/* -*- Mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; tab-width: 40 -*- */ /* vim: set ts=2 et sw=2 tw=80: */ /* * Copyright 2009, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * NOTE: Due to being based on the D-Bus compatibility layer for * Android's Bluetooth implementation, this file is licensed under the * Apache License instead of MPL. */ #include "BluetoothUnixSocketConnector.h" #include #include #include #include #include #include #include #include #include "nsISupportsImpl.h" // for MOZ_COUNT_CTOR, MOZ_COUNT_DTOR #include "nsThreadUtils.h" // For NS_IsMainThread. using namespace mozilla::ipc; BEGIN_BLUETOOTH_NAMESPACE static const int RFCOMM_SO_SNDBUF = 70 * 1024; // 70 KB send buffer static const int L2CAP_SO_SNDBUF = 400 * 1024; // 400 KB send buffer static const int L2CAP_SO_RCVBUF = 400 * 1024; // 400 KB receive buffer static const int L2CAP_MAX_MTU = 65000; BluetoothUnixSocketConnector::BluetoothUnixSocketConnector( const BluetoothAddress& aAddress, BluetoothSocketType aType, int aChannel, bool aAuth, bool aEncrypt) : mAddress(aAddress) , mType(aType) , mChannel(aChannel) , mAuth(aAuth) , mEncrypt(aEncrypt) { MOZ_COUNT_CTOR_INHERITED(BluetoothUnixSocketConnector, UnixSocketConnector); } BluetoothUnixSocketConnector::~BluetoothUnixSocketConnector() { MOZ_COUNT_DTOR_INHERITED(BluetoothUnixSocketConnector, UnixSocketConnector); } nsresult BluetoothUnixSocketConnector::CreateSocket(int& aFd) const { static const int sType[] = { [0] = 0, [BluetoothSocketType::RFCOMM] = SOCK_STREAM, [BluetoothSocketType::SCO] = SOCK_SEQPACKET, [BluetoothSocketType::L2CAP] = SOCK_SEQPACKET, [BluetoothSocketType::EL2CAP] = SOCK_STREAM }; static const int sProtocol[] = { [0] = 0, [BluetoothSocketType::RFCOMM] = BTPROTO_RFCOMM, [BluetoothSocketType::SCO] = BTPROTO_SCO, [BluetoothSocketType::L2CAP] = BTPROTO_L2CAP, [BluetoothSocketType::EL2CAP] = BTPROTO_L2CAP }; MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sType)); MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sProtocol)); BT_LOGR("mType=%d, sType=%d sProtocol=%d", static_cast(mType), sType[mType], sProtocol[mType]); aFd = socket(AF_BLUETOOTH, sType[mType], sProtocol[mType]); if (aFd < 0) { BT_LOGR("Could not open Bluetooth socket: %d(%s)", errno, strerror(errno)); return NS_ERROR_FAILURE; } return NS_OK; } nsresult BluetoothUnixSocketConnector::SetSocketFlags(int aFd) const { static const int sReuseAddress = 1; // Set close-on-exec bit. int flags = TEMP_FAILURE_RETRY(fcntl(aFd, F_GETFD)); if (flags < 0) { return NS_ERROR_FAILURE; } flags |= FD_CLOEXEC; int res = TEMP_FAILURE_RETRY(fcntl(aFd, F_SETFD, flags)); if (res < 0) { return NS_ERROR_FAILURE; } // Set non-blocking status flag. flags = TEMP_FAILURE_RETRY(fcntl(aFd, F_GETFL)); if (flags < 0) { return NS_ERROR_FAILURE; } flags |= O_NONBLOCK; res = TEMP_FAILURE_RETRY(fcntl(aFd, F_SETFL, flags)); if (res < 0) { return NS_ERROR_FAILURE; } // Set socket addr to be reused even if kernel is still waiting to close. res = setsockopt(aFd, SOL_SOCKET, SO_REUSEADDR, &sReuseAddress, sizeof(sReuseAddress)); if (res < 0) { return NS_ERROR_FAILURE; } int lm; switch (mType) { case BluetoothSocketType::RFCOMM: lm |= mAuth ? RFCOMM_LM_AUTH : 0; lm |= mEncrypt ? RFCOMM_LM_ENCRYPT : 0; break; case BluetoothSocketType::L2CAP: case BluetoothSocketType::EL2CAP: lm |= mAuth ? L2CAP_LM_AUTH : 0; lm |= mEncrypt ? L2CAP_LM_ENCRYPT : 0; break; default: // kernel does not yet support LM for SCO lm = 0; break; } if (lm) { static const int sLevel[] = { [0] = 0, [BluetoothSocketType::RFCOMM] = SOL_RFCOMM, [BluetoothSocketType::SCO] = 0, [BluetoothSocketType::L2CAP] = SOL_L2CAP, [BluetoothSocketType::EL2CAP] = SOL_L2CAP }; static const int sOptname[] = { [0] = 0, [BluetoothSocketType::RFCOMM] = RFCOMM_LM, [BluetoothSocketType::SCO] = 0, [BluetoothSocketType::L2CAP] = L2CAP_LM, [BluetoothSocketType::EL2CAP] = L2CAP_LM }; MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sLevel)); MOZ_ASSERT(mType < MOZ_ARRAY_LENGTH(sOptname)); if (setsockopt(aFd, sLevel[mType], sOptname[mType], &lm, sizeof(lm)) < 0) { BT_LOGR("setsockopt(RFCOMM_LM) failed, throwing"); return NS_ERROR_FAILURE; } } if (mType == BluetoothSocketType::RFCOMM) { /* Setting RFCOMM socket options */ int sndbuf = RFCOMM_SO_SNDBUF; if (setsockopt(aFd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf))) { BT_WARNING("setsockopt(SO_SNDBUF) failed, throwing"); return NS_ERROR_FAILURE; } } if (mType == BluetoothSocketType::L2CAP || mType == BluetoothSocketType::EL2CAP) { /* Setting L2CAP/EL2CAP socket options */ struct l2cap_options opts; socklen_t optlen = sizeof(opts); int res = getsockopt(aFd, SOL_L2CAP, L2CAP_OPTIONS, &opts, &optlen); if (!res) { /* setting MTU for [E]L2CAP */ opts.omtu = opts.imtu = L2CAP_MAX_MTU; /* Enable ERTM for [E]L2CAP */ if (mType == BluetoothSocketType::EL2CAP) { opts.flush_to = 0xffff; /* infinite */ opts.mode = L2CAP_MODE_ERTM; opts.fcs = 1; opts.txwin_size = 64; opts.max_tx = 10; } setsockopt(aFd, SOL_L2CAP, L2CAP_OPTIONS, &opts, optlen); } if (mType == BluetoothSocketType::EL2CAP) { /* Set larger SNDBUF and RCVBUF for EL2CAP connections */ int sndbuf = L2CAP_SO_SNDBUF; if (setsockopt(aFd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf)) < 0) { BT_LOGR("setsockopt(SO_SNDBUF) failed, throwing"); return NS_ERROR_FAILURE; } int rcvbuf = L2CAP_SO_RCVBUF; if (setsockopt(aFd, SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf)) < 0) { BT_LOGR("setsockopt(SO_RCVBUF) failed, throwing"); return NS_ERROR_FAILURE; } } } return NS_OK; } nsresult BluetoothUnixSocketConnector::CreateAddress(struct sockaddr& aAddress, socklen_t& aAddressLength) const { switch (mType) { case BluetoothSocketType::RFCOMM: { struct sockaddr_rc* rc = reinterpret_cast(&aAddress); rc->rc_family = AF_BLUETOOTH; nsresult rv = ConvertAddress(mAddress, rc->rc_bdaddr); if (NS_FAILED(rv)) { return rv; } rc->rc_channel = mChannel; aAddressLength = sizeof(*rc); } break; case BluetoothSocketType::L2CAP: case BluetoothSocketType::EL2CAP: { struct sockaddr_l2* l2 = reinterpret_cast(&aAddress); l2->l2_family = AF_BLUETOOTH; l2->l2_psm = mChannel; nsresult rv = ConvertAddress(mAddress, l2->l2_bdaddr); if (NS_FAILED(rv)) { return rv; } l2->l2_cid = 0; aAddressLength = sizeof(*l2); } break; case BluetoothSocketType::SCO: { struct sockaddr_sco* sco = reinterpret_cast(&aAddress); sco->sco_family = AF_BLUETOOTH; nsresult rv = ConvertAddress(mAddress, sco->sco_bdaddr); if (NS_FAILED(rv)) { return rv; } sco->sco_pkt_type = 0; aAddressLength = sizeof(*sco); } break; default: MOZ_CRASH("Socket type unknown!"); return NS_ERROR_ABORT; } return NS_OK; } nsresult BluetoothUnixSocketConnector::ConvertAddress(const BluetoothAddress& aAddress, bdaddr_t& aBdAddr) { MOZ_ASSERT(MOZ_ARRAY_LENGTH(aBdAddr.b) == MOZ_ARRAY_LENGTH(aAddress.mAddr)); /* read source address from end backwards */ auto src = aAddress.mAddr + MOZ_ARRAY_LENGTH(aAddress.mAddr) - 1; for (size_t i = 0ul; i < MOZ_ARRAY_LENGTH(aBdAddr.b); ++i) { aBdAddr.b[i] = *src--; } return NS_OK; } nsresult BluetoothUnixSocketConnector::ConvertAddress(const bdaddr_t& aBdAddr, BluetoothAddress& aAddress) { MOZ_ASSERT(MOZ_ARRAY_LENGTH(aBdAddr.b) == MOZ_ARRAY_LENGTH(aAddress.mAddr)); /* read source address from end backwards */ auto src = aBdAddr.b + MOZ_ARRAY_LENGTH(aBdAddr.b) - 1; for (size_t i = 0ul; i < MOZ_ARRAY_LENGTH(aAddress.mAddr); ++i) { aAddress.mAddr[i] = *src--; } return NS_OK; } nsresult BluetoothUnixSocketConnector::ConvertAddress( const struct sockaddr& aAddress, socklen_t aAddressLength, BluetoothAddress& aAddressOut) { MOZ_ASSERT(aAddress.sa_family == AF_BLUETOOTH); switch (mType) { case BluetoothSocketType::RFCOMM: { const struct sockaddr_rc* rc = reinterpret_cast(&aAddress); return ConvertAddress(rc->rc_bdaddr, aAddressOut); } break; case BluetoothSocketType::SCO: { const struct sockaddr_sco* sco = reinterpret_cast(&aAddress); return ConvertAddress(sco->sco_bdaddr, aAddressOut); } break; case BluetoothSocketType::L2CAP: case BluetoothSocketType::EL2CAP: { const struct sockaddr_l2* l2 = reinterpret_cast(&aAddress); return ConvertAddress(l2->l2_bdaddr, aAddressOut); } break; default: BT_LOGR("Unknown socket type %d", static_cast(mType)); return NS_ERROR_ILLEGAL_VALUE; } } // |UnixSocketConnector| nsresult BluetoothUnixSocketConnector::ConvertAddressToString( const struct sockaddr& aAddress, socklen_t aAddressLength, nsACString& aAddressString) { MOZ_ASSERT(aAddress.sa_family == AF_BLUETOOTH); const uint8_t* b; switch (mType) { case BluetoothSocketType::RFCOMM: { const struct sockaddr_rc* rc = reinterpret_cast(&aAddress); b = rc->rc_bdaddr.b; } break; case BluetoothSocketType::SCO: { const struct sockaddr_sco* sco = reinterpret_cast(&aAddress); b = sco->sco_bdaddr.b; } break; case BluetoothSocketType::L2CAP: case BluetoothSocketType::EL2CAP: { const struct sockaddr_l2* l2 = reinterpret_cast(&aAddress); b = l2->l2_bdaddr.b; } break; default: BT_LOGR("Unknown socket type %d", static_cast(mType)); return NS_ERROR_ILLEGAL_VALUE; } char str[32]; snprintf(str, sizeof(str), "%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X", b[5], b[4], b[3], b[2], b[1], b[0]); aAddressString.Assign(str); return NS_OK; } nsresult BluetoothUnixSocketConnector::CreateListenSocket(struct sockaddr* aAddress, socklen_t* aAddressLength, int& aListenFd) { ScopedClose fd; nsresult rv = CreateSocket(fd.rwget()); if (NS_FAILED(rv)) { return rv; } rv = SetSocketFlags(fd); if (NS_FAILED(rv)) { return rv; } if (aAddress && aAddressLength) { rv = CreateAddress(*aAddress, *aAddressLength); if (NS_FAILED(rv)) { return rv; } } aListenFd = fd.forget(); return NS_OK; } nsresult BluetoothUnixSocketConnector::AcceptStreamSocket(int aListenFd, struct sockaddr* aAddress, socklen_t* aAddressLength, int& aStreamFd) { ScopedClose fd( TEMP_FAILURE_RETRY(accept(aListenFd, aAddress, aAddressLength))); if (fd < 0) { NS_WARNING("Cannot accept file descriptor!"); return NS_ERROR_FAILURE; } nsresult rv = SetSocketFlags(fd); if (NS_FAILED(rv)) { return rv; } aStreamFd = fd.forget(); return NS_OK; } nsresult BluetoothUnixSocketConnector::CreateStreamSocket(struct sockaddr* aAddress, socklen_t* aAddressLength, int& aStreamFd) { ScopedClose fd; nsresult rv = CreateSocket(fd.rwget()); if (NS_FAILED(rv)) { return rv; } rv = SetSocketFlags(fd); if (NS_FAILED(rv)) { return rv; } if (aAddress && aAddressLength) { rv = CreateAddress(*aAddress, *aAddressLength); if (NS_FAILED(rv)) { return rv; } } aStreamFd = fd.forget(); return NS_OK; } nsresult BluetoothUnixSocketConnector::Duplicate(UnixSocketConnector*& aConnector) { aConnector = new BluetoothUnixSocketConnector(*this); return NS_OK; } END_BLUETOOTH_NAMESPACE