// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Utilities for building and looking up Huffman trees. // // Author: Urvang Joshi (urvang@google.com) #include #include #include #include "src/utils/huffman_utils.h" #include "src/utils/utils.h" #include "src/webp/format_constants.h" // Huffman data read via DecodeImageStream is represented in two (red and green) // bytes. #define MAX_HTREE_GROUPS 0x10000 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { HTreeGroup* const htree_groups = (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups)); if (htree_groups == NULL) { return NULL; } assert(num_htree_groups <= MAX_HTREE_GROUPS); return htree_groups; } void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) { if (htree_groups != NULL) { WebPSafeFree(htree_groups); } } // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the // bit-wise reversal of the len least significant bits of key. static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) { uint32_t step = 1 << (len - 1); while (key & step) { step >>= 1; } return step ? (key & (step - 1)) + step : key; } // Stores code in table[0], table[step], table[2*step], ..., table[end]. // Assumes that end is an integer multiple of step. static WEBP_INLINE void ReplicateValue(HuffmanCode* table, int step, int end, HuffmanCode code) { assert(end % step == 0); do { end -= step; table[end] = code; } while (end > 0); } // Returns the table width of the next 2nd level table. count is the histogram // of bit lengths for the remaining symbols, len is the code length of the next // processed symbol static WEBP_INLINE int NextTableBitSize(const int* const count, int len, int root_bits) { int left = 1 << (len - root_bits); while (len < MAX_ALLOWED_CODE_LENGTH) { left -= count[len]; if (left <= 0) break; ++len; left <<= 1; } return len - root_bits; } // sorted[code_lengths_size] is a pre-allocated array for sorting symbols // by code length. static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits, const int code_lengths[], int code_lengths_size, uint16_t sorted[]) { HuffmanCode* table = root_table; // next available space in table int total_size = 1 << root_bits; // total size root table + 2nd level table int len; // current code length int symbol; // symbol index in original or sorted table // number of codes of each length: int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; // offsets in sorted table for each length: int offset[MAX_ALLOWED_CODE_LENGTH + 1]; assert(code_lengths_size != 0); assert(code_lengths != NULL); assert((root_table != NULL && sorted != NULL) || (root_table == NULL && sorted == NULL)); assert(root_bits > 0); // Build histogram of code lengths. for (symbol = 0; symbol < code_lengths_size; ++symbol) { if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) { return 0; } ++count[code_lengths[symbol]]; } // Error, all code lengths are zeros. if (count[0] == code_lengths_size) { return 0; } // Generate offsets into sorted symbol table by code length. offset[1] = 0; for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) { if (count[len] > (1 << len)) { return 0; } offset[len + 1] = offset[len] + count[len]; } // Sort symbols by length, by symbol order within each length. for (symbol = 0; symbol < code_lengths_size; ++symbol) { const int symbol_code_length = code_lengths[symbol]; if (code_lengths[symbol] > 0) { if (sorted != NULL) { sorted[offset[symbol_code_length]++] = symbol; } else { offset[symbol_code_length]++; } } } // Special case code with only one value. if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) { if (sorted != NULL) { HuffmanCode code; code.bits = 0; code.value = (uint16_t)sorted[0]; ReplicateValue(table, 1, total_size, code); } return total_size; } { int step; // step size to replicate values in current table uint32_t low = -1; // low bits for current root entry uint32_t mask = total_size - 1; // mask for low bits uint32_t key = 0; // reversed prefix code int num_nodes = 1; // number of Huffman tree nodes int num_open = 1; // number of open branches in current tree level int table_bits = root_bits; // key length of current table int table_size = 1 << table_bits; // size of current table symbol = 0; // Fill in root table. for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) { num_open <<= 1; num_nodes += num_open; num_open -= count[len]; if (num_open < 0) { return 0; } if (root_table == NULL) continue; for (; count[len] > 0; --count[len]) { HuffmanCode code; code.bits = (uint8_t)len; code.value = (uint16_t)sorted[symbol++]; ReplicateValue(&table[key], step, table_size, code); key = GetNextKey(key, len); } } // Fill in 2nd level tables and add pointers to root table. for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH; ++len, step <<= 1) { num_open <<= 1; num_nodes += num_open; num_open -= count[len]; if (num_open < 0) { return 0; } for (; count[len] > 0; --count[len]) { HuffmanCode code; if ((key & mask) != low) { if (root_table != NULL) table += table_size; table_bits = NextTableBitSize(count, len, root_bits); table_size = 1 << table_bits; total_size += table_size; low = key & mask; if (root_table != NULL) { root_table[low].bits = (uint8_t)(table_bits + root_bits); root_table[low].value = (uint16_t)((table - root_table) - low); } } if (root_table != NULL) { code.bits = (uint8_t)(len - root_bits); code.value = (uint16_t)sorted[symbol++]; ReplicateValue(&table[key >> root_bits], step, table_size, code); } key = GetNextKey(key, len); } } // Check if tree is full. if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) { return 0; } } return total_size; } // Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits). // More commonly, the value is around ~280. #define MAX_CODE_LENGTHS_SIZE \ ((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES) // Cut-off value for switching between heap and stack allocation. #define SORTED_SIZE_CUTOFF 512 int VP8LBuildHuffmanTable(HuffmanTables* const root_table, int root_bits, const int code_lengths[], int code_lengths_size) { const int total_size = BuildHuffmanTable(NULL, root_bits, code_lengths, code_lengths_size, NULL); assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE); if (total_size == 0 || root_table == NULL) return total_size; if (root_table->curr_segment->curr_table + total_size >= root_table->curr_segment->start + root_table->curr_segment->size) { // If 'root_table' does not have enough memory, allocate a new segment. // The available part of root_table->curr_segment is left unused because we // need a contiguous buffer. const int segment_size = root_table->curr_segment->size; struct HuffmanTablesSegment* next = (HuffmanTablesSegment*)WebPSafeMalloc(1, sizeof(*next)); if (next == NULL) return 0; // Fill the new segment. // We need at least 'total_size' but if that value is small, it is better to // allocate a big chunk to prevent more allocations later. 'segment_size' is // therefore chosen (any other arbitrary value could be chosen). next->size = total_size > segment_size ? total_size : segment_size; next->start = (HuffmanCode*)WebPSafeMalloc(next->size, sizeof(*next->start)); if (next->start == NULL) { WebPSafeFree(next); return 0; } next->curr_table = next->start; next->next = NULL; // Point to the new segment. root_table->curr_segment->next = next; root_table->curr_segment = next; } if (code_lengths_size <= SORTED_SIZE_CUTOFF) { // use local stack-allocated array. uint16_t sorted[SORTED_SIZE_CUTOFF]; BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits, code_lengths, code_lengths_size, sorted); } else { // rare case. Use heap allocation. uint16_t* const sorted = (uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted)); if (sorted == NULL) return 0; BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits, code_lengths, code_lengths_size, sorted); WebPSafeFree(sorted); } return total_size; } int VP8LHuffmanTablesAllocate(int size, HuffmanTables* huffman_tables) { // Have 'segment' point to the first segment for now, 'root'. HuffmanTablesSegment* const root = &huffman_tables->root; huffman_tables->curr_segment = root; // Allocate root. root->start = (HuffmanCode*)WebPSafeMalloc(size, sizeof(*root->start)); if (root->start == NULL) return 0; root->curr_table = root->start; root->next = NULL; root->size = size; return 1; } void VP8LHuffmanTablesDeallocate(HuffmanTables* const huffman_tables) { HuffmanTablesSegment *current, *next; if (huffman_tables == NULL) return; // Free the root node. current = &huffman_tables->root; next = current->next; WebPSafeFree(current->start); current->start = NULL; current->next = NULL; current = next; // Free the following nodes. while (current != NULL) { next = current->next; WebPSafeFree(current->start); WebPSafeFree(current); current = next; } }