ext_buf == NULL)) { clust_constructor_dup(mclust_ret, m); } #else clust_constructor_dup(mclust_ret, m); #endif } struct mbuf * m_getm2(struct mbuf *m, int len, int how, short type, int flags, int allonebuf) { struct mbuf *mb, *nm = NULL, *mtail = NULL; int size, mbuf_threshold, space_needed = len; KASSERT(len >= 0, ("%s: len is < 0", __func__)); /* Validate flags. */ flags &= (M_PKTHDR | M_EOR); /* Packet header mbuf must be first in chain. */ if ((flags & M_PKTHDR) && m != NULL) { flags &= ~M_PKTHDR; } if (allonebuf == 0) mbuf_threshold = SCTP_BASE_SYSCTL(sctp_mbuf_threshold_count); else mbuf_threshold = 1; /* Loop and append maximum sized mbufs to the chain tail. */ while (len > 0) { if ((!allonebuf && len >= MCLBYTES) || (len > (int)(((mbuf_threshold - 1) * MLEN) + MHLEN))) { mb = m_gethdr(how, type); MCLGET(mb, how); size = MCLBYTES; /* SCTP_BUF_LEN(mb) = MCLBYTES; */ } else if (flags & M_PKTHDR) { mb = m_gethdr(how, type); if (len < MHLEN) { size = len; } else { size = MHLEN; } } else { mb = m_get(how, type); if (len < MLEN) { size = len; } else { size = MLEN; } } /* Fail the whole operation if one mbuf can't be allocated. */ if (mb == NULL) { if (nm != NULL) m_freem(nm); return (NULL); } if (allonebuf != 0 && size < space_needed) { m_freem(mb); return (NULL); } /* Book keeping. */ len -= size; if (mtail != NULL) mtail->m_next = mb; else nm = mb; mtail = mb; flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ } if (flags & M_EOR) { mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ } /* If mbuf was supplied, append new chain to the end of it. */ if (m != NULL) { for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next); mtail->m_next = nm; mtail->m_flags &= ~M_EOR; } else { m = nm; } return (m); } /* * Copy the contents of uio into a properly sized mbuf chain. */ struct mbuf * m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) { struct mbuf *m, *mb; int error, length; ssize_t total; int progress = 0; /* * len can be zero or an arbitrary large value bound by * the total data supplied by the uio. */ if (len > 0) total = min(uio->uio_resid, len); else total = uio->uio_resid; /* * The smallest unit returned by m_getm2() is a single mbuf * with pkthdr. We can't align past it. */ if (align >= MHLEN) return (NULL); /* * Give us the full allocation or nothing. * If len is zero return the smallest empty mbuf. */ m = m_getm2(NULL, (int)max(total + align, 1), how, MT_DATA, flags, 0); if (m == NULL) return (NULL); m->m_data += align; /* Fill all mbufs with uio data and update header information. */ for (mb = m; mb != NULL; mb = mb->m_next) { length = (int)min(M_TRAILINGSPACE(mb), total - progress); error = uiomove(mtod(mb, void *), length, uio); if (error) { m_freem(m); return (NULL); } mb->m_len = length; progress += length; if (flags & M_PKTHDR) m->m_pkthdr.len += length; } KASSERT(progress == total, ("%s: progress != total", __func__)); return (m); } u_int m_length(struct mbuf *m0, struct mbuf **last) { struct mbuf *m; u_int len; len = 0; for (m = m0; m != NULL; m = m->m_next) { len += m->m_len; if (m->m_next == NULL) break; } if (last != NULL) *last = m; return (len); } struct mbuf * m_last(struct mbuf *m) { while (m->m_next) { m = m->m_next; } return (m); } /* * Unlink a tag from the list of tags associated with an mbuf. */ static __inline void m_tag_unlink(struct mbuf *m, struct m_tag *t) { SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); } /* * Reclaim resources associated with a tag. */ static __inline void m_tag_free(struct m_tag *t) { (*t->m_tag_free)(t); } /* * Set up the contents of a tag. Note that this does not fill in the free * method; the caller is expected to do that. * * XXX probably should be called m_tag_init, but that was already taken. */ static __inline void m_tag_setup(struct m_tag *t, uint32_t cookie, int type, int len) { t->m_tag_id = type; t->m_tag_len = len; t->m_tag_cookie = cookie; } /************ End functions from user_mbuf.h ******************/ /************ End functions to substitute umem_cache_alloc and umem_cache_free **************/ void mbuf_initialize(void *dummy) { /* * __Userspace__Configure UMA zones for Mbufs and Clusters. * (TODO: m_getcl() - using packet secondary zone). * There is no provision for trash_init and trash_fini in umem. * */ /* zone_mbuf = umem_cache_create(MBUF_MEM_NAME, MSIZE, 0, mb_ctor_mbuf, mb_dtor_mbuf, NULL, &mbuf_mb_args, NULL, 0); zone_mbuf = umem_cache_create(MBUF_MEM_NAME, MSIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);*/ #if defined(SCTP_SIMPLE_ALLOCATOR) SCTP_ZONE_INIT(zone_mbuf, MBUF_MEM_NAME, MSIZE, 0); #else zone_mbuf = umem_cache_create(MBUF_MEM_NAME, MSIZE, 0, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL, NULL, 0); #endif /*zone_ext_refcnt = umem_cache_create(MBUF_EXTREFCNT_MEM_NAME, sizeof(u_int), 0, NULL, NULL, NULL, NULL, NULL, 0);*/ SCTP_ZONE_INIT(zone_ext_refcnt, MBUF_EXTREFCNT_MEM_NAME, sizeof(u_int), 0); /*zone_clust = umem_cache_create(MBUF_CLUSTER_MEM_NAME, MCLBYTES, 0, mb_ctor_clust, mb_dtor_clust, NULL, &clust_mb_args, NULL, 0); zone_clust = umem_cache_create(MBUF_CLUSTER_MEM_NAME, MCLBYTES, 0, NULL, NULL, NULL, NULL, NULL,0);*/ #if defined(SCTP_SIMPLE_ALLOCATOR) SCTP_ZONE_INIT(zone_clust, MBUF_CLUSTER_MEM_NAME, MCLBYTES, 0); #else zone_clust = umem_cache_create(MBUF_CLUSTER_MEM_NAME, MCLBYTES, 0, mb_ctor_clust, mb_dtor_clust, NULL, &clust_mb_args, NULL, 0); #endif /* uma_prealloc() goes here... */ /* __Userspace__ Add umem_reap here for low memory situation? * */ } /* * __Userspace__ * * Constructor for Mbuf master zone. We have a different constructor * for allocating the cluster. * * The 'arg' pointer points to a mb_args structure which * contains call-specific information required to support the * mbuf allocation API. See user_mbuf.h. * * The flgs parameter below can be UMEM_DEFAULT or UMEM_NOFAIL depending on what * was passed when umem_cache_alloc was called. * TODO: Use UMEM_NOFAIL in umem_cache_alloc and also define a failure handler * and call umem_nofail_callback(my_failure_handler) in the stack initialization routines * The advantage of using UMEM_NOFAIL is that we don't have to check if umem_cache_alloc * was successful or not. The failure handler would take care of it, if we use the UMEM_NOFAIL * flag. * * NOTE Ref: http://docs.sun.com/app/docs/doc/819-2243/6n4i099p2?l=en&a=view&q=umem_zalloc) * The umem_nofail_callback() function sets the **process-wide** UMEM_NOFAIL callback. * It also mentions that umem_nofail_callback is Evolving. * */ static int mb_ctor_mbuf(void *mem, void *arg, int flgs) { #if USING_MBUF_CONSTRUCTOR struct mbuf *m; struct mb_args *args; int flags; short type; m = (struct mbuf *)mem; args = (struct mb_args *)arg; flags = args->flags; type = args->type; m->m_next = NULL; m->m_nextpkt = NULL; m->m_len = 0; m->m_flags = flags; m->m_type = type; if (flags & M_PKTHDR) { m->m_data = m->m_pktdat; m->m_pkthdr.rcvif = NULL; m->m_pkthdr.len = 0; m->m_pkthdr.header = NULL; m->m_pkthdr.csum_flags = 0; m->m_pkthdr.csum_data = 0; m->m_pkthdr.tso_segsz = 0; m->m_pkthdr.ether_vtag = 0; SLIST_INIT(&m->m_pkthdr.tags); } else m->m_data = m->m_dat; #endif return (0); } /* * __Userspace__ * The Mbuf master zone destructor. * This would be called in response to umem_cache_destroy * TODO: Recheck if this is what we want to do in this destructor. * (Note: the number of times mb_dtor_mbuf is called is equal to the * number of individual mbufs allocated from zone_mbuf. */ static void mb_dtor_mbuf(void *mem, void *arg) { struct mbuf *m; m = (struct mbuf *)mem; if ((m->m_flags & M_PKTHDR) != 0) { m_tag_delete_chain(m, NULL); } } /* __Userspace__ * The Cluster zone constructor. * * Here the 'arg' pointer points to the Mbuf which we * are configuring cluster storage for. If 'arg' is * empty we allocate just the cluster without setting * the mbuf to it. See mbuf.h. */ static int mb_ctor_clust(void *mem, void *arg, int flgs) { #if USING_MBUF_CONSTRUCTOR struct mbuf *m; struct clust_args * cla; u_int *refcnt; int type, size; sctp_zone_t zone; /* Assigning cluster of MCLBYTES. TODO: Add jumbo frame functionality */ type = EXT_CLUSTER; zone = zone_clust; size = MCLBYTES; cla = (struct clust_args *)arg; m = cla->parent_mbuf; refcnt = SCTP_ZONE_GET(zone_ext_refcnt, u_int); /*refcnt = (u_int *)umem_cache_alloc(zone_ext_refcnt, UMEM_DEFAULT);*/ *refcnt = 1; if (m != NULL) { m->m_ext.ext_buf = (caddr_t)mem; m->m_data = m->m_ext.ext_buf; m->m_flags |= M_EXT; m->m_ext.ext_free = NULL; m->m_ext.ext_args = NULL; m->m_ext.ext_size = size; m->m_ext.ext_type = type; m->m_ext.ref_cnt = refcnt; } #endif return (0); } /* __Userspace__ */ static void mb_dtor_clust(void *mem, void *arg) { /* mem is of type caddr_t. In sys/types.h we have typedef char * caddr_t; */ /* mb_dtor_clust is called at time of umem_cache_destroy() (the number of times * mb_dtor_clust is called is equal to the number of individual mbufs allocated * from zone_clust. Similarly for mb_dtor_mbuf). * At this point the following: * struct mbuf *m; * m = (struct mbuf *)arg; * assert (*(m->m_ext.ref_cnt) == 0); is not meaningful since m->m_ext.ref_cnt = NULL; * has been done in mb_free_ext(). */ } /* Unlink and free a packet tag. */ void m_tag_delete(struct mbuf *m, struct m_tag *t) { KASSERT(m && t, ("m_tag_delete: null argument, m %p t %p", (void *)m, (void *)t)); m_tag_unlink(m, t); m_tag_free(t); } /* Unlink and free a packet tag chain, starting from given tag. */ void m_tag_delete_chain(struct mbuf *m, struct m_tag *t) { struct m_tag *p, *q; KASSERT(m, ("m_tag_delete_chain: null mbuf")); if (t != NULL) p = t; else p = SLIST_FIRST(&m->m_pkthdr.tags); if (p == NULL) return; while ((q = SLIST_NEXT(p, m_tag_link)) != NULL) m_tag_delete(m, q); m_tag_delete(m, p); } #if 0 static void sctp_print_mbuf_chain(struct mbuf *m) { SCTP_DEBUG_USR(SCTP_DEBUG_USR, "Printing mbuf chain %p.\n", (void *)m); for(; m; m=m->m_next) { SCTP_DEBUG_USR(SCTP_DEBUG_USR, "%p: m_len = %ld, m_type = %x, m_next = %p.\n", (void *)m, m->m_len, m->m_type, (void *)m->m_next); if (m->m_flags & M_EXT) SCTP_DEBUG_USR(SCTP_DEBUG_USR, "%p: extend_size = %d, extend_buffer = %p, ref_cnt = %d.\n", (void *)m, m->m_ext.ext_size, (void *)m->m_ext.ext_buf, *(m->m_ext.ref_cnt)); } } #endif /* * Free an entire chain of mbufs and associated external buffers, if * applicable. */ void m_freem(struct mbuf *mb) { while (mb != NULL) mb = m_free(mb); } /* * __Userspace__ * clean mbufs with M_EXT storage attached to them * if the reference count hits 1. */ void mb_free_ext(struct mbuf *m) { int skipmbuf; KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); /* * check if the header is embedded in the cluster */ skipmbuf = (m->m_flags & M_NOFREE); /* Free the external attached storage if this * mbuf is the only reference to it. *__Userspace__ TODO: jumbo frames * */ /* NOTE: We had the same code that SCTP_DECREMENT_AND_CHECK_REFCOUNT reduces to here before but the IPHONE malloc commit had changed this to compare to 0 instead of 1 (see next line). Why? . .. this caused a huge memory leak in Linux. */ #ifdef IPHONE if (atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 0) #else if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(m->m_ext.ref_cnt)) #endif { if (m->m_ext.ext_type == EXT_CLUSTER){ #if defined(SCTP_SIMPLE_ALLOCATOR) mb_dtor_clust(m->m_ext.ext_buf, &clust_mb_args); #endif SCTP_ZONE_FREE(zone_clust, m->m_ext.ext_buf); SCTP_ZONE_FREE(zone_ext_refcnt, (u_int*)m->m_ext.ref_cnt); m->m_ext.ref_cnt = NULL; } } if (skipmbuf) return; /* __Userspace__ Also freeing the storage for ref_cnt * Free this mbuf back to the mbuf zone with all m_ext * information purged. */ m->m_ext.ext_buf = NULL; m->m_ext.ext_free = NULL; m->m_ext.ext_args = NULL; m->m_ext.ref_cnt = NULL; m->m_ext.ext_size = 0; m->m_ext.ext_type = 0; m->m_flags &= ~M_EXT; #if defined(SCTP_SIMPLE_ALLOCATOR) mb_dtor_mbuf(m, NULL); #endif SCTP_ZONE_FREE(zone_mbuf, m); /*umem_cache_free(zone_mbuf, m);*/ } /* * "Move" mbuf pkthdr from "from" to "to". * "from" must have M_PKTHDR set, and "to" must be empty. */ void m_move_pkthdr(struct mbuf *to, struct mbuf *from) { to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); if ((to->m_flags & M_EXT) == 0) to->m_data = to->m_pktdat; to->m_pkthdr = from->m_pkthdr; /* especially tags */ SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ from->m_flags &= ~M_PKTHDR; } /* * Rearange an mbuf chain so that len bytes are contiguous * and in the data area of an mbuf (so that mtod and dtom * will work for a structure of size len). Returns the resulting * mbuf chain on success, frees it and returns null on failure. * If there is room, it will add up to max_protohdr-len extra bytes to the * contiguous region in an attempt to avoid being called next time. */ struct mbuf * m_pullup(struct mbuf *n, int len) { struct mbuf *m; int count; int space; /* * If first mbuf has no cluster, and has room for len bytes * without shifting current data, pullup into it, * otherwise allocate a new mbuf to prepend to the chain. */ if ((n->m_flags & M_EXT) == 0 && n->m_data + len < &n->m_dat[MLEN] && n->m_next) { if (n->m_len >= len) return (n); m = n; n = n->m_next; len -= m->m_len; } else { if (len > MHLEN) goto bad; MGET(m, M_NOWAIT, n->m_type); if (m == NULL) goto bad; m->m_len = 0; if (n->m_flags & M_PKTHDR) M_MOVE_PKTHDR(m, n); } space = (int)(&m->m_dat[MLEN] - (m->m_data + m->m_len)); do { count = min(min(max(len, max_protohdr), space), n->m_len); memcpy(mtod(m, caddr_t) + m->m_len,mtod(n, caddr_t), (u_int)count); len -= count; m->m_len += count; n->m_len -= count; space -= count; if (n->m_len) n->m_data += count; else n = m_free(n); } while (len > 0 && n); if (len > 0) { (void) m_free(m); goto bad; } m->m_next = n; return (m); bad: m_freem(n); return (NULL); } static struct mbuf * m_dup1(struct mbuf *m, int off, int len, int wait) { struct mbuf *n = NULL; int copyhdr; if (len > MCLBYTES) return NULL; if (off == 0 && (m->m_flags & M_PKTHDR) != 0) copyhdr = 1; else copyhdr = 0; if (len >= MINCLSIZE) { if (copyhdr == 1) { m_clget(n, wait); /* TODO: include code for copying the header */ m_dup_pkthdr(n, m, wait); } else m_clget(n, wait); } else { if (copyhdr == 1) n = m_gethdr(wait, m->m_type); else n = m_get(wait, m->m_type); } if (!n) return NULL; /* ENOBUFS */ if (copyhdr && !m_dup_pkthdr(n, m, wait)) { m_free(n); return NULL; } m_copydata(m, off, len, mtod(n, caddr_t)); n->m_len = len; return n; } /* Taken from sys/kern/uipc_mbuf2.c */ struct mbuf * m_pulldown(struct mbuf *m, int off, int len, int *offp) { struct mbuf *n, *o; int hlen, tlen, olen; int writable; /* check invalid arguments. */ KASSERT(m, ("m == NULL in m_pulldown()")); if (len > MCLBYTES) { m_freem(m); return NULL; /* impossible */ } #ifdef PULLDOWN_DEBUG { struct mbuf *t; SCTP_DEBUG_USR(SCTP_DEBUG_USR, "before:"); for (t = m; t; t = t->m_next) SCTP_DEBUG_USR(SCTP_DEBUG_USR, " %d", t->m_len); SCTP_DEBUG_USR(SCTP_DEBUG_USR, "\n"); } #endif n = m; while (n != NULL && off > 0) { if (n->m_len > off) break; off -= n->m_len; n = n->m_next; } /* be sure to point non-empty mbuf */ while (n != NULL && n->m_len == 0) n = n->m_next; if (!n) { m_freem(m); return NULL; /* mbuf chain too short */ } writable = 0; if ((n->m_flags & M_EXT) == 0 || (n->m_ext.ext_type == EXT_CLUSTER && M_WRITABLE(n))) writable = 1; /* * the target data is on . * if we got enough data on the mbuf "n", we're done. */ if ((off == 0 || offp) && len <= n->m_len - off && writable) goto ok; /* * when len <= n->m_len - off and off != 0, it is a special case. * len bytes from sits in single mbuf, but the caller does * not like the starting position (off). * chop the current mbuf into two pieces, set off to 0. */ if (len <= n->m_len - off) { o = m_dup1(n, off, n->m_len - off, M_NOWAIT); if (o == NULL) { m_freem(m); return NULL; /* ENOBUFS */ } n->m_len = off; o->m_next = n->m_next; n->m_next = o; n = n->m_next; off = 0; goto ok; } /* * we need to take hlen from and tlen from m_next, 0>, * and construct contiguous mbuf with m_len == len. * note that hlen + tlen == len, and tlen > 0. */ hlen = n->m_len - off; tlen = len - hlen; /* * ensure that we have enough trailing data on mbuf chain. * if not, we can do nothing about the chain. */ olen = 0; for (o = n->m_next; o != NULL; o = o->m_next) olen += o->m_len; if (hlen + olen < len) { m_freem(m); return NULL; /* mbuf chain too short */ } /* * easy cases first. * we need to use m_copydata() to get data from m_next, 0>. */ if ((off == 0 || offp) && (M_TRAILINGSPACE(n) >= tlen) && writable) { m_copydata(n->m_next, 0, tlen, mtod(n, caddr_t) + n->m_len); n->m_len += tlen; m_adj(n->m_next, tlen); goto ok; } if ((off == 0 || offp) && (M_LEADINGSPACE(n->m_next) >= hlen) && writable) { n->m_next->m_data -= hlen; n->m_next->m_len += hlen; memcpy( mtod(n->m_next, caddr_t), mtod(n, caddr_t) + off,hlen); n->m_len -= hlen; n = n->m_next; off = 0; goto ok; } /* * now, we need to do the hard way. don't m_copy as there's no room * on both end. */ if (len > MLEN) m_clget(o, M_NOWAIT); /* o = m_getcl(M_NOWAIT, m->m_type, 0);*/ else o = m_get(M_NOWAIT, m->m_type); if (!o) { m_freem(m); return NULL; /* ENOBUFS */ } /* get hlen from into */ o->m_len = hlen; memcpy(mtod(o, caddr_t), mtod(n, caddr_t) + off, hlen); n->m_len -= hlen; /* get tlen from m_next, 0> into */ m_copydata(n->m_next, 0, tlen, mtod(o, caddr_t) + o->m_len); o->m_len += tlen; m_adj(n->m_next, tlen); o->m_next = n->m_next; n->m_next = o; n = o; off = 0; ok: #ifdef PULLDOWN_DEBUG { struct mbuf *t; SCTP_DEBUG_USR(SCTP_DEBUG_USR, "after:"); for (t = m; t; t = t->m_next) SCTP_DEBUG_USR(SCTP_DEBUG_USR, "%c%d", t == n ? '*' : ' ', t->m_len); SCTP_DEBUG_USR(SCTP_DEBUG_USR, " (off=%d)\n", off); } #endif if (offp) *offp = off; return n; } /* * Attach the the cluster from *m to *n, set up m_ext in *n * and bump the refcount of the cluster. */ static void mb_dupcl(struct mbuf *n, struct mbuf *m) { KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__)); if (*(m->m_ext.ref_cnt) == 1) *(m->m_ext.ref_cnt) += 1; else atomic_add_int(m->m_ext.ref_cnt, 1); n->m_ext.ext_buf = m->m_ext.ext_buf; n->m_ext.ext_free = m->m_ext.ext_free; n->m_ext.ext_args = m->m_ext.ext_args; n->m_ext.ext_size = m->m_ext.ext_size; n->m_ext.ref_cnt = m->m_ext.ref_cnt; n->m_ext.ext_type = m->m_ext.ext_type; n->m_flags |= M_EXT; } /* * Make a copy of an mbuf chain starting "off0" bytes from the beginning, * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. * The wait parameter is a choice of M_TRYWAIT/M_NOWAIT from caller. * Note that the copy is read-only, because clusters are not copied, * only their reference counts are incremented. */ struct mbuf * m_copym(struct mbuf *m, int off0, int len, int wait) { struct mbuf *n, **np; int off = off0; struct mbuf *top; int copyhdr = 0; KASSERT(off >= 0, ("m_copym, negative off %d", off)); KASSERT(len >= 0, ("m_copym, negative len %d", len)); KASSERT(m != NULL, ("m_copym, m is NULL")); #if !defined(INVARIANTS) if (m == NULL) { return (NULL); } #endif if (off == 0 && m->m_flags & M_PKTHDR) copyhdr = 1; while (off > 0) { KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } np = ⊤ top = 0; while (len > 0) { if (m == NULL) { KASSERT(len == M_COPYALL, ("m_copym, length > size of mbuf chain")); break; } if (copyhdr) MGETHDR(n, wait, m->m_type); else MGET(n, wait, m->m_type); *np = n; if (n == NULL) goto nospace; if (copyhdr) { if (!m_dup_pkthdr(n, m, wait)) goto nospace; if (len == M_COPYALL) n->m_pkthdr.len -= off0; else n->m_pkthdr.len = len; copyhdr = 0; } n->m_len = min(len, m->m_len - off); if (m->m_flags & M_EXT) { n->m_data = m->m_data + off; mb_dupcl(n, m); } else memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, (u_int)n->m_len); if (len != M_COPYALL) len -= n->m_len; off = 0; m = m->m_next; np = &n->m_next; } return (top); nospace: m_freem(top); return (NULL); } int m_tag_copy_chain(struct mbuf *to, struct mbuf *from, int how) { struct m_tag *p, *t, *tprev = NULL; KASSERT(to && from, ("m_tag_copy_chain: null argument, to %p from %p", (void *)to, (void *)from)); m_tag_delete_chain(to, NULL); SLIST_FOREACH(p, &from->m_pkthdr.tags, m_tag_link) { t = m_tag_copy(p, how); if (t == NULL) { m_tag_delete_chain(to, NULL); return 0; } if (tprev == NULL) SLIST_INSERT_HEAD(&to->m_pkthdr.tags, t, m_tag_link); else SLIST_INSERT_AFTER(tprev, t, m_tag_link); tprev = t; } return 1; } /* * Duplicate "from"'s mbuf pkthdr in "to". * "from" must have M_PKTHDR set, and "to" must be empty. * In particular, this does a deep copy of the packet tags. */ int m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) { KASSERT(to, ("m_dup_pkthdr: to is NULL")); KASSERT(from, ("m_dup_pkthdr: from is NULL")); to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); if ((to->m_flags & M_EXT) == 0) to->m_data = to->m_pktdat; to->m_pkthdr = from->m_pkthdr; SLIST_INIT(&to->m_pkthdr.tags); return (m_tag_copy_chain(to, from, MBTOM(how))); } /* Copy a single tag. */ struct m_tag * m_tag_copy(struct m_tag *t, int how) { struct m_tag *p; KASSERT(t, ("m_tag_copy: null tag")); p = m_tag_alloc(t->m_tag_cookie, t->m_tag_id, t->m_tag_len, how); if (p == NULL) return (NULL); memcpy(p + 1, t + 1, t->m_tag_len); /* Copy the data */ return p; } /* Get a packet tag structure along with specified data following. */ struct m_tag * m_tag_alloc(uint32_t cookie, int type, int len, int wait) { struct m_tag *t; if (len < 0) return NULL; t = malloc(len + sizeof(struct m_tag)); if (t == NULL) return NULL; m_tag_setup(t, cookie, type, len); t->m_tag_free = m_tag_free_default; return t; } /* Free a packet tag. */ void m_tag_free_default(struct m_tag *t) { free(t); } /* * Copy data from a buffer back into the indicated mbuf chain, * starting "off" bytes from the beginning, extending the mbuf * chain if necessary. */ void m_copyback(struct mbuf *m0, int off, int len, caddr_t cp) { int mlen; struct mbuf *m = m0, *n; int totlen = 0; if (m0 == NULL) return; while (off > (mlen = m->m_len)) { off -= mlen; totlen += mlen; if (m->m_next == NULL) { n = m_get(M_NOWAIT, m->m_type); if (n == NULL) goto out; memset(mtod(n, caddr_t), 0, MLEN); n->m_len = min(MLEN, len + off); m->m_next = n; } m = m->m_next; } while (len > 0) { mlen = min (m->m_len - off, len); memcpy(off + mtod(m, caddr_t), cp, (u_int)mlen); cp += mlen; len -= mlen; mlen += off; off = 0; totlen += mlen; if (len == 0) break; if (m->m_next == NULL) { n = m_get(M_NOWAIT, m->m_type); if (n == NULL) break; n->m_len = min(MLEN, len); m->m_next = n; } m = m->m_next; } out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) m->m_pkthdr.len = totlen; } /* * Apply function f to the data in an mbuf chain starting "off" bytes from * the beginning, continuing for "len" bytes. */ int m_apply(struct mbuf *m, int off, int len, int (*f)(void *, void *, u_int), void *arg) { u_int count; int rval; KASSERT(off >= 0, ("m_apply, negative off %d", off)); KASSERT(len >= 0, ("m_apply, negative len %d", len)); while (off > 0) { KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); count = min(m->m_len - off, len); rval = (*f)(arg, mtod(m, caddr_t) + off, count); if (rval) return (rval); len -= count; off = 0; m = m->m_next; } return (0); } /* * Lesser-used path for M_PREPEND: * allocate new mbuf to prepend to chain, * copy junk along. */ struct mbuf * m_prepend(struct mbuf *m, int len, int how) { struct mbuf *mn; if (m->m_flags & M_PKTHDR) MGETHDR(mn, how, m->m_type); else MGET(mn, how, m->m_type); if (mn == NULL) { m_freem(m); return (NULL); } if (m->m_flags & M_PKTHDR) M_MOVE_PKTHDR(mn, m); mn->m_next = m; m = mn; if (m->m_flags & M_PKTHDR) { if (len < MHLEN) MH_ALIGN(m, len); } else { if (len < MLEN) M_ALIGN(m, len); } m->m_len = len; return (m); } /* * Copy data from an mbuf chain starting "off" bytes from the beginning, * continuing for "len" bytes, into the indicated buffer. */ void m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) { u_int count; KASSERT(off >= 0, ("m_copydata, negative off %d", off)); KASSERT(len >= 0, ("m_copydata, negative len %d", len)); while (off > 0) { KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); count = min(m->m_len - off, len); memcpy(cp, mtod(m, caddr_t) + off, count); len -= count; cp += count; off = 0; m = m->m_next; } } /* * Concatenate mbuf chain n to m. * Both chains must be of the same type (e.g. MT_DATA). * Any m_pkthdr is not updated. */ void m_cat(struct mbuf *m, struct mbuf *n) { while (m->m_next) m = m->m_next; while (n) { if (m->m_flags & M_EXT || m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { /* just join the two chains */ m->m_next = n; return; } /* splat the data from one into the other */ memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), (u_int)n->m_len); m->m_len += n->m_len; n = m_free(n); } } void m_adj(struct mbuf *mp, int req_len) { int len = req_len; struct mbuf *m; int count; if ((m = mp) == NULL) return; if (len >= 0) { /* * Trim from head. */ while (m != NULL && len > 0) { if (m->m_len <= len) { len -= m->m_len; m->m_len = 0; m = m->m_next; } else { m->m_len -= len; m->m_data += len; len = 0; } } m = mp; if (mp->m_flags & M_PKTHDR) m->m_pkthdr.len -= (req_len - len); } else { /* * Trim from tail. Scan the mbuf chain, * calculating its length and finding the last mbuf. * If the adjustment only affects this mbuf, then just * adjust and return. Otherwise, rescan and truncate * after the remaining size. */ len = -len; count = 0; for (;;) { count += m->m_len; if (m->m_next == (struct mbuf *)0) break; m = m->m_next; } if (m->m_len >= len) { m->m_len -= len; if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= len; return; } count -= len; if (count < 0) count = 0; /* * Correct length for chain is "count". * Find the mbuf with last data, adjust its length, * and toss data from remaining mbufs on chain. */ m = mp; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len = count; for (; m; m = m->m_next) { if (m->m_len >= count) { m->m_len = count; if (m->m_next != NULL) { m_freem(m->m_next); m->m_next = NULL; } break; } count -= m->m_len; } } } /* m_split is used within sctp_handle_cookie_echo. */ /* * Partition an mbuf chain in two pieces, returning the tail -- * all but the first len0 bytes. In case of failure, it returns NULL and * attempts to restore the chain to its original state. * * Note that the resulting mbufs might be read-only, because the new * mbuf can end up sharing an mbuf cluster with the original mbuf if * the "breaking point" happens to lie within a cluster mbuf. Use the * M_WRITABLE() macro to check for this case. */ struct mbuf * m_split(struct mbuf *m0, int len0, int wait) { struct mbuf *m, *n; u_int len = len0, remain; /* MBUF_CHECKSLEEP(wait); */ for (m = m0; m && (int)len > m->m_len; m = m->m_next) len -= m->m_len; if (m == NULL) return (NULL); remain = m->m_len - len; if (m0->m_flags & M_PKTHDR) { MGETHDR(n, wait, m0->m_type); if (n == NULL) return (NULL); n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; n->m_pkthdr.len = m0->m_pkthdr.len - len0; m0->m_pkthdr.len = len0; if (m->m_flags & M_EXT) goto extpacket; if (remain > MHLEN) { /* m can't be the lead packet */ MH_ALIGN(n, 0); n->m_next = m_split(m, len, wait); if (n->m_next == NULL) { (void) m_free(n); return (NULL); } else { n->m_len = 0; return (n); } } else MH_ALIGN(n, remain); } else if (remain == 0) { n = m->m_next; m->m_next = NULL; return (n); } else { MGET(n, wait, m->m_type); if (n == NULL) return (NULL); M_ALIGN(n, remain); } extpacket: if (m->m_flags & M_EXT) { n->m_data = m->m_data + len; mb_dupcl(n, m); } else { memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + len, remain); } n->m_len = remain; m->m_len = len; n->m_next = m->m_next; m->m_next = NULL; return (n); } int pack_send_buffer(caddr_t buffer, struct mbuf* mb){ int count_to_copy; int total_count_copied = 0; int offset = 0; do { count_to_copy = mb->m_len; memcpy(buffer+offset, mtod(mb, caddr_t), count_to_copy); offset += count_to_copy; total_count_copied += count_to_copy; mb = mb->m_next; } while(mb); return (total_count_copied); }