// Copyright 2014 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Library for converting WOFF2 format font files to their TTF versions. #include "./woff2_dec.h" #include #include #include #include #include #include #include #include #include #include #include "mozilla/UniquePtr.h" namespace std { using mozilla::DefaultDelete; using mozilla::UniquePtr; #define default_delete DefaultDelete #define unique_ptr UniquePtr } #include "./brotli/decode.h" #include "./buffer.h" #include "./port.h" #include "./round.h" #include "./store_bytes.h" #include "./table_tags.h" #include "./variable_length.h" #include "./woff2_common.h" namespace woff2 { namespace { using std::string; using std::vector; // simple glyph flags const int kGlyfOnCurve = 1 << 0; const int kGlyfXShort = 1 << 1; const int kGlyfYShort = 1 << 2; const int kGlyfRepeat = 1 << 3; const int kGlyfThisXIsSame = 1 << 4; const int kGlyfThisYIsSame = 1 << 5; // composite glyph flags // See CompositeGlyph.java in sfntly for full definitions const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0; const int FLAG_WE_HAVE_A_SCALE = 1 << 3; const int FLAG_MORE_COMPONENTS = 1 << 5; const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6; const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7; const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8; const size_t kCheckSumAdjustmentOffset = 8; const size_t kEndPtsOfContoursOffset = 10; const size_t kCompositeGlyphBegin = 10; // 98% of Google Fonts have no glyph above 5k bytes // Largest glyph ever observed was 72k bytes const size_t kDefaultGlyphBuf = 5120; // Over 14k test fonts the max compression ratio seen to date was ~20. // >100 suggests you wrote a bad uncompressed size. const float kMaxPlausibleCompressionRatio = 100.0; // metadata for a TTC font entry struct TtcFont { uint32_t flavor; uint32_t dst_offset; uint32_t header_checksum; std::vector table_indices; }; struct WOFF2Header { uint32_t flavor; uint32_t header_version; uint16_t num_tables; uint64_t compressed_offset; uint32_t compressed_length; uint32_t uncompressed_size; std::vector tables; // num_tables unique tables std::vector ttc_fonts; // metadata to help rebuild font }; /** * Accumulates data we may need to reconstruct a single font. One per font * created for a TTC. */ struct WOFF2FontInfo { uint16_t num_glyphs; uint16_t index_format; uint16_t num_hmetrics; std::vector x_mins; std::map table_entry_by_tag; }; // Accumulates metadata as we rebuild the font struct RebuildMetadata { uint32_t header_checksum; // set by WriteHeaders std::vector font_infos; // checksums for tables that have been written. // (tag, src_offset) => checksum. Need both because 0-length loca. std::map, uint32_t> checksums; }; int WithSign(int flag, int baseval) { // Precondition: 0 <= baseval < 65536 (to avoid integer overflow) return (flag & 1) ? baseval : -baseval; } bool _SafeIntAddition(int a, int b, int* result) { if (PREDICT_FALSE( ((a > 0) && (b > std::numeric_limits::max() - a)) || ((a < 0) && (b < std::numeric_limits::min() - a)))) { return false; } *result = a + b; return true; } bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size, unsigned int n_points, Point* result, size_t* in_bytes_consumed) { int x = 0; int y = 0; if (PREDICT_FALSE(n_points > in_size)) { return FONT_COMPRESSION_FAILURE(); } unsigned int triplet_index = 0; for (unsigned int i = 0; i < n_points; ++i) { uint8_t flag = flags_in[i]; bool on_curve = !(flag >> 7); flag &= 0x7f; unsigned int n_data_bytes; if (flag < 84) { n_data_bytes = 1; } else if (flag < 120) { n_data_bytes = 2; } else if (flag < 124) { n_data_bytes = 3; } else { n_data_bytes = 4; } if (PREDICT_FALSE(triplet_index + n_data_bytes > in_size || triplet_index + n_data_bytes < triplet_index)) { return FONT_COMPRESSION_FAILURE(); } int dx, dy; if (flag < 10) { dx = 0; dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]); } else if (flag < 20) { dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]); dy = 0; } else if (flag < 84) { int b0 = flag - 20; int b1 = in[triplet_index]; dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4)); dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f)); } else if (flag < 120) { int b0 = flag - 84; dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]); dy = WithSign(flag >> 1, 1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]); } else if (flag < 124) { int b2 = in[triplet_index + 1]; dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4)); dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]); } else { dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]); dy = WithSign(flag >> 1, (in[triplet_index + 2] << 8) + in[triplet_index + 3]); } triplet_index += n_data_bytes; if (!_SafeIntAddition(x, dx, &x)) { return false; } if (!_SafeIntAddition(y, dy, &y)) { return false; } *result++ = {x, y, on_curve}; } *in_bytes_consumed = triplet_index; return true; } // This function stores just the point data. On entry, dst points to the // beginning of a simple glyph. Returns true on success. bool StorePoints(unsigned int n_points, const Point* points, unsigned int n_contours, unsigned int instruction_length, uint8_t* dst, size_t dst_size, size_t* glyph_size) { // I believe that n_contours < 65536, in which case this is safe. However, a // comment and/or an assert would be good. unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 + instruction_length; int last_flag = -1; int repeat_count = 0; int last_x = 0; int last_y = 0; unsigned int x_bytes = 0; unsigned int y_bytes = 0; for (unsigned int i = 0; i < n_points; ++i) { const Point& point = points[i]; int flag = point.on_curve ? kGlyfOnCurve : 0; int dx = point.x - last_x; int dy = point.y - last_y; if (dx == 0) { flag |= kGlyfThisXIsSame; } else if (dx > -256 && dx < 256) { flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0); x_bytes += 1; } else { x_bytes += 2; } if (dy == 0) { flag |= kGlyfThisYIsSame; } else if (dy > -256 && dy < 256) { flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0); y_bytes += 1; } else { y_bytes += 2; } if (flag == last_flag && repeat_count != 255) { dst[flag_offset - 1] |= kGlyfRepeat; repeat_count++; } else { if (repeat_count != 0) { if (PREDICT_FALSE(flag_offset >= dst_size)) { return FONT_COMPRESSION_FAILURE(); } dst[flag_offset++] = repeat_count; } if (PREDICT_FALSE(flag_offset >= dst_size)) { return FONT_COMPRESSION_FAILURE(); } dst[flag_offset++] = flag; repeat_count = 0; } last_x = point.x; last_y = point.y; last_flag = flag; } if (repeat_count != 0) { if (PREDICT_FALSE(flag_offset >= dst_size)) { return FONT_COMPRESSION_FAILURE(); } dst[flag_offset++] = repeat_count; } unsigned int xy_bytes = x_bytes + y_bytes; if (PREDICT_FALSE(xy_bytes < x_bytes || flag_offset + xy_bytes < flag_offset || flag_offset + xy_bytes > dst_size)) { return FONT_COMPRESSION_FAILURE(); } int x_offset = flag_offset; int y_offset = flag_offset + x_bytes; last_x = 0; last_y = 0; for (unsigned int i = 0; i < n_points; ++i) { int dx = points[i].x - last_x; if (dx == 0) { // pass } else if (dx > -256 && dx < 256) { dst[x_offset++] = std::abs(dx); } else { // will always fit for valid input, but overflow is harmless x_offset = Store16(dst, x_offset, dx); } last_x += dx; int dy = points[i].y - last_y; if (dy == 0) { // pass } else if (dy > -256 && dy < 256) { dst[y_offset++] = std::abs(dy); } else { y_offset = Store16(dst, y_offset, dy); } last_y += dy; } *glyph_size = y_offset; return true; } // Compute the bounding box of the coordinates, and store into a glyf buffer. // A precondition is that there are at least 10 bytes available. // dst should point to the beginning of a 'glyf' record. void ComputeBbox(unsigned int n_points, const Point* points, uint8_t* dst) { int x_min = 0; int y_min = 0; int x_max = 0; int y_max = 0; if (n_points > 0) { x_min = points[0].x; x_max = points[0].x; y_min = points[0].y; y_max = points[0].y; } for (unsigned int i = 1; i < n_points; ++i) { int x = points[i].x; int y = points[i].y; x_min = std::min(x, x_min); x_max = std::max(x, x_max); y_min = std::min(y, y_min); y_max = std::max(y, y_max); } size_t offset = 2; offset = Store16(dst, offset, x_min); offset = Store16(dst, offset, y_min); offset = Store16(dst, offset, x_max); offset = Store16(dst, offset, y_max); } bool SizeOfComposite(Buffer composite_stream, size_t* size, bool* have_instructions) { size_t start_offset = composite_stream.offset(); bool we_have_instructions = false; uint16_t flags = FLAG_MORE_COMPONENTS; while (flags & FLAG_MORE_COMPONENTS) { if (PREDICT_FALSE(!composite_stream.ReadU16(&flags))) { return FONT_COMPRESSION_FAILURE(); } we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0; size_t arg_size = 2; // glyph index if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) { arg_size += 4; } else { arg_size += 2; } if (flags & FLAG_WE_HAVE_A_SCALE) { arg_size += 2; } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) { arg_size += 4; } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) { arg_size += 8; } if (PREDICT_FALSE(!composite_stream.Skip(arg_size))) { return FONT_COMPRESSION_FAILURE(); } } *size = composite_stream.offset() - start_offset; *have_instructions = we_have_instructions; return true; } bool Pad4(WOFF2Out* out) { uint8_t zeroes[] = {0, 0, 0}; if (PREDICT_FALSE(out->Size() + 3 < out->Size())) { return FONT_COMPRESSION_FAILURE(); } uint32_t pad_bytes = Round4(out->Size()) - out->Size(); if (pad_bytes > 0) { if (PREDICT_FALSE(!out->Write(&zeroes, pad_bytes))) { return FONT_COMPRESSION_FAILURE(); } } return true; } // Build TrueType loca table bool StoreLoca(const std::vector& loca_values, int index_format, uint32_t* checksum, WOFF2Out* out) { // TODO(user) figure out what index format to use based on whether max // offset fits into uint16_t or not const uint64_t loca_size = loca_values.size(); const uint64_t offset_size = index_format ? 4 : 2; if (PREDICT_FALSE((loca_size << 2) >> 2 != loca_size)) { return FONT_COMPRESSION_FAILURE(); } std::vector loca_content(loca_size * offset_size); uint8_t* dst = &loca_content[0]; size_t offset = 0; for (size_t i = 0; i < loca_values.size(); ++i) { uint32_t value = loca_values[i]; if (index_format) { offset = StoreU32(dst, offset, value); } else { offset = Store16(dst, offset, value >> 1); } } *checksum = ComputeULongSum(&loca_content[0], loca_content.size()); if (PREDICT_FALSE(!out->Write(&loca_content[0], loca_content.size()))) { return FONT_COMPRESSION_FAILURE(); } return true; } // Reconstruct entire glyf table based on transformed original bool ReconstructGlyf(const uint8_t* data, Table* glyf_table, uint32_t* glyf_checksum, Table * loca_table, uint32_t* loca_checksum, WOFF2FontInfo* info, WOFF2Out* out) { static const int kNumSubStreams = 7; Buffer file(data, glyf_table->transform_length); uint32_t version; std::vector > substreams(kNumSubStreams); const size_t glyf_start = out->Size(); if (PREDICT_FALSE(!file.ReadU32(&version))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!file.ReadU16(&info->num_glyphs) || !file.ReadU16(&info->index_format))) { return FONT_COMPRESSION_FAILURE(); } unsigned int offset = (2 + kNumSubStreams) * 4; if (PREDICT_FALSE(offset > glyf_table->transform_length)) { return FONT_COMPRESSION_FAILURE(); } // Invariant from here on: data_size >= offset for (int i = 0; i < kNumSubStreams; ++i) { uint32_t substream_size; if (PREDICT_FALSE(!file.ReadU32(&substream_size))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(substream_size > glyf_table->transform_length - offset)) { return FONT_COMPRESSION_FAILURE(); } substreams[i] = std::make_pair(data + offset, substream_size); offset += substream_size; } Buffer n_contour_stream(substreams[0].first, substreams[0].second); Buffer n_points_stream(substreams[1].first, substreams[1].second); Buffer flag_stream(substreams[2].first, substreams[2].second); Buffer glyph_stream(substreams[3].first, substreams[3].second); Buffer composite_stream(substreams[4].first, substreams[4].second); Buffer bbox_stream(substreams[5].first, substreams[5].second); Buffer instruction_stream(substreams[6].first, substreams[6].second); std::vector loca_values(info->num_glyphs + 1); std::vector n_points_vec; std::unique_ptr points; size_t points_size = 0; const uint8_t* bbox_bitmap = bbox_stream.buffer(); // Safe because num_glyphs is bounded unsigned int bitmap_length = ((info->num_glyphs + 31) >> 5) << 2; if (!bbox_stream.Skip(bitmap_length)) { return FONT_COMPRESSION_FAILURE(); } // Temp buffer for glyph's. size_t glyph_buf_size = kDefaultGlyphBuf; std::unique_ptr glyph_buf(new uint8_t[glyph_buf_size]); info->x_mins.resize(info->num_glyphs); for (unsigned int i = 0; i < info->num_glyphs; ++i) { size_t glyph_size = 0; uint16_t n_contours = 0; bool have_bbox = false; if (bbox_bitmap[i >> 3] & (0x80 >> (i & 7))) { have_bbox = true; } if (PREDICT_FALSE(!n_contour_stream.ReadU16(&n_contours))) { return FONT_COMPRESSION_FAILURE(); } if (n_contours == 0xffff) { // composite glyph bool have_instructions = false; unsigned int instruction_size = 0; if (PREDICT_FALSE(!have_bbox)) { // composite glyphs must have an explicit bbox return FONT_COMPRESSION_FAILURE(); } size_t composite_size; if (PREDICT_FALSE(!SizeOfComposite(composite_stream, &composite_size, &have_instructions))) { return FONT_COMPRESSION_FAILURE(); } if (have_instructions) { if (PREDICT_FALSE(!Read255UShort(&glyph_stream, &instruction_size))) { return FONT_COMPRESSION_FAILURE(); } } size_t size_needed = 12 + composite_size + instruction_size; if (PREDICT_FALSE(glyph_buf_size < size_needed)) { glyph_buf.reset(new uint8_t[size_needed]); glyph_buf_size = size_needed; } glyph_size = Store16(glyph_buf.get(), glyph_size, n_contours); if (PREDICT_FALSE(!bbox_stream.Read(glyph_buf.get() + glyph_size, 8))) { return FONT_COMPRESSION_FAILURE(); } glyph_size += 8; if (PREDICT_FALSE(!composite_stream.Read(glyph_buf.get() + glyph_size, composite_size))) { return FONT_COMPRESSION_FAILURE(); } glyph_size += composite_size; if (have_instructions) { glyph_size = Store16(glyph_buf.get(), glyph_size, instruction_size); if (PREDICT_FALSE(!instruction_stream.Read(glyph_buf.get() + glyph_size, instruction_size))) { return FONT_COMPRESSION_FAILURE(); } glyph_size += instruction_size; } } else if (n_contours > 0) { // simple glyph n_points_vec.clear(); unsigned int total_n_points = 0; unsigned int n_points_contour; for (unsigned int j = 0; j < n_contours; ++j) { if (PREDICT_FALSE( !Read255UShort(&n_points_stream, &n_points_contour))) { return FONT_COMPRESSION_FAILURE(); } n_points_vec.push_back(n_points_contour); if (PREDICT_FALSE(total_n_points + n_points_contour < total_n_points)) { return FONT_COMPRESSION_FAILURE(); } total_n_points += n_points_contour; } unsigned int flag_size = total_n_points; if (PREDICT_FALSE( flag_size > flag_stream.length() - flag_stream.offset())) { return FONT_COMPRESSION_FAILURE(); } const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset(); const uint8_t* triplet_buf = glyph_stream.buffer() + glyph_stream.offset(); size_t triplet_size = glyph_stream.length() - glyph_stream.offset(); size_t triplet_bytes_consumed = 0; if (points_size < total_n_points) { points_size = total_n_points; points.reset(new Point[points_size]); } if (PREDICT_FALSE(!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points, points.get(), &triplet_bytes_consumed))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!flag_stream.Skip(flag_size))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!glyph_stream.Skip(triplet_bytes_consumed))) { return FONT_COMPRESSION_FAILURE(); } unsigned int instruction_size; if (PREDICT_FALSE(!Read255UShort(&glyph_stream, &instruction_size))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(total_n_points >= (1 << 27) || instruction_size >= (1 << 30))) { return FONT_COMPRESSION_FAILURE(); } size_t size_needed = 12 + 2 * n_contours + 5 * total_n_points + instruction_size; if (PREDICT_FALSE(glyph_buf_size < size_needed)) { glyph_buf.reset(new uint8_t[size_needed]); glyph_buf_size = size_needed; } glyph_size = Store16(glyph_buf.get(), glyph_size, n_contours); if (have_bbox) { if (PREDICT_FALSE(!bbox_stream.Read(glyph_buf.get() + glyph_size, 8))) { return FONT_COMPRESSION_FAILURE(); } } else { ComputeBbox(total_n_points, points.get(), glyph_buf.get()); } glyph_size = kEndPtsOfContoursOffset; int end_point = -1; for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) { end_point += n_points_vec[contour_ix]; if (PREDICT_FALSE(end_point >= 65536)) { return FONT_COMPRESSION_FAILURE(); } glyph_size = Store16(glyph_buf.get(), glyph_size, end_point); } glyph_size = Store16(glyph_buf.get(), glyph_size, instruction_size); if (PREDICT_FALSE(!instruction_stream.Read(glyph_buf.get() + glyph_size, instruction_size))) { return FONT_COMPRESSION_FAILURE(); } glyph_size += instruction_size; if (PREDICT_FALSE(!StorePoints(total_n_points, points.get(), n_contours, instruction_size, glyph_buf.get(), glyph_buf_size, &glyph_size))) { return FONT_COMPRESSION_FAILURE(); } } loca_values[i] = out->Size() - glyf_start; if (PREDICT_FALSE(!out->Write(glyph_buf.get(), glyph_size))) { return FONT_COMPRESSION_FAILURE(); } // TODO(user) Old code aligned glyphs ... but do we actually need to? if (PREDICT_FALSE(!Pad4(out))) { return FONT_COMPRESSION_FAILURE(); } *glyf_checksum += ComputeULongSum(glyph_buf.get(), glyph_size); // We may need x_min to reconstruct 'hmtx' if (n_contours > 0) { Buffer x_min_buf(glyph_buf.get() + 2, 2); if (PREDICT_FALSE(!x_min_buf.ReadS16(&info->x_mins[i]))) { return FONT_COMPRESSION_FAILURE(); } } } // glyf_table dst_offset was set by ReconstructFont glyf_table->dst_length = out->Size() - glyf_table->dst_offset; loca_table->dst_offset = out->Size(); // loca[n] will be equal the length of the glyph data ('glyf') table loca_values[info->num_glyphs] = glyf_table->dst_length; if (PREDICT_FALSE(!StoreLoca(loca_values, info->index_format, loca_checksum, out))) { return FONT_COMPRESSION_FAILURE(); } loca_table->dst_length = out->Size() - loca_table->dst_offset; return true; } Table* FindTable(std::vector* tables, uint32_t tag) { for (Table* table : *tables) { if (table->tag == tag) { return table; } } return NULL; } // Get numberOfHMetrics, https://www.microsoft.com/typography/otspec/hhea.htm bool ReadNumHMetrics(const uint8_t* data, size_t data_size, uint16_t* num_hmetrics) { // Skip 34 to reach 'hhea' numberOfHMetrics Buffer buffer(data, data_size); if (PREDICT_FALSE(!buffer.Skip(34) || !buffer.ReadU16(num_hmetrics))) { return FONT_COMPRESSION_FAILURE(); } return true; } // http://dev.w3.org/webfonts/WOFF2/spec/Overview.html#hmtx_table_format bool ReconstructTransformedHmtx(const uint8_t* transformed_buf, size_t transformed_size, uint16_t num_glyphs, uint16_t num_hmetrics, const std::vector& x_mins, uint32_t* checksum, WOFF2Out* out) { Buffer hmtx_buff_in(transformed_buf, transformed_size); uint8_t hmtx_flags; if (PREDICT_FALSE(!hmtx_buff_in.ReadU8(&hmtx_flags))) { return FONT_COMPRESSION_FAILURE(); } std::vector advance_widths; std::vector lsbs; bool has_proportional_lsbs = (hmtx_flags & 1) == 0; bool has_monospace_lsbs = (hmtx_flags & 2) == 0; // you say you transformed but there is little evidence of it if (has_proportional_lsbs && has_monospace_lsbs) { return FONT_COMPRESSION_FAILURE(); } assert(x_mins.size() == num_glyphs); // num_glyphs 0 is OK if there is no 'glyf' but cannot then xform 'hmtx'. if (PREDICT_FALSE(num_hmetrics > num_glyphs)) { return FONT_COMPRESSION_FAILURE(); } // https://www.microsoft.com/typography/otspec/hmtx.htm // "...only one entry need be in the array, but that entry is required." if (PREDICT_FALSE(num_hmetrics < 1)) { return FONT_COMPRESSION_FAILURE(); } for (uint16_t i = 0; i < num_hmetrics; i++) { uint16_t advance_width; if (PREDICT_FALSE(!hmtx_buff_in.ReadU16(&advance_width))) { return FONT_COMPRESSION_FAILURE(); } advance_widths.push_back(advance_width); } for (uint16_t i = 0; i < num_hmetrics; i++) { int16_t lsb; if (has_proportional_lsbs) { if (PREDICT_FALSE(!hmtx_buff_in.ReadS16(&lsb))) { return FONT_COMPRESSION_FAILURE(); } } else { lsb = x_mins[i]; } lsbs.push_back(lsb); } for (uint16_t i = num_hmetrics; i < num_glyphs; i++) { int16_t lsb; if (has_monospace_lsbs) { if (PREDICT_FALSE(!hmtx_buff_in.ReadS16(&lsb))) { return FONT_COMPRESSION_FAILURE(); } } else { lsb = x_mins[i]; } lsbs.push_back(lsb); } // bake me a shiny new hmtx table uint32_t hmtx_output_size = 2 * num_glyphs + 2 * num_hmetrics; std::vector hmtx_table(hmtx_output_size); uint8_t* dst = &hmtx_table[0]; size_t dst_offset = 0; for (uint32_t i = 0; i < num_glyphs; i++) { if (i < num_hmetrics) { Store16(advance_widths[i], &dst_offset, dst); } Store16(lsbs[i], &dst_offset, dst); } *checksum = ComputeULongSum(&hmtx_table[0], hmtx_output_size); if (PREDICT_FALSE(!out->Write(&hmtx_table[0], hmtx_output_size))) { return FONT_COMPRESSION_FAILURE(); } return true; } bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size, const uint8_t* src_buf, size_t src_size) { size_t uncompressed_size = dst_size; BrotliDecoderResult result = BrotliDecoderDecompress( src_size, src_buf, &uncompressed_size, dst_buf); if (PREDICT_FALSE(result != BROTLI_DECODER_RESULT_SUCCESS || uncompressed_size != dst_size)) { return FONT_COMPRESSION_FAILURE(); } return true; } bool ReadTableDirectory(Buffer* file, std::vector
* tables, size_t num_tables) { uint32_t src_offset = 0; for (size_t i = 0; i < num_tables; ++i) { Table* table = &(*tables)[i]; uint8_t flag_byte; if (PREDICT_FALSE(!file->ReadU8(&flag_byte))) { return FONT_COMPRESSION_FAILURE(); } uint32_t tag; if ((flag_byte & 0x3f) == 0x3f) { if (PREDICT_FALSE(!file->ReadU32(&tag))) { return FONT_COMPRESSION_FAILURE(); } } else { tag = kKnownTags[flag_byte & 0x3f]; } uint32_t flags = 0; uint8_t xform_version = (flag_byte >> 6) & 0x03; // 0 means xform for glyph/loca, non-0 for others if (tag == kGlyfTableTag || tag == kLocaTableTag) { if (xform_version == 0) { flags |= kWoff2FlagsTransform; } } else if (xform_version != 0) { flags |= kWoff2FlagsTransform; } flags |= xform_version; uint32_t dst_length; if (PREDICT_FALSE(!ReadBase128(file, &dst_length))) { return FONT_COMPRESSION_FAILURE(); } uint32_t transform_length = dst_length; if ((flags & kWoff2FlagsTransform) != 0) { if (PREDICT_FALSE(!ReadBase128(file, &transform_length))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(tag == kLocaTableTag && transform_length)) { return FONT_COMPRESSION_FAILURE(); } } if (PREDICT_FALSE(src_offset + transform_length < src_offset)) { return FONT_COMPRESSION_FAILURE(); } table->src_offset = src_offset; table->src_length = transform_length; src_offset += transform_length; table->tag = tag; table->flags = flags; table->transform_length = transform_length; table->dst_length = dst_length; } return true; } // Writes a single Offset Table entry size_t StoreOffsetTable(uint8_t* result, size_t offset, uint32_t flavor, uint16_t num_tables) { offset = StoreU32(result, offset, flavor); // sfnt version offset = Store16(result, offset, num_tables); // num_tables unsigned max_pow2 = 0; while (1u << (max_pow2 + 1) <= num_tables) { max_pow2++; } const uint16_t output_search_range = (1u << max_pow2) << 4; offset = Store16(result, offset, output_search_range); // searchRange offset = Store16(result, offset, max_pow2); // entrySelector // rangeShift offset = Store16(result, offset, (num_tables << 4) - output_search_range); return offset; } size_t StoreTableEntry(uint8_t* result, uint32_t offset, uint32_t tag) { offset = StoreU32(result, offset, tag); offset = StoreU32(result, offset, 0); offset = StoreU32(result, offset, 0); offset = StoreU32(result, offset, 0); return offset; } // First table goes after all the headers, table directory, etc uint64_t ComputeOffsetToFirstTable(const WOFF2Header& hdr) { uint64_t offset = kSfntHeaderSize + kSfntEntrySize * static_cast(hdr.num_tables); if (hdr.header_version) { offset = CollectionHeaderSize(hdr.header_version, hdr.ttc_fonts.size()) + kSfntHeaderSize * hdr.ttc_fonts.size(); for (const auto& ttc_font : hdr.ttc_fonts) { offset += kSfntEntrySize * ttc_font.table_indices.size(); } } return offset; } std::vector Tables(WOFF2Header* hdr, size_t font_index) { std::vector tables; if (PREDICT_FALSE(hdr->header_version)) { for (auto index : hdr->ttc_fonts[font_index].table_indices) { tables.push_back(&hdr->tables[index]); } } else { for (auto& table : hdr->tables) { tables.push_back(&table); } } return tables; } // Offset tables assumed to have been written in with 0's initially. // WOFF2Header isn't const so we can use [] instead of at() (which upsets FF) bool ReconstructFont(uint8_t* transformed_buf, const uint32_t transformed_buf_size, RebuildMetadata* metadata, WOFF2Header* hdr, size_t font_index, WOFF2Out* out) { size_t dest_offset = out->Size(); uint8_t table_entry[12]; WOFF2FontInfo* info = &metadata->font_infos[font_index]; std::vector tables = Tables(hdr, font_index); // 'glyf' without 'loca' doesn't make sense if (PREDICT_FALSE(static_cast(FindTable(&tables, kGlyfTableTag)) != static_cast(FindTable(&tables, kLocaTableTag)))) { return FONT_COMPRESSION_FAILURE(); } uint32_t font_checksum = metadata->header_checksum; if (hdr->header_version) { font_checksum = hdr->ttc_fonts[font_index].header_checksum; } uint32_t loca_checksum = 0; for (size_t i = 0; i < tables.size(); i++) { Table& table = *tables[i]; std::pair checksum_key = {table.tag, table.src_offset}; bool reused = metadata->checksums.find(checksum_key) != metadata->checksums.end(); if (PREDICT_FALSE(font_index == 0 && reused)) { return FONT_COMPRESSION_FAILURE(); } // TODO(user) a collection with optimized hmtx that reused glyf/loca // would fail. We don't optimize hmtx for collections yet. if (PREDICT_FALSE(static_cast(table.src_offset + table.src_length) > transformed_buf_size)) { return FONT_COMPRESSION_FAILURE(); } if (table.tag == kHheaTableTag) { if (!ReadNumHMetrics(transformed_buf + table.src_offset, table.src_length, &info->num_hmetrics)) { return FONT_COMPRESSION_FAILURE(); } } uint32_t checksum = 0; if (!reused) { if ((table.flags & kWoff2FlagsTransform) != kWoff2FlagsTransform) { if (table.tag == kHeadTableTag) { if (PREDICT_FALSE(table.src_length < 12)) { return FONT_COMPRESSION_FAILURE(); } // checkSumAdjustment = 0 StoreU32(transformed_buf + table.src_offset, 8, 0); } table.dst_offset = dest_offset; checksum = ComputeULongSum(transformed_buf + table.src_offset, table.src_length); if (PREDICT_FALSE(!out->Write(transformed_buf + table.src_offset, table.src_length))) { return FONT_COMPRESSION_FAILURE(); } } else { if (table.tag == kGlyfTableTag) { table.dst_offset = dest_offset; Table* loca_table = FindTable(&tables, kLocaTableTag); if (PREDICT_FALSE(!ReconstructGlyf(transformed_buf + table.src_offset, &table, &checksum, loca_table, &loca_checksum, info, out))) { return FONT_COMPRESSION_FAILURE(); } } else if (table.tag == kLocaTableTag) { // All the work was done by ReconstructGlyf. We already know checksum. checksum = loca_checksum; } else if (table.tag == kHmtxTableTag) { table.dst_offset = dest_offset; // Tables are sorted so all the info we need has been gathered. if (PREDICT_FALSE(!ReconstructTransformedHmtx( transformed_buf + table.src_offset, table.src_length, info->num_glyphs, info->num_hmetrics, info->x_mins, &checksum, out))) { return FONT_COMPRESSION_FAILURE(); } } else { return FONT_COMPRESSION_FAILURE(); // transform unknown } } metadata->checksums[checksum_key] = checksum; } else { checksum = metadata->checksums[checksum_key]; } font_checksum += checksum; // update the table entry with real values. StoreU32(table_entry, 0, checksum); StoreU32(table_entry, 4, table.dst_offset); StoreU32(table_entry, 8, table.dst_length); if (PREDICT_FALSE(!out->Write(table_entry, info->table_entry_by_tag[table.tag] + 4, 12))) { return FONT_COMPRESSION_FAILURE(); } // We replaced 0's. Update overall checksum. font_checksum += ComputeULongSum(table_entry, 12); if (PREDICT_FALSE(!Pad4(out))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(static_cast(table.dst_offset + table.dst_length) > out->Size())) { return FONT_COMPRESSION_FAILURE(); } dest_offset = out->Size(); } // Update 'head' checkSumAdjustment. We already set it to 0 and summed font. Table* head_table = FindTable(&tables, kHeadTableTag); if (head_table) { if (PREDICT_FALSE(head_table->dst_length < 12)) { return FONT_COMPRESSION_FAILURE(); } uint8_t checksum_adjustment[4]; StoreU32(checksum_adjustment, 0, 0xB1B0AFBA - font_checksum); if (PREDICT_FALSE(!out->Write(checksum_adjustment, head_table->dst_offset + 8, 4))) { return FONT_COMPRESSION_FAILURE(); } } return true; } bool ReadWOFF2Header(const uint8_t* data, size_t length, WOFF2Header* hdr) { Buffer file(data, length); uint32_t signature; if (PREDICT_FALSE(!file.ReadU32(&signature) || signature != kWoff2Signature || !file.ReadU32(&hdr->flavor))) { return FONT_COMPRESSION_FAILURE(); } // TODO(user): Should call IsValidVersionTag() here. uint32_t reported_length; if (PREDICT_FALSE( !file.ReadU32(&reported_length) || length != reported_length)) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!file.ReadU16(&hdr->num_tables) || !hdr->num_tables)) { return FONT_COMPRESSION_FAILURE(); } // We don't care about these fields of the header: // uint16_t reserved // uint32_t total_sfnt_size, we don't believe this, will compute later if (PREDICT_FALSE(!file.Skip(6))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!file.ReadU32(&hdr->compressed_length))) { return FONT_COMPRESSION_FAILURE(); } // We don't care about these fields of the header: // uint16_t major_version, minor_version if (PREDICT_FALSE(!file.Skip(2 * 2))) { return FONT_COMPRESSION_FAILURE(); } uint32_t meta_offset; uint32_t meta_length; uint32_t meta_length_orig; if (PREDICT_FALSE(!file.ReadU32(&meta_offset) || !file.ReadU32(&meta_length) || !file.ReadU32(&meta_length_orig))) { return FONT_COMPRESSION_FAILURE(); } if (meta_offset) { if (PREDICT_FALSE( meta_offset >= length || length - meta_offset < meta_length)) { return FONT_COMPRESSION_FAILURE(); } } uint32_t priv_offset; uint32_t priv_length; if (PREDICT_FALSE(!file.ReadU32(&priv_offset) || !file.ReadU32(&priv_length))) { return FONT_COMPRESSION_FAILURE(); } if (priv_offset) { if (PREDICT_FALSE( priv_offset >= length || length - priv_offset < priv_length)) { return FONT_COMPRESSION_FAILURE(); } } hdr->tables.resize(hdr->num_tables); if (PREDICT_FALSE(!ReadTableDirectory( &file, &hdr->tables, hdr->num_tables))) { return FONT_COMPRESSION_FAILURE(); } // Before we sort for output the last table end is the uncompressed size. Table& last_table = hdr->tables.back(); hdr->uncompressed_size = last_table.src_offset + last_table.src_length; if (PREDICT_FALSE(hdr->uncompressed_size < last_table.src_offset)) { return FONT_COMPRESSION_FAILURE(); } hdr->header_version = 0; if (hdr->flavor == kTtcFontFlavor) { if (PREDICT_FALSE(!file.ReadU32(&hdr->header_version))) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(hdr->header_version != 0x00010000 && hdr->header_version != 0x00020000)) { return FONT_COMPRESSION_FAILURE(); } uint32_t num_fonts; if (PREDICT_FALSE(!Read255UShort(&file, &num_fonts) || !num_fonts)) { return FONT_COMPRESSION_FAILURE(); } hdr->ttc_fonts.resize(num_fonts); for (uint32_t i = 0; i < num_fonts; i++) { TtcFont& ttc_font = hdr->ttc_fonts[i]; uint32_t num_tables; if (PREDICT_FALSE(!Read255UShort(&file, &num_tables) || !num_tables)) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!file.ReadU32(&ttc_font.flavor))) { return FONT_COMPRESSION_FAILURE(); } ttc_font.table_indices.resize(num_tables); const Table* glyf_table = NULL; const Table* loca_table = NULL; for (uint32_t j = 0; j < num_tables; j++) { unsigned int table_idx; if (PREDICT_FALSE(!Read255UShort(&file, &table_idx)) || table_idx >= hdr->tables.size()) { return FONT_COMPRESSION_FAILURE(); } ttc_font.table_indices[j] = table_idx; const Table& table = hdr->tables[table_idx]; if (table.tag == kLocaTableTag) { loca_table = &table; } if (table.tag == kGlyfTableTag) { glyf_table = &table; } } if (PREDICT_FALSE((glyf_table == NULL) != (loca_table == NULL))) { #ifdef FONT_COMPRESSION_BIN fprintf(stderr, "Cannot have just one of glyf/loca\n"); #endif return FONT_COMPRESSION_FAILURE(); } } } const uint64_t first_table_offset = ComputeOffsetToFirstTable(*hdr); hdr->compressed_offset = file.offset(); if (PREDICT_FALSE(hdr->compressed_offset > std::numeric_limits::max())) { return FONT_COMPRESSION_FAILURE(); } uint64_t src_offset = Round4(hdr->compressed_offset + hdr->compressed_length); uint64_t dst_offset = first_table_offset; if (PREDICT_FALSE(src_offset > length)) { #ifdef FONT_COMPRESSION_BIN fprintf(stderr, "offset fail; src_offset %" PRIu64 " length %lu " "dst_offset %" PRIu64 "\n", src_offset, length, dst_offset); #endif return FONT_COMPRESSION_FAILURE(); } if (meta_offset) { if (PREDICT_FALSE(src_offset != meta_offset)) { return FONT_COMPRESSION_FAILURE(); } src_offset = Round4(meta_offset + meta_length); if (PREDICT_FALSE(src_offset > std::numeric_limits::max())) { return FONT_COMPRESSION_FAILURE(); } } if (priv_offset) { if (PREDICT_FALSE(src_offset != priv_offset)) { return FONT_COMPRESSION_FAILURE(); } src_offset = Round4(priv_offset + priv_length); if (PREDICT_FALSE(src_offset > std::numeric_limits::max())) { return FONT_COMPRESSION_FAILURE(); } } if (PREDICT_FALSE(src_offset != Round4(length))) { return FONT_COMPRESSION_FAILURE(); } return true; } // Write everything before the actual table data bool WriteHeaders(const uint8_t* data, size_t length, RebuildMetadata* metadata, WOFF2Header* hdr, WOFF2Out* out) { std::vector output(ComputeOffsetToFirstTable(*hdr), 0); // Re-order tables in output (OTSpec) order std::vector
sorted_tables(hdr->tables); if (hdr->header_version) { // collection; we have to sort the table offset vector in each font for (auto& ttc_font : hdr->ttc_fonts) { std::map sorted_index_by_tag; for (auto table_index : ttc_font.table_indices) { sorted_index_by_tag[hdr->tables[table_index].tag] = table_index; } uint16_t index = 0; for (auto& i : sorted_index_by_tag) { ttc_font.table_indices[index++] = i.second; } } } else { // non-collection; we can just sort the tables std::sort(sorted_tables.begin(), sorted_tables.end()); } // Start building the font uint8_t* result = &output[0]; size_t offset = 0; if (hdr->header_version) { // TTC header offset = StoreU32(result, offset, hdr->flavor); // TAG TTCTag offset = StoreU32(result, offset, hdr->header_version); // FIXED Version offset = StoreU32(result, offset, hdr->ttc_fonts.size()); // ULONG numFonts // Space for ULONG OffsetTable[numFonts] (zeroed initially) size_t offset_table = offset; // keep start of offset table for later for (size_t i = 0; i < hdr->ttc_fonts.size(); i++) { offset = StoreU32(result, offset, 0); // will fill real values in later } // space for DSIG fields for header v2 if (hdr->header_version == 0x00020000) { offset = StoreU32(result, offset, 0); // ULONG ulDsigTag offset = StoreU32(result, offset, 0); // ULONG ulDsigLength offset = StoreU32(result, offset, 0); // ULONG ulDsigOffset } // write Offset Tables and store the location of each in TTC Header metadata->font_infos.resize(hdr->ttc_fonts.size()); for (size_t i = 0; i < hdr->ttc_fonts.size(); i++) { TtcFont& ttc_font = hdr->ttc_fonts[i]; // write Offset Table location into TTC Header offset_table = StoreU32(result, offset_table, offset); // write the actual offset table so our header doesn't lie ttc_font.dst_offset = offset; offset = StoreOffsetTable(result, offset, ttc_font.flavor, ttc_font.table_indices.size()); for (const auto table_index : ttc_font.table_indices) { uint32_t tag = hdr->tables[table_index].tag; metadata->font_infos[i].table_entry_by_tag[tag] = offset; offset = StoreTableEntry(result, offset, tag); } ttc_font.header_checksum = ComputeULongSum(&output[ttc_font.dst_offset], offset - ttc_font.dst_offset); } } else { metadata->font_infos.resize(1); offset = StoreOffsetTable(result, offset, hdr->flavor, hdr->num_tables); for (uint16_t i = 0; i < hdr->num_tables; ++i) { metadata->font_infos[0].table_entry_by_tag[sorted_tables[i].tag] = offset; offset = StoreTableEntry(result, offset, sorted_tables[i].tag); } } if (PREDICT_FALSE(!out->Write(&output[0], output.size()))) { return FONT_COMPRESSION_FAILURE(); } metadata->header_checksum = ComputeULongSum(&output[0], output.size()); return true; } } // namespace size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) { Buffer file(data, length); uint32_t total_length; if (!file.Skip(16) || !file.ReadU32(&total_length)) { return 0; } return total_length; } bool ConvertWOFF2ToTTF(uint8_t *result, size_t result_length, const uint8_t *data, size_t length) { WOFF2MemoryOut out(result, result_length); return ConvertWOFF2ToTTF(data, length, &out); } bool ConvertWOFF2ToTTF(const uint8_t* data, size_t length, WOFF2Out* out) { RebuildMetadata metadata; WOFF2Header hdr; if (!ReadWOFF2Header(data, length, &hdr)) { return FONT_COMPRESSION_FAILURE(); } if (!WriteHeaders(data, length, &metadata, &hdr, out)) { return FONT_COMPRESSION_FAILURE(); } const float compression_ratio = (float) hdr.uncompressed_size / length; if (compression_ratio > kMaxPlausibleCompressionRatio) { #ifdef FONT_COMPRESSION_BIN fprintf(stderr, "Implausible compression ratio %.01f\n", compression_ratio); #endif return FONT_COMPRESSION_FAILURE(); } const uint8_t* src_buf = data + hdr.compressed_offset; std::vector uncompressed_buf(hdr.uncompressed_size); if (PREDICT_FALSE(hdr.uncompressed_size < 1)) { return FONT_COMPRESSION_FAILURE(); } if (PREDICT_FALSE(!Woff2Uncompress(&uncompressed_buf[0], hdr.uncompressed_size, src_buf, hdr.compressed_length))) { return FONT_COMPRESSION_FAILURE(); } for (size_t i = 0; i < metadata.font_infos.size(); i++) { if (PREDICT_FALSE(!ReconstructFont(&uncompressed_buf[0], hdr.uncompressed_size, &metadata, &hdr, i, out))) { return FONT_COMPRESSION_FAILURE(); } } return true; } } // namespace woff2