/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "MP3Demuxer.h" #include #include #include "mozilla/Assertions.h" #include "mozilla/Endian.h" #include "VideoUtils.h" #include "TimeUnits.h" #include "prenv.h" #ifdef PR_LOGGING mozilla::LazyLogModule gMP3DemuxerLog("MP3Demuxer"); #define MP3LOG(msg, ...) \ MOZ_LOG(gMP3DemuxerLog, LogLevel::Debug, ("MP3Demuxer " msg, ##__VA_ARGS__)) #define MP3LOGV(msg, ...) \ MOZ_LOG(gMP3DemuxerLog, LogLevel::Verbose, ("MP3Demuxer " msg, ##__VA_ARGS__)) #else #define MP3LOG(msg, ...) #define MP3LOGV(msg, ...) #endif using mozilla::media::TimeUnit; using mozilla::media::TimeIntervals; using mp4_demuxer::ByteReader; namespace mozilla { namespace mp3 { // MP3Demuxer MP3Demuxer::MP3Demuxer(MediaResource* aSource) : mSource(aSource) {} bool MP3Demuxer::InitInternal() { if (!mTrackDemuxer) { mTrackDemuxer = new MP3TrackDemuxer(mSource); } return mTrackDemuxer->Init(); } RefPtr MP3Demuxer::Init() { if (!InitInternal()) { MP3LOG("MP3Demuxer::Init() failure: waiting for data"); return InitPromise::CreateAndReject( DemuxerFailureReason::DEMUXER_ERROR, __func__); } MP3LOG("MP3Demuxer::Init() successful"); return InitPromise::CreateAndResolve(NS_OK, __func__); } bool MP3Demuxer::HasTrackType(TrackInfo::TrackType aType) const { return aType == TrackInfo::kAudioTrack; } uint32_t MP3Demuxer::GetNumberTracks(TrackInfo::TrackType aType) const { return aType == TrackInfo::kAudioTrack ? 1u : 0u; } already_AddRefed MP3Demuxer::GetTrackDemuxer(TrackInfo::TrackType aType, uint32_t aTrackNumber) { if (!mTrackDemuxer) { return nullptr; } return RefPtr(mTrackDemuxer).forget(); } bool MP3Demuxer::IsSeekable() const { return true; } void MP3Demuxer::NotifyDataArrived() { // TODO: bug 1169485. NS_WARNING("Unimplemented function NotifyDataArrived"); MP3LOGV("NotifyDataArrived()"); } void MP3Demuxer::NotifyDataRemoved() { // TODO: bug 1169485. NS_WARNING("Unimplemented function NotifyDataRemoved"); MP3LOGV("NotifyDataRemoved()"); } // MP3TrackDemuxer MP3TrackDemuxer::MP3TrackDemuxer(MediaResource* aSource) : mSource(aSource) , mOffset(0) , mFirstFrameOffset(0) , mNumParsedFrames(0) , mFrameIndex(0) , mTotalFrameLen(0) , mSamplesPerFrame(0) , mSamplesPerSecond(0) , mChannels(0) { Reset(); } bool MP3TrackDemuxer::Init() { Reset(); FastSeek(TimeUnit()); // Read the first frame to fetch sample rate and other meta data. RefPtr frame(GetNextFrame(FindNextFrame())); MP3LOG("Init StreamLength()=%" PRId64 " first-frame-found=%d", StreamLength(), !!frame); if (!frame) { return false; } // Rewind back to the stream begin to avoid dropping the first frame. FastSeek(TimeUnit()); if (!mInfo) { mInfo = MakeUnique(); } mInfo->mRate = mSamplesPerSecond; mInfo->mChannels = mChannels; mInfo->mBitDepth = 16; mInfo->mMimeType = "audio/mpeg"; mInfo->mDuration = Duration().ToMicroseconds(); MP3LOG("Init mInfo={mRate=%d mChannels=%d mBitDepth=%d mDuration=%" PRId64 "}", mInfo->mRate, mInfo->mChannels, mInfo->mBitDepth, mInfo->mDuration); return mSamplesPerSecond && mChannels; } media::TimeUnit MP3TrackDemuxer::SeekPosition() const { TimeUnit pos = Duration(mFrameIndex); if (Duration() > TimeUnit()) { pos = std::min(Duration(), pos); } return pos; } const FrameParser::Frame& MP3TrackDemuxer::LastFrame() const { return mParser.PrevFrame(); } RefPtr MP3TrackDemuxer::DemuxSample() { return GetNextFrame(FindNextFrame()); } const ID3Parser::ID3Header& MP3TrackDemuxer::ID3Header() const { return mParser.ID3Header(); } const FrameParser::VBRHeader& MP3TrackDemuxer::VBRInfo() const { return mParser.VBRInfo(); } UniquePtr MP3TrackDemuxer::GetInfo() const { return mInfo->Clone(); } RefPtr MP3TrackDemuxer::Seek(TimeUnit aTime) { // Efficiently seek to the position. FastSeek(aTime); // Correct seek position by scanning the next frames. const TimeUnit seekTime = ScanUntil(aTime); return SeekPromise::CreateAndResolve(seekTime, __func__); } TimeUnit MP3TrackDemuxer::FastSeek(const TimeUnit& aTime) { MP3LOG("FastSeek(%" PRId64 ") avgFrameLen=%f mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mOffset=%" PRIu64, aTime, AverageFrameLength(), mNumParsedFrames, mFrameIndex, mOffset); const auto& vbr = mParser.VBRInfo(); if (!aTime.ToMicroseconds()) { // Quick seek to the beginning of the stream. mFrameIndex = 0; } else if (vbr.IsTOCPresent() && Duration().ToMicroseconds() > 0) { // Use TOC for more precise seeking. const float durationFrac = static_cast(aTime.ToMicroseconds()) / Duration().ToMicroseconds(); mFrameIndex = FrameIndexFromOffset(vbr.Offset(durationFrac)); } else if (AverageFrameLength() > 0) { mFrameIndex = FrameIndexFromTime(aTime); } mOffset = OffsetFromFrameIndex(mFrameIndex); if (mOffset > mFirstFrameOffset && StreamLength() > 0) { mOffset = std::min(StreamLength() - 1, mOffset); } mParser.EndFrameSession(); MP3LOG("FastSeek End TOC=%d avgFrameLen=%f mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mFirstFrameOffset=%llu mOffset=%" PRIu64 " SL=%llu NumBytes=%u", vbr.IsTOCPresent(), AverageFrameLength(), mNumParsedFrames, mFrameIndex, mFirstFrameOffset, mOffset, StreamLength(), vbr.NumBytes().valueOr(0)); return Duration(mFrameIndex); } TimeUnit MP3TrackDemuxer::ScanUntil(const TimeUnit& aTime) { MP3LOG("ScanUntil(%" PRId64 ") avgFrameLen=%f mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mOffset=%" PRIu64, aTime, AverageFrameLength(), mNumParsedFrames, mFrameIndex, mOffset); if (!aTime.ToMicroseconds()) { return FastSeek(aTime); } if (Duration(mFrameIndex) > aTime) { FastSeek(aTime); } if (Duration(mFrameIndex + 1) > aTime) { return SeekPosition(); } MediaByteRange nextRange = FindNextFrame(); while (SkipNextFrame(nextRange) && Duration(mFrameIndex + 1) < aTime) { nextRange = FindNextFrame(); MP3LOGV("ScanUntil* avgFrameLen=%f mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mOffset=%" PRIu64 " Duration=%" PRId64, aTime, AverageFrameLength(), mNumParsedFrames, mFrameIndex, mOffset, Duration(mFrameIndex + 1)); } MP3LOG("ScanUntil End avgFrameLen=%f mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mOffset=%" PRIu64, aTime, AverageFrameLength(), mNumParsedFrames, mFrameIndex, mOffset); return SeekPosition(); } RefPtr MP3TrackDemuxer::GetSamples(int32_t aNumSamples) { MP3LOGV("GetSamples(%d) Begin mOffset=%" PRIu64 " mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mTotalFrameLen=%" PRIu64 " mSamplesPerFrame=%d " "mSamplesPerSecond=%d mChannels=%d", aNumSamples, mOffset, mNumParsedFrames, mFrameIndex, mTotalFrameLen, mSamplesPerFrame, mSamplesPerSecond, mChannels); if (!aNumSamples) { return SamplesPromise::CreateAndReject( DemuxerFailureReason::DEMUXER_ERROR, __func__); } RefPtr frames = new SamplesHolder(); while (aNumSamples--) { RefPtr frame(GetNextFrame(FindNextFrame())); if (!frame) { break; } frames->mSamples.AppendElement(frame); } MP3LOGV("GetSamples() End mSamples.Size()=%d aNumSamples=%d mOffset=%" PRIu64 " mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mTotalFrameLen=%" PRIu64 " mSamplesPerFrame=%d mSamplesPerSecond=%d " "mChannels=%d", frames->mSamples.Length(), aNumSamples, mOffset, mNumParsedFrames, mFrameIndex, mTotalFrameLen, mSamplesPerFrame, mSamplesPerSecond, mChannels); if (frames->mSamples.IsEmpty()) { return SamplesPromise::CreateAndReject( DemuxerFailureReason::END_OF_STREAM, __func__); } return SamplesPromise::CreateAndResolve(frames, __func__); } void MP3TrackDemuxer::Reset() { MP3LOG("Reset()"); FastSeek(TimeUnit()); mParser.Reset(); } RefPtr MP3TrackDemuxer::SkipToNextRandomAccessPoint(TimeUnit aTimeThreshold) { // Will not be called for audio-only resources. return SkipAccessPointPromise::CreateAndReject( SkipFailureHolder(DemuxerFailureReason::DEMUXER_ERROR, 0), __func__); } int64_t MP3TrackDemuxer::GetResourceOffset() const { return mOffset; } TimeIntervals MP3TrackDemuxer::GetBuffered() { TimeUnit duration = Duration(); if (duration <= TimeUnit()) { return TimeIntervals(); } AutoPinned stream(mSource.GetResource()); return GetEstimatedBufferedTimeRanges(stream, duration.ToMicroseconds()); } int64_t MP3TrackDemuxer::StreamLength() const { return mSource.GetLength(); } TimeUnit MP3TrackDemuxer::Duration() const { if (!mNumParsedFrames) { return TimeUnit::FromMicroseconds(-1); } int64_t numFrames = 0; const auto numAudioFrames = mParser.VBRInfo().NumAudioFrames(); if (mParser.VBRInfo().IsValid() && numAudioFrames.valueOr(0) + 1 > 1) { // VBR headers don't include the VBR header frame. numFrames = numAudioFrames.value() + 1; } else { const int64_t streamLen = StreamLength(); if (streamLen < 0) { // Unknown length, we can't estimate duration. return TimeUnit::FromMicroseconds(-1); } if (AverageFrameLength() > 0) { numFrames = (streamLen - mFirstFrameOffset) / AverageFrameLength(); } } return Duration(numFrames); } TimeUnit MP3TrackDemuxer::Duration(int64_t aNumFrames) const { if (!mSamplesPerSecond) { return TimeUnit::FromMicroseconds(-1); } const double usPerFrame = USECS_PER_S * mSamplesPerFrame / mSamplesPerSecond; return TimeUnit::FromMicroseconds(aNumFrames * usPerFrame); } MediaByteRange MP3TrackDemuxer::FindFirstFrame() { // Get engough successive frames to avoid invalid frame from cut stream. // However, some website use very short mp3 file so using the same value as Chrome. static const int MIN_SUCCESSIVE_FRAMES = 3; MediaByteRange candidateFrame = FindNextFrame(); int numSuccFrames = candidateFrame.Length() > 0; MediaByteRange currentFrame = candidateFrame; MP3LOGV("FindFirst() first candidate frame: mOffset=%" PRIu64 " Length()=%" PRIu64, candidateFrame.mStart, candidateFrame.Length()); while (candidateFrame.Length() && numSuccFrames < MIN_SUCCESSIVE_FRAMES) { mParser.EndFrameSession(); mOffset = currentFrame.mEnd; const MediaByteRange prevFrame = currentFrame; // FindNextFrame() here will only return frames consistent with our candidate frame. currentFrame = FindNextFrame(); numSuccFrames += currentFrame.Length() > 0; // Multiple successive false positives, which wouldn't be caught by the consistency // checks alone, can be detected by wrong alignment (non-zero gap between frames). const int64_t frameSeparation = currentFrame.mStart - prevFrame.mEnd; if (!currentFrame.Length() || frameSeparation != 0) { MP3LOGV("FindFirst() not enough successive frames detected, " "rejecting candidate frame: successiveFrames=%d, last Length()=%" PRIu64 ", last frameSeparation=%" PRId64, numSuccFrames, currentFrame.Length(), frameSeparation); mParser.ResetFrameData(); mOffset = candidateFrame.mStart + 1; candidateFrame = FindNextFrame(); numSuccFrames = candidateFrame.Length() > 0; currentFrame = candidateFrame; MP3LOGV("FindFirst() new candidate frame: mOffset=%" PRIu64 " Length()=%" PRIu64, candidateFrame.mStart, candidateFrame.Length()); } } if (numSuccFrames >= MIN_SUCCESSIVE_FRAMES) { MP3LOG("FindFirst() accepting candidate frame: " "successiveFrames=%d", numSuccFrames); } else { MP3LOG("FindFirst() no suitable first frame found"); } return candidateFrame; } static bool VerifyFrameConsistency( const FrameParser::Frame& aFrame1, const FrameParser::Frame& aFrame2) { const auto& h1 = aFrame1.Header(); const auto& h2 = aFrame2.Header(); return h1.IsValid() && h2.IsValid() && h1.Layer() == h2.Layer() && h1.SlotSize() == h2.SlotSize() && h1.SamplesPerFrame() == h2.SamplesPerFrame() && h1.Channels() == h2.Channels() && h1.SampleRate() == h2.SampleRate() && h1.RawVersion() == h2.RawVersion() && h1.RawProtection() == h2.RawProtection(); } MediaByteRange MP3TrackDemuxer::FindNextFrame() { static const int BUFFER_SIZE = 64; static const int MAX_SKIPPED_BYTES = 1024 * BUFFER_SIZE; MP3LOGV("FindNext() Begin mOffset=%" PRIu64 " mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mTotalFrameLen=%" PRIu64 " mSamplesPerFrame=%d mSamplesPerSecond=%d mChannels=%d", mOffset, mNumParsedFrames, mFrameIndex, mTotalFrameLen, mSamplesPerFrame, mSamplesPerSecond, mChannels); uint8_t buffer[BUFFER_SIZE]; int32_t read = 0; bool foundFrame = false; int64_t frameHeaderOffset = 0; // Check whether we've found a valid MPEG frame. while (!foundFrame) { if ((!mParser.FirstFrame().Length() && mOffset - mParser.ID3Header().Size() > MAX_SKIPPED_BYTES) || (read = Read(buffer, mOffset, BUFFER_SIZE)) == 0) { MP3LOG("FindNext() EOS or exceeded MAX_SKIPPED_BYTES without a frame"); // This is not a valid MPEG audio stream or we've reached EOS, give up. break; } ByteReader reader(buffer, read); uint32_t bytesToSkip = 0; foundFrame = mParser.Parse(&reader, &bytesToSkip); frameHeaderOffset = mOffset + reader.Offset() - FrameParser::FrameHeader::SIZE; // If we've found neither an MPEG frame header nor an ID3v2 tag, // the reader shouldn't have any bytes remaining. MOZ_ASSERT(foundFrame || bytesToSkip || !reader.Remaining()); reader.DiscardRemaining(); if (foundFrame && mParser.FirstFrame().Length() && !VerifyFrameConsistency(mParser.FirstFrame(), mParser.CurrentFrame())) { // We've likely hit a false-positive, ignore it and proceed with the // search for the next valid frame. foundFrame = false; mOffset = frameHeaderOffset + 1; mParser.EndFrameSession(); } else { // Advance mOffset by the amount of bytes read and if necessary, // skip an ID3v2 tag which stretches beyond the current buffer. NS_ENSURE_TRUE(mOffset + read + bytesToSkip > mOffset, MediaByteRange(0, 0)); mOffset += read + bytesToSkip; } } if (!foundFrame || !mParser.CurrentFrame().Length()) { MP3LOG("FindNext() Exit foundFrame=%d mParser.CurrentFrame().Length()=%d ", foundFrame, mParser.CurrentFrame().Length()); return { 0, 0 }; } MP3LOGV("FindNext() End mOffset=%" PRIu64 " mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " frameHeaderOffset=%d" " mTotalFrameLen=%" PRIu64 " mSamplesPerFrame=%d mSamplesPerSecond=%d" " mChannels=%d", mOffset, mNumParsedFrames, mFrameIndex, frameHeaderOffset, mTotalFrameLen, mSamplesPerFrame, mSamplesPerSecond, mChannels); return { frameHeaderOffset, frameHeaderOffset + mParser.CurrentFrame().Length() }; } bool MP3TrackDemuxer::SkipNextFrame(const MediaByteRange& aRange) { if (!mNumParsedFrames || !aRange.Length()) { // We can't skip the first frame, since it could contain VBR headers. RefPtr frame(GetNextFrame(aRange)); return frame; } UpdateState(aRange); MP3LOGV("SkipNext() End mOffset=%" PRIu64 " mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mTotalFrameLen=%" PRIu64 " mSamplesPerFrame=%d mSamplesPerSecond=%d mChannels=%d", mOffset, mNumParsedFrames, mFrameIndex, mTotalFrameLen, mSamplesPerFrame, mSamplesPerSecond, mChannels); return true; } already_AddRefed MP3TrackDemuxer::GetNextFrame(const MediaByteRange& aRange) { MP3LOG("GetNext() Begin({mStart=%" PRId64 " Length()=%" PRId64 "})", aRange.mStart, aRange.Length()); if (!aRange.Length()) { return nullptr; } RefPtr frame = new MediaRawData(); frame->mOffset = aRange.mStart; nsAutoPtr frameWriter(frame->CreateWriter()); if (!frameWriter->SetSize(aRange.Length())) { MP3LOG("GetNext() Exit failed to allocated media buffer"); return nullptr; } const uint32_t read = Read(frameWriter->Data(), frame->mOffset, frame->Size()); if (read != aRange.Length()) { MP3LOG("GetNext() Exit read=%u frame->Size()=%u", read, frame->Size()); return nullptr; } UpdateState(aRange); frame->mTime = Duration(mFrameIndex - 1).ToMicroseconds(); frame->mDuration = Duration(1).ToMicroseconds(); frame->mTimecode = frame->mTime; frame->mKeyframe = true; MOZ_ASSERT(frame->mTime >= 0); MOZ_ASSERT(frame->mDuration > 0); if (mNumParsedFrames == 1) { // First frame parsed, let's read VBR info if available. ByteReader reader(frame->Data(), frame->Size()); mParser.ParseVBRHeader(&reader); reader.DiscardRemaining(); mFirstFrameOffset = frame->mOffset; } MP3LOGV("GetNext() End mOffset=%" PRIu64 " mNumParsedFrames=%" PRIu64 " mFrameIndex=%" PRId64 " mTotalFrameLen=%" PRIu64 " mSamplesPerFrame=%d mSamplesPerSecond=%d mChannels=%d", mOffset, mNumParsedFrames, mFrameIndex, mTotalFrameLen, mSamplesPerFrame, mSamplesPerSecond, mChannels); return frame.forget(); } int64_t MP3TrackDemuxer::OffsetFromFrameIndex(int64_t aFrameIndex) const { int64_t offset = 0; const auto& vbr = mParser.VBRInfo(); if (vbr.IsComplete()) { offset = mFirstFrameOffset + aFrameIndex * vbr.NumBytes().value() / vbr.NumAudioFrames().value(); } else if (AverageFrameLength() > 0) { offset = mFirstFrameOffset + aFrameIndex * AverageFrameLength(); } MP3LOGV("OffsetFromFrameIndex(%" PRId64 ") -> %" PRId64, aFrameIndex, offset); return std::max(mFirstFrameOffset, offset); } int64_t MP3TrackDemuxer::FrameIndexFromOffset(int64_t aOffset) const { int64_t frameIndex = 0; const auto& vbr = mParser.VBRInfo(); if (vbr.IsComplete()) { frameIndex = static_cast(aOffset - mFirstFrameOffset) / vbr.NumBytes().value() * vbr.NumAudioFrames().value(); frameIndex = std::min(vbr.NumAudioFrames().value(), frameIndex); } else if (AverageFrameLength() > 0) { frameIndex = (aOffset - mFirstFrameOffset) / AverageFrameLength(); } MP3LOGV("FrameIndexFromOffset(%" PRId64 ") -> %" PRId64, aOffset, frameIndex); return std::max(0, frameIndex); } int64_t MP3TrackDemuxer::FrameIndexFromTime(const media::TimeUnit& aTime) const { int64_t frameIndex = 0; if (mSamplesPerSecond > 0 && mSamplesPerFrame > 0) { frameIndex = aTime.ToSeconds() * mSamplesPerSecond / mSamplesPerFrame - 1; } MP3LOGV("FrameIndexFromOffset(%fs) -> %" PRId64, aTime.ToSeconds(), frameIndex); return std::max(0, frameIndex); } void MP3TrackDemuxer::UpdateState(const MediaByteRange& aRange) { // Prevent overflow. if (mTotalFrameLen + aRange.Length() < mTotalFrameLen) { // These variables have a linear dependency and are only used to derive the // average frame length. mTotalFrameLen /= 2; mNumParsedFrames /= 2; } // Full frame parsed, move offset to its end. mOffset = aRange.mEnd; mTotalFrameLen += aRange.Length(); if (!mSamplesPerFrame) { mSamplesPerFrame = mParser.CurrentFrame().Header().SamplesPerFrame(); mSamplesPerSecond = mParser.CurrentFrame().Header().SampleRate(); mChannels = mParser.CurrentFrame().Header().Channels(); } ++mNumParsedFrames; ++mFrameIndex; MOZ_ASSERT(mFrameIndex > 0); // Prepare the parser for the next frame parsing session. mParser.EndFrameSession(); } int32_t MP3TrackDemuxer::Read(uint8_t* aBuffer, int64_t aOffset, int32_t aSize) { MP3LOGV("MP3TrackDemuxer::Read(%p %" PRId64 " %d)", aBuffer, aOffset, aSize); const int64_t streamLen = StreamLength(); if (mInfo && streamLen > 0) { // Prevent blocking reads after successful initialization. uint64_t max = streamLen > aOffset ? streamLen - aOffset : 0; aSize = std::min(aSize, max); } uint32_t read = 0; MP3LOGV("MP3TrackDemuxer::Read -> ReadAt(%d)", aSize); const nsresult rv = mSource.ReadAt(aOffset, reinterpret_cast(aBuffer), static_cast(aSize), &read); NS_ENSURE_SUCCESS(rv, 0); return static_cast(read); } double MP3TrackDemuxer::AverageFrameLength() const { if (mNumParsedFrames) { return static_cast(mTotalFrameLen) / mNumParsedFrames; } const auto& vbr = mParser.VBRInfo(); if (vbr.IsComplete() && vbr.NumAudioFrames().value() + 1) { return static_cast(vbr.NumBytes().value()) / (vbr.NumAudioFrames().value() + 1); } return 0.0; } // FrameParser namespace frame_header { // FrameHeader mRaw byte offsets. static const int SYNC1 = 0; static const int SYNC2_VERSION_LAYER_PROTECTION = 1; static const int BITRATE_SAMPLERATE_PADDING_PRIVATE = 2; static const int CHANNELMODE_MODEEXT_COPY_ORIG_EMPH = 3; } // namespace frame_header FrameParser::FrameParser() { } void FrameParser::Reset() { mID3Parser.Reset(); mFrame.Reset(); } void FrameParser::ResetFrameData() { mFrame.Reset(); mFirstFrame.Reset(); mPrevFrame.Reset(); } void FrameParser::EndFrameSession() { if (!mID3Parser.Header().IsValid()) { // Reset ID3 tags only if we have not parsed a valid ID3 header yet. mID3Parser.Reset(); } mPrevFrame = mFrame; mFrame.Reset(); } const FrameParser::Frame& FrameParser::CurrentFrame() const { return mFrame; } const FrameParser::Frame& FrameParser::PrevFrame() const { return mPrevFrame; } const FrameParser::Frame& FrameParser::FirstFrame() const { return mFirstFrame; } const ID3Parser::ID3Header& FrameParser::ID3Header() const { return mID3Parser.Header(); } const FrameParser::VBRHeader& FrameParser::VBRInfo() const { return mVBRHeader; } bool FrameParser::Parse(ByteReader* aReader, uint32_t* aBytesToSkip) { MOZ_ASSERT(aReader && aBytesToSkip); *aBytesToSkip = 0; if (!mID3Parser.Header().Size() && !mFirstFrame.Length()) { // No MP3 frames have been parsed yet, look for ID3v2 headers at file begin. // ID3v1 tags may only be at file end. // TODO: should we try to read ID3 tags at end of file/mid-stream, too? const size_t prevReaderOffset = aReader->Offset(); const uint32_t tagSize = mID3Parser.Parse(aReader); if (tagSize) { // ID3 tag found, skip past it. const uint32_t skipSize = tagSize - ID3Parser::ID3Header::SIZE; if (skipSize > aReader->Remaining()) { // Skipping across the ID3v2 tag would take us past the end of the buffer, therefore we // return immediately and let the calling function handle skipping the rest of the tag. MP3LOGV("ID3v2 tag detected, size=%d," " needing to skip %d bytes past the current buffer", tagSize, skipSize - aReader->Remaining()); *aBytesToSkip = skipSize - aReader->Remaining(); return false; } MP3LOGV("ID3v2 tag detected, size=%d", tagSize); aReader->Read(skipSize); } else { // No ID3v2 tag found, rewinding reader in order to search for a MPEG frame header. aReader->Seek(prevReaderOffset); } } while (aReader->CanRead8() && !mFrame.ParseNext(aReader->ReadU8())) { } if (mFrame.Length()) { // MP3 frame found. if (!mFirstFrame.Length()) { mFirstFrame = mFrame; } // Indicate success. return true; } return false; } // FrameParser::Header FrameParser::FrameHeader::FrameHeader() { Reset(); } uint8_t FrameParser::FrameHeader::Sync1() const { return mRaw[frame_header::SYNC1]; } uint8_t FrameParser::FrameHeader::Sync2() const { return 0x7 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 5; } uint8_t FrameParser::FrameHeader::RawVersion() const { return 0x3 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 3; } uint8_t FrameParser::FrameHeader::RawLayer() const { return 0x3 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 1; } uint8_t FrameParser::FrameHeader::RawProtection() const { return 0x1 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 6; } uint8_t FrameParser::FrameHeader::RawBitrate() const { return 0xF & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE] >> 4; } uint8_t FrameParser::FrameHeader::RawSampleRate() const { return 0x3 & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE] >> 2; } uint8_t FrameParser::FrameHeader::Padding() const { return 0x1 & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE] >> 1; } uint8_t FrameParser::FrameHeader::Private() const { return 0x1 & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE]; } uint8_t FrameParser::FrameHeader::RawChannelMode() const { return 0x3 & mRaw[frame_header::CHANNELMODE_MODEEXT_COPY_ORIG_EMPH] >> 6; } int32_t FrameParser::FrameHeader::Layer() const { static const uint8_t LAYERS[4] = { 0, 3, 2, 1 }; return LAYERS[RawLayer()]; } int32_t FrameParser::FrameHeader::SampleRate() const { // Sample rates - use [version][srate] static const uint16_t SAMPLE_RATE[4][4] = { { 11025, 12000, 8000, 0 }, // MPEG 2.5 { 0, 0, 0, 0 }, // Reserved { 22050, 24000, 16000, 0 }, // MPEG 2 { 44100, 48000, 32000, 0 } // MPEG 1 }; return SAMPLE_RATE[RawVersion()][RawSampleRate()]; } int32_t FrameParser::FrameHeader::Channels() const { // 3 is single channel (mono), any other value is some variant of dual // channel. return RawChannelMode() == 3 ? 1 : 2; } int32_t FrameParser::FrameHeader::SamplesPerFrame() const { // Samples per frame - use [version][layer] static const uint16_t FRAME_SAMPLE[4][4] = { // Layer 3 2 1 Version { 0, 576, 1152, 384 }, // 2.5 { 0, 0, 0, 0 }, // Reserved { 0, 576, 1152, 384 }, // 2 { 0, 1152, 1152, 384 } // 1 }; return FRAME_SAMPLE[RawVersion()][RawLayer()]; } int32_t FrameParser::FrameHeader::Bitrate() const { // Bitrates - use [version][layer][bitrate] static const uint16_t BITRATE[4][4][16] = { { // Version 2.5 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Reserved { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 3 { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 2 { 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 0 } // Layer 1 }, { // Reserved { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Invalid { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Invalid { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Invalid { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } // Invalid }, { // Version 2 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Reserved { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 3 { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 2 { 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 0 } // Layer 1 }, { // Version 1 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Reserved { 0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 0 }, // Layer 3 { 0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 0 }, // Layer 2 { 0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 0 }, // Layer 1 } }; return 1000 * BITRATE[RawVersion()][RawLayer()][RawBitrate()]; } int32_t FrameParser::FrameHeader::SlotSize() const { // Slot size (MPEG unit of measurement) - use [layer] static const uint8_t SLOT_SIZE[4] = { 0, 1, 1, 4 }; // Rsvd, 3, 2, 1 return SLOT_SIZE[RawLayer()]; } bool FrameParser::FrameHeader::ParseNext(uint8_t c) { if (!Update(c)) { Reset(); if (!Update(c)) { Reset(); } } return IsValid(); } bool FrameParser::FrameHeader::IsValid(int aPos) const { if (aPos >= SIZE) { return true; } if (aPos == frame_header::SYNC1) { return Sync1() == 0xFF; } if (aPos == frame_header::SYNC2_VERSION_LAYER_PROTECTION) { return Sync2() == 7 && RawVersion() != 1 && Layer() == 3; } if (aPos == frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE) { return RawBitrate() != 0xF && RawBitrate() != 0 && RawSampleRate() != 3; } return true; } bool FrameParser::FrameHeader::IsValid() const { return mPos >= SIZE; } void FrameParser::FrameHeader::Reset() { mPos = 0; } bool FrameParser::FrameHeader::Update(uint8_t c) { if (mPos < SIZE) { mRaw[mPos] = c; } return IsValid(mPos++); } // FrameParser::VBRHeader namespace vbr_header { static const char* TYPE_STR[3] = {"NONE", "XING", "VBRI"}; static const uint32_t TOC_SIZE = 100; } // namespace vbr_header FrameParser::VBRHeader::VBRHeader() : mType(NONE) { } FrameParser::VBRHeader::VBRHeaderType FrameParser::VBRHeader::Type() const { return mType; } const Maybe& FrameParser::VBRHeader::NumAudioFrames() const { return mNumAudioFrames; } const Maybe& FrameParser::VBRHeader::NumBytes() const { return mNumBytes; } const Maybe& FrameParser::VBRHeader::Scale() const { return mScale; } bool FrameParser::VBRHeader::IsTOCPresent() const { return mTOC.size() == vbr_header::TOC_SIZE; } bool FrameParser::VBRHeader::IsValid() const { return mType != NONE; } bool FrameParser::VBRHeader::IsComplete() const { return IsValid() && mNumAudioFrames.valueOr(0) > 0 && mNumBytes.valueOr(0) > 0 && // We don't care about the scale for any computations here. // mScale < 101 && true; } int64_t FrameParser::VBRHeader::Offset(float aDurationFac) const { if (!IsTOCPresent()) { return -1; } // Constrain the duration percentage to [0, 99]. const float durationPer = 100.0f * std::min(0.99f, std::max(0.0f, aDurationFac)); const size_t fullPer = durationPer; const float rest = durationPer - fullPer; MOZ_ASSERT(fullPer < mTOC.size()); int64_t offset = mTOC.at(fullPer); if (rest > 0.0 && fullPer + 1 < mTOC.size()) { offset += rest * (mTOC.at(fullPer + 1) - offset); } return offset; } bool FrameParser::VBRHeader::ParseXing(ByteReader* aReader) { static const uint32_t XING_TAG = BigEndian::readUint32("Xing"); static const uint32_t INFO_TAG = BigEndian::readUint32("Info"); enum Flags { NUM_FRAMES = 0x01, NUM_BYTES = 0x02, TOC = 0x04, VBR_SCALE = 0x08 }; MOZ_ASSERT(aReader); const size_t prevReaderOffset = aReader->Offset(); // We have to search for the Xing header as its position can change. while (aReader->CanRead32() && aReader->PeekU32() != XING_TAG && aReader->PeekU32() != INFO_TAG) { aReader->Read(1); } if (aReader->CanRead32()) { // Skip across the VBR header ID tag. aReader->ReadU32(); mType = XING; } uint32_t flags = 0; if (aReader->CanRead32()) { flags = aReader->ReadU32(); } if (flags & NUM_FRAMES && aReader->CanRead32()) { mNumAudioFrames = Some(aReader->ReadU32()); } if (flags & NUM_BYTES && aReader->CanRead32()) { mNumBytes = Some(aReader->ReadU32()); } if (flags & TOC && aReader->Remaining() >= vbr_header::TOC_SIZE) { if (!mNumBytes) { // We don't have the stream size to calculate offsets, skip the TOC. aReader->Read(vbr_header::TOC_SIZE); } else { mTOC.clear(); mTOC.reserve(vbr_header::TOC_SIZE); for (size_t i = 0; i < vbr_header::TOC_SIZE; ++i) { mTOC.push_back(1.0f / 256.0f * aReader->ReadU8() * mNumBytes.value()); } } } if (flags & VBR_SCALE && aReader->CanRead32()) { mScale = Some(aReader->ReadU32()); } aReader->Seek(prevReaderOffset); return mType == XING; } bool FrameParser::VBRHeader::ParseVBRI(ByteReader* aReader) { static const uint32_t TAG = BigEndian::readUint32("VBRI"); static const uint32_t OFFSET = 32 + FrameParser::FrameHeader::SIZE; static const uint32_t FRAME_COUNT_OFFSET = OFFSET + 14; static const uint32_t MIN_FRAME_SIZE = OFFSET + 26; MOZ_ASSERT(aReader); // ParseVBRI assumes that the ByteReader offset points to the beginning of a frame, // therefore as a simple check, we look for the presence of a frame sync at that position. MOZ_ASSERT((aReader->PeekU16() & 0xFFE0) == 0xFFE0); const size_t prevReaderOffset = aReader->Offset(); // VBRI have a fixed relative position, so let's check for it there. if (aReader->Remaining() > MIN_FRAME_SIZE) { aReader->Seek(prevReaderOffset + OFFSET); if (aReader->ReadU32() == TAG) { aReader->Seek(prevReaderOffset + FRAME_COUNT_OFFSET); mNumAudioFrames = Some(aReader->ReadU32()); mType = VBRI; aReader->Seek(prevReaderOffset); return true; } } aReader->Seek(prevReaderOffset); return false; } bool FrameParser::VBRHeader::Parse(ByteReader* aReader) { const bool rv = ParseVBRI(aReader) || ParseXing(aReader); if (rv) { MP3LOG("VBRHeader::Parse found valid VBR/CBR header: type=%s" " NumAudioFrames=%u NumBytes=%u Scale=%u TOC-size=%u", vbr_header::TYPE_STR[Type()], NumAudioFrames().valueOr(0), NumBytes().valueOr(0), Scale().valueOr(0), mTOC.size()); } return rv; } // FrameParser::Frame void FrameParser::Frame::Reset() { mHeader.Reset(); } int32_t FrameParser::Frame::Length() const { if (!mHeader.IsValid() || !mHeader.SampleRate()) { return 0; } const float bitsPerSample = mHeader.SamplesPerFrame() / 8.0f; const int32_t frameLen = bitsPerSample * mHeader.Bitrate() / mHeader.SampleRate() + mHeader.Padding() * mHeader.SlotSize(); return frameLen; } bool FrameParser::Frame::ParseNext(uint8_t c) { return mHeader.ParseNext(c); } const FrameParser::FrameHeader& FrameParser::Frame::Header() const { return mHeader; } bool FrameParser::ParseVBRHeader(ByteReader* aReader) { return mVBRHeader.Parse(aReader); } // ID3Parser // Constants namespace id3_header { static const int ID_LEN = 3; static const int VERSION_LEN = 2; static const int FLAGS_LEN = 1; static const int SIZE_LEN = 4; static const int ID_END = ID_LEN; static const int VERSION_END = ID_END + VERSION_LEN; static const int FLAGS_END = VERSION_END + FLAGS_LEN; static const int SIZE_END = FLAGS_END + SIZE_LEN; static const uint8_t ID[ID_LEN] = {'I', 'D', '3'}; static const uint8_t MIN_MAJOR_VER = 2; static const uint8_t MAX_MAJOR_VER = 4; } // namespace id3_header uint32_t ID3Parser::Parse(ByteReader* aReader) { MOZ_ASSERT(aReader); while (aReader->CanRead8() && !mHeader.ParseNext(aReader->ReadU8())) { } if (mHeader.IsValid()) { // Header found, return total tag size. return ID3Header::SIZE + Header().Size() + Header().FooterSize(); } return 0; } void ID3Parser::Reset() { mHeader.Reset(); } const ID3Parser::ID3Header& ID3Parser::Header() const { return mHeader; } // ID3Parser::Header ID3Parser::ID3Header::ID3Header() { Reset(); } void ID3Parser::ID3Header::Reset() { mSize = 0; mPos = 0; } uint8_t ID3Parser::ID3Header::MajorVersion() const { return mRaw[id3_header::ID_END]; } uint8_t ID3Parser::ID3Header::MinorVersion() const { return mRaw[id3_header::ID_END + 1]; } uint8_t ID3Parser::ID3Header::Flags() const { return mRaw[id3_header::FLAGS_END - id3_header::FLAGS_LEN]; } uint32_t ID3Parser::ID3Header::Size() const { if (!IsValid()) { return 0; } return mSize; } uint8_t ID3Parser::ID3Header::FooterSize() const { if (Flags() & (1 << 4)) { return SIZE; } return 0; } bool ID3Parser::ID3Header::ParseNext(uint8_t c) { if (!Update(c)) { Reset(); if (!Update(c)) { Reset(); } } return IsValid(); } bool ID3Parser::ID3Header::IsValid(int aPos) const { if (aPos >= SIZE) { return true; } const uint8_t c = mRaw[aPos]; switch (aPos) { case 0: case 1: case 2: // Expecting "ID3". return id3_header::ID[aPos] == c; case 3: return MajorVersion() >= id3_header::MIN_MAJOR_VER && MajorVersion() <= id3_header::MAX_MAJOR_VER; case 4: return MinorVersion() < 0xFF; case 5: // Validate flags for supported versions, see bug 949036. return ((0xFF >> MajorVersion()) & c) == 0; case 6: case 7: case 8: case 9: return c < 0x80; } return true; } bool ID3Parser::ID3Header::IsValid() const { return mPos >= SIZE; } bool ID3Parser::ID3Header::Update(uint8_t c) { if (mPos >= id3_header::SIZE_END - id3_header::SIZE_LEN && mPos < id3_header::SIZE_END) { mSize <<= 7; mSize |= c; } if (mPos < SIZE) { mRaw[mPos] = c; } return IsValid(mPos++); } } // namespace mp3 } // namespace mozilla