/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // For connections that are not processed on the socket transport thread, we do // NOT use the async logic described below. Instead, we authenticate the // certificate on the thread that the connection's I/O happens on, // synchronously. This allows us to do certificate verification for blocking // (not non-blocking) sockets and sockets that have their I/O processed on a // thread other than the socket transport service thread. Also, we DO NOT // support blocking sockets on the socket transport service thread at all. // // During certificate authentication, we call CERT_PKIXVerifyCert or // CERT_VerifyCert. These functions may make zero or more HTTP requests // for OCSP responses, CRLs, intermediate certificates, etc. Our fetching logic // for these requests processes them on the socket transport service thread. // // If the connection for which we are verifying the certificate is happening // on the socket transport thread (the usually case, at least for HTTP), then // if our cert auth hook were to call the CERT_*Verify* functions directly, // there would be a deadlock: The CERT_*Verify* function would cause an event // to be asynchronously posted to the socket transport thread, and then it // would block the socket transport thread waiting to be notified of the HTTP // response. However, the HTTP request would never actually be processed // because the socket transport thread would be blocked and so it wouldn't be // able process HTTP requests. (i.e. Deadlock.) // // Consequently, when we are asked to verify a certificate on the socket // transport service thread, we must always call the CERT_*Verify* cert // functions on another thread. To accomplish this, our auth cert hook // dispatches a SSLServerCertVerificationJob to a pool of background threads, // and then immediately returns SECWouldBlock to libssl. These jobs are where // the CERT_*Verify* functions are actually called. // // When our auth cert hook returns SECWouldBlock, libssl will carry on the // handshake while we validate the certificate. This will free up the socket // transport thread so that HTTP requests--in particular, the OCSP/CRL/cert // requests needed for cert verification as mentioned above--can be processed. // // Once the CERT_*Verify* function returns, the cert verification job // dispatches a SSLServerCertVerificationResult to the socket transport thread; // the SSLServerCertVerificationResult will notify libssl that the certificate // authentication is complete. Once libssl is notified that the authentication // is complete, it will continue the SSL handshake (if it hasn't already // finished) and it will begin allowing us to send/receive data on the // connection. // // Timeline of events (for connections managed by the socket transport service): // // * libssl calls SSLServerCertVerificationJob::Dispatch on the socket // transport thread. // * SSLServerCertVerificationJob::Dispatch queues a job // (instance of SSLServerCertVerificationJob) to its background thread // pool and returns. // * One of the background threads calls CERT_*Verify*, which may enqueue // some HTTP request(s) onto the socket transport thread, and then // blocks that background thread waiting for the responses and/or timeouts // or errors for those requests. // * Once those HTTP responses have all come back or failed, the // CERT_*Verify* function returns a result indicating that the validation // succeeded or failed. // * If the validation succeeded, then a SSLServerCertVerificationResult // event is posted to the socket transport thread, and the cert // verification thread becomes free to verify other certificates. // * Otherwise, a CertErrorRunnable is posted to the socket transport thread // and then to the main thread (blocking both, see CertErrorRunnable) to // do cert override processing and bad cert listener notification. Then // the cert verification thread becomes free to verify other certificates. // * After processing cert overrides, the CertErrorRunnable will dispatch a // SSLServerCertVerificationResult event to the socket transport thread to // notify it of the result of the override processing; then it returns, // freeing up the main thread. // * The SSLServerCertVerificationResult event will either wake up the // socket (using SSL_RestartHandshakeAfterServerCert) if validation // succeeded or there was an error override, or it will set an error flag // so that the next I/O operation on the socket will fail, causing the // socket transport thread to close the connection. // // Cert override processing must happen on the main thread because it accesses // the nsICertOverrideService, and that service must be accessed on the main // thread because some extensions (Selenium, in particular) replace it with a // Javascript implementation, and chrome JS must always be run on the main // thread. // // SSLServerCertVerificationResult must be dispatched to the socket transport // thread because we must only call SSL_* functions on the socket transport // thread since they may do I/O, because many parts of nsNSSSocketInfo (the // subclass of TransportSecurityInfo used when validating certificates during // an SSL handshake) and the PSM NSS I/O layer are not thread-safe, and because // we need the event to interrupt the PR_Poll that may waiting for I/O on the // socket for which we are validating the cert. #include "SSLServerCertVerification.h" #include #include "pkix/pkix.h" #include "pkix/pkixnss.h" #include "CertVerifier.h" #include "CryptoTask.h" #include "ExtendedValidation.h" #include "NSSCertDBTrustDomain.h" #include "nsIBadCertListener2.h" #include "nsICertOverrideService.h" #include "nsISiteSecurityService.h" #include "nsNSSComponent.h" #include "nsNSSIOLayer.h" #include "nsNSSShutDown.h" #include "mozilla/Assertions.h" #include "mozilla/Mutex.h" #include "mozilla/Telemetry.h" #include "mozilla/net/DNS.h" #include "mozilla/UniquePtr.h" #include "mozilla/unused.h" #include "nsIThreadPool.h" #include "nsISocketProvider.h" #include "nsXPCOMCIDInternal.h" #include "nsComponentManagerUtils.h" #include "nsServiceManagerUtils.h" #include "PSMRunnable.h" #include "RootCertificateTelemetryUtils.h" #include "SharedSSLState.h" #include "nsContentUtils.h" #include "nsURLHelper.h" #include "ssl.h" #include "cert.h" #include "secerr.h" #include "secoidt.h" #include "secport.h" #include "sslerr.h" extern PRLogModuleInfo* gPIPNSSLog; using namespace mozilla::pkix; namespace mozilla { namespace psm { namespace { // do not use a nsCOMPtr to avoid static initializer/destructor nsIThreadPool* gCertVerificationThreadPool = nullptr; // We avoid using a mutex for the success case to avoid lock-related // performance issues. However, we do use a lock in the error case to simplify // the code, since performance in the error case is not important. Mutex* gSSLVerificationTelemetryMutex = nullptr; // We add a mutex to serialize PKCS11 database operations Mutex* gSSLVerificationPK11Mutex = nullptr; } // unnamed namespace // Called when the socket transport thread starts, to initialize the SSL cert // verification thread pool. By tying the thread pool startup/shutdown directly // to the STS thread's lifetime, we ensure that they are *always* available for // SSL connections and that there are no races during startup and especially // shutdown. (Previously, we have had multiple problems with races in PSM // background threads, and the race-prevention/shutdown logic used there is // brittle. Since this service is critical to things like downloading updates, // we take no chances.) Also, by doing things this way, we avoid the need for // locks, since gCertVerificationThreadPool is only ever accessed on the socket // transport thread. void InitializeSSLServerCertVerificationThreads() { gSSLVerificationTelemetryMutex = new Mutex("SSLVerificationTelemetryMutex"); gSSLVerificationPK11Mutex = new Mutex("SSLVerificationPK11Mutex"); // TODO: tuning, make parameters preferences // XXX: instantiate nsThreadPool directly, to make this more bulletproof. // Currently, the nsThreadPool.h header isn't exported for us to do so. nsresult rv = CallCreateInstance(NS_THREADPOOL_CONTRACTID, &gCertVerificationThreadPool); if (NS_FAILED(rv)) { NS_WARNING("Failed to create SSL cert verification threads."); return; } (void) gCertVerificationThreadPool->SetIdleThreadLimit(5); (void) gCertVerificationThreadPool->SetIdleThreadTimeout(30 * 1000); (void) gCertVerificationThreadPool->SetThreadLimit(5); (void) gCertVerificationThreadPool->SetName(NS_LITERAL_CSTRING("SSL Cert")); } // Called when the socket transport thread finishes, to destroy the thread // pool. Since the socket transport service has stopped processing events, it // will not attempt any more SSL I/O operations, so it is clearly safe to shut // down the SSL cert verification infrastructure. Also, the STS will not // dispatch many SSL verification result events at this point, so any pending // cert verifications will (correctly) fail at the point they are dispatched. // // The other shutdown race condition that is possible is a race condition with // shutdown of the nsNSSComponent service. We use the // nsNSSShutdownPreventionLock where needed (not here) to prevent that. void StopSSLServerCertVerificationThreads() { if (gCertVerificationThreadPool) { gCertVerificationThreadPool->Shutdown(); NS_RELEASE(gCertVerificationThreadPool); } if (gSSLVerificationTelemetryMutex) { delete gSSLVerificationTelemetryMutex; gSSLVerificationTelemetryMutex = nullptr; } if (gSSLVerificationPK11Mutex) { delete gSSLVerificationPK11Mutex; gSSLVerificationPK11Mutex = nullptr; } } namespace { void LogInvalidCertError(nsNSSSocketInfo* socketInfo, PRErrorCode errorCode, ::mozilla::psm::SSLErrorMessageType errorMessageType) { nsString message; socketInfo->GetErrorLogMessage(errorCode, errorMessageType, message); if (!message.IsEmpty()) { nsContentUtils::LogSimpleConsoleError(message, "SSL"); } } // Dispatched to the STS thread to notify the infoObject of the verification // result. // // This will cause the PR_Poll in the STS thread to return, so things work // correctly even if the STS thread is blocked polling (only) on the file // descriptor that is waiting for this result. class SSLServerCertVerificationResult : public nsRunnable { public: NS_DECL_NSIRUNNABLE SSLServerCertVerificationResult(nsNSSSocketInfo* infoObject, PRErrorCode errorCode, Telemetry::ID telemetryID = Telemetry::HistogramCount, uint32_t telemetryValue = -1, SSLErrorMessageType errorMessageType = PlainErrorMessage); void Dispatch(); private: const RefPtr mInfoObject; public: const PRErrorCode mErrorCode; const SSLErrorMessageType mErrorMessageType; const Telemetry::ID mTelemetryID; const uint32_t mTelemetryValue; }; class CertErrorRunnable : public SyncRunnableBase { public: CertErrorRunnable(const void* fdForLogging, nsIX509Cert* cert, nsNSSSocketInfo* infoObject, PRErrorCode defaultErrorCodeToReport, uint32_t collectedErrors, PRErrorCode errorCodeTrust, PRErrorCode errorCodeMismatch, PRErrorCode errorCodeTime, uint32_t providerFlags) : mFdForLogging(fdForLogging), mCert(cert), mInfoObject(infoObject), mDefaultErrorCodeToReport(defaultErrorCodeToReport), mCollectedErrors(collectedErrors), mErrorCodeTrust(errorCodeTrust), mErrorCodeMismatch(errorCodeMismatch), mErrorCodeTime(errorCodeTime), mProviderFlags(providerFlags) { } virtual void RunOnTargetThread(); RefPtr mResult; // out private: SSLServerCertVerificationResult* CheckCertOverrides(); const void* const mFdForLogging; // may become an invalid pointer; do not dereference const nsCOMPtr mCert; const RefPtr mInfoObject; const PRErrorCode mDefaultErrorCodeToReport; const uint32_t mCollectedErrors; const PRErrorCode mErrorCodeTrust; const PRErrorCode mErrorCodeMismatch; const PRErrorCode mErrorCodeTime; const uint32_t mProviderFlags; }; // A probe value of 1 means "no error". uint32_t MapOverridableErrorToProbeValue(PRErrorCode errorCode) { switch (errorCode) { case SEC_ERROR_UNKNOWN_ISSUER: return 2; case SEC_ERROR_CA_CERT_INVALID: return 3; case SEC_ERROR_UNTRUSTED_ISSUER: return 4; case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: return 5; case SEC_ERROR_UNTRUSTED_CERT: return 6; case SEC_ERROR_INADEQUATE_KEY_USAGE: return 7; case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED: return 8; case SSL_ERROR_BAD_CERT_DOMAIN: return 9; case SEC_ERROR_EXPIRED_CERTIFICATE: return 10; case mozilla::pkix::MOZILLA_PKIX_ERROR_CA_CERT_USED_AS_END_ENTITY: return 11; case mozilla::pkix::MOZILLA_PKIX_ERROR_V1_CERT_USED_AS_CA: return 12; case mozilla::pkix::MOZILLA_PKIX_ERROR_INADEQUATE_KEY_SIZE: return 13; case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_CERTIFICATE: return 14; case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_ISSUER_CERTIFICATE: return 15; case SEC_ERROR_INVALID_TIME: return 16; } NS_WARNING("Unknown certificate error code. Does MapOverridableErrorToProbeValue " "handle everything in DetermineCertOverrideErrors?"); return 0; } static uint32_t MapCertErrorToProbeValue(PRErrorCode errorCode) { uint32_t probeValue; switch (errorCode) { // see security/pkix/include/pkix/Result.h #define MOZILLA_PKIX_MAP(name, value, nss_name) case nss_name: probeValue = value; break; MOZILLA_PKIX_MAP_LIST #undef MOZILLA_PKIX_MAP default: return 0; } // Since FATAL_ERROR_FLAG is 0x800, fatal error values are much larger than // non-fatal error values. To conserve space, we remap these so they start at // (decimal) 90 instead of 0x800. Currently there are ~50 non-fatal errors // mozilla::pkix might return, so saving space for 90 should be sufficient // (similarly, there are 4 fatal errors, so saving space for 10 should also // be sufficient). static_assert(FATAL_ERROR_FLAG == 0x800, "mozilla::pkix::FATAL_ERROR_FLAG is not what we were expecting"); if (probeValue & FATAL_ERROR_FLAG) { probeValue ^= FATAL_ERROR_FLAG; probeValue += 90; } return probeValue; } SECStatus DetermineCertOverrideErrors(CERTCertificate* cert, const char* hostName, PRTime now, PRErrorCode defaultErrorCodeToReport, /*out*/ uint32_t& collectedErrors, /*out*/ PRErrorCode& errorCodeTrust, /*out*/ PRErrorCode& errorCodeMismatch, /*out*/ PRErrorCode& errorCodeTime) { MOZ_ASSERT(cert); MOZ_ASSERT(hostName); MOZ_ASSERT(collectedErrors == 0); MOZ_ASSERT(errorCodeTrust == 0); MOZ_ASSERT(errorCodeMismatch == 0); MOZ_ASSERT(errorCodeTime == 0); // Assumes the error prioritization described in mozilla::pkix's // BuildForward function. Also assumes that CheckCertHostname was only // called if CertVerifier::VerifyCert succeeded. switch (defaultErrorCodeToReport) { case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED: case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: case SEC_ERROR_UNKNOWN_ISSUER: case SEC_ERROR_CA_CERT_INVALID: case mozilla::pkix::MOZILLA_PKIX_ERROR_CA_CERT_USED_AS_END_ENTITY: case mozilla::pkix::MOZILLA_PKIX_ERROR_INADEQUATE_KEY_SIZE: case mozilla::pkix::MOZILLA_PKIX_ERROR_V1_CERT_USED_AS_CA: case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_ISSUER_CERTIFICATE: { collectedErrors = nsICertOverrideService::ERROR_UNTRUSTED; errorCodeTrust = defaultErrorCodeToReport; SECCertTimeValidity validity = CERT_CheckCertValidTimes(cert, now, false); if (validity == secCertTimeUndetermined) { // This only happens if cert is null. CERT_CheckCertValidTimes will // have set the error code to SEC_ERROR_INVALID_ARGS. We should really // be using mozilla::pkix here anyway. MOZ_ASSERT(PR_GetError() == SEC_ERROR_INVALID_ARGS); return SECFailure; } if (validity == secCertTimeExpired) { collectedErrors |= nsICertOverrideService::ERROR_TIME; errorCodeTime = SEC_ERROR_EXPIRED_CERTIFICATE; } else if (validity == secCertTimeNotValidYet) { collectedErrors |= nsICertOverrideService::ERROR_TIME; errorCodeTime = mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_CERTIFICATE; } break; } case SEC_ERROR_INVALID_TIME: case SEC_ERROR_EXPIRED_CERTIFICATE: case mozilla::pkix::MOZILLA_PKIX_ERROR_NOT_YET_VALID_CERTIFICATE: collectedErrors = nsICertOverrideService::ERROR_TIME; errorCodeTime = defaultErrorCodeToReport; break; case SSL_ERROR_BAD_CERT_DOMAIN: collectedErrors = nsICertOverrideService::ERROR_MISMATCH; errorCodeMismatch = SSL_ERROR_BAD_CERT_DOMAIN; break; case 0: NS_ERROR("No error code set during certificate validation failure."); PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; default: PR_SetError(defaultErrorCodeToReport, 0); return SECFailure; } if (defaultErrorCodeToReport != SSL_ERROR_BAD_CERT_DOMAIN) { Input certInput; if (certInput.Init(cert->derCert.data, cert->derCert.len) != Success) { PR_SetError(SEC_ERROR_BAD_DER, 0); return SECFailure; } Input hostnameInput; Result result = hostnameInput.Init(uint8_t_ptr_cast(hostName), strlen(hostName)); if (result != Success) { PR_SetError(SEC_ERROR_INVALID_ARGS, 0); return SECFailure; } result = CheckCertHostname(certInput, hostnameInput); // Treat malformed name information as a domain mismatch. if (result == Result::ERROR_BAD_DER || result == Result::ERROR_BAD_CERT_DOMAIN) { collectedErrors |= nsICertOverrideService::ERROR_MISMATCH; errorCodeMismatch = SSL_ERROR_BAD_CERT_DOMAIN; } else if (result != Success) { PR_SetError(MapResultToPRErrorCode(result), 0); return SECFailure; } } return SECSuccess; } SSLServerCertVerificationResult* CertErrorRunnable::CheckCertOverrides() { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] top of CheckCertOverrides\n", mFdForLogging, this)); // "Use" mFdForLogging in non-PR_LOGGING builds, too, to suppress // clang's -Wunused-private-field build warning for this variable: Unused << mFdForLogging; if (!NS_IsMainThread()) { NS_ERROR("CertErrorRunnable::CheckCertOverrides called off main thread"); return new SSLServerCertVerificationResult(mInfoObject, mDefaultErrorCodeToReport); } int32_t port; mInfoObject->GetPort(&port); nsAutoCString hostWithPortString(mInfoObject->GetHostName()); hostWithPortString.Append(':'); hostWithPortString.AppendInt(port); uint32_t remaining_display_errors = mCollectedErrors; // If this is an HTTP Strict Transport Security host or a pinned host and the // certificate is bad, don't allow overrides (RFC 6797 section 12.1, // HPKP draft spec section 2.6). bool strictTransportSecurityEnabled = false; bool hasPinningInformation = false; nsCOMPtr sss(do_GetService(NS_SSSERVICE_CONTRACTID)); if (!sss) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] couldn't get nsISiteSecurityService to check for HSTS/HPKP\n", mFdForLogging, this)); return new SSLServerCertVerificationResult(mInfoObject, mDefaultErrorCodeToReport); } nsresult nsrv = sss->IsSecureHost(nsISiteSecurityService::HEADER_HSTS, mInfoObject->GetHostNameRaw(), mProviderFlags, &strictTransportSecurityEnabled); if (NS_FAILED(nsrv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] checking for HSTS failed\n", mFdForLogging, this)); return new SSLServerCertVerificationResult(mInfoObject, mDefaultErrorCodeToReport); } nsrv = sss->IsSecureHost(nsISiteSecurityService::HEADER_HPKP, mInfoObject->GetHostNameRaw(), mProviderFlags, &hasPinningInformation); if (NS_FAILED(nsrv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] checking for HPKP failed\n", mFdForLogging, this)); return new SSLServerCertVerificationResult(mInfoObject, mDefaultErrorCodeToReport); } if (!strictTransportSecurityEnabled && !hasPinningInformation) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] no HSTS or HPKP - overrides allowed\n", mFdForLogging, this)); nsCOMPtr overrideService = do_GetService(NS_CERTOVERRIDE_CONTRACTID); // it is fine to continue without the nsICertOverrideService uint32_t overrideBits = 0; if (overrideService) { bool haveOverride; bool isTemporaryOverride; // we don't care const nsACString& hostString(mInfoObject->GetHostName()); nsrv = overrideService->HasMatchingOverride(hostString, port, mCert, &overrideBits, &isTemporaryOverride, &haveOverride); if (NS_SUCCEEDED(nsrv) && haveOverride) { // remove the errors that are already overriden remaining_display_errors &= ~overrideBits; } } if (!remaining_display_errors) { // This can double- or triple-count one certificate with multiple // different types of errors. Since this is telemetry and we just // want a ballpark answer, we don't care. if (mErrorCodeTrust != 0) { uint32_t probeValue = MapOverridableErrorToProbeValue(mErrorCodeTrust); Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, probeValue); } if (mErrorCodeMismatch != 0) { uint32_t probeValue = MapOverridableErrorToProbeValue(mErrorCodeMismatch); Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, probeValue); } if (mErrorCodeTime != 0) { uint32_t probeValue = MapOverridableErrorToProbeValue(mErrorCodeTime); Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, probeValue); } // all errors are covered by override rules, so let's accept the cert MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] All errors covered by override rules\n", mFdForLogging, this)); return new SSLServerCertVerificationResult(mInfoObject, 0); } } else { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] HSTS or HPKP - no overrides allowed\n", mFdForLogging, this)); } MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] Certificate error was not overridden\n", mFdForLogging, this)); // Ok, this is a full stop. // First, deliver the technical details of the broken SSL status. // Try to get a nsIBadCertListener2 implementation from the socket consumer. nsCOMPtr sslSocketControl = do_QueryInterface( NS_ISUPPORTS_CAST(nsITransportSecurityInfo*, mInfoObject)); if (sslSocketControl) { nsCOMPtr cb; sslSocketControl->GetNotificationCallbacks(getter_AddRefs(cb)); if (cb) { nsCOMPtr bcl = do_GetInterface(cb); if (bcl) { nsIInterfaceRequestor* csi = static_cast(mInfoObject); bool suppressMessage = false; // obsolete, ignored nsrv = bcl->NotifyCertProblem(csi, mInfoObject->SSLStatus(), hostWithPortString, &suppressMessage); } } } // pick the error code to report by priority PRErrorCode errorCodeToReport = mErrorCodeTrust ? mErrorCodeTrust : mErrorCodeMismatch ? mErrorCodeMismatch : mErrorCodeTime ? mErrorCodeTime : mDefaultErrorCodeToReport; SSLServerCertVerificationResult* result = new SSLServerCertVerificationResult(mInfoObject, errorCodeToReport, Telemetry::HistogramCount, -1, OverridableCertErrorMessage); LogInvalidCertError(mInfoObject, result->mErrorCode, result->mErrorMessageType); return result; } void CertErrorRunnable::RunOnTargetThread() { MOZ_ASSERT(NS_IsMainThread()); mResult = CheckCertOverrides(); MOZ_ASSERT(mResult); } // Returns null with the error code (PR_GetError()) set if it does not create // the CertErrorRunnable. CertErrorRunnable* CreateCertErrorRunnable(CertVerifier& certVerifier, PRErrorCode defaultErrorCodeToReport, nsNSSSocketInfo* infoObject, CERTCertificate* cert, const void* fdForLogging, uint32_t providerFlags, PRTime now) { MOZ_ASSERT(infoObject); MOZ_ASSERT(cert); uint32_t probeValue = MapCertErrorToProbeValue(defaultErrorCodeToReport); Telemetry::Accumulate(Telemetry::SSL_CERT_VERIFICATION_ERRORS, probeValue); uint32_t collected_errors = 0; PRErrorCode errorCodeTrust = 0; PRErrorCode errorCodeMismatch = 0; PRErrorCode errorCodeTime = 0; if (DetermineCertOverrideErrors(cert, infoObject->GetHostNameRaw(), now, defaultErrorCodeToReport, collected_errors, errorCodeTrust, errorCodeMismatch, errorCodeTime) != SECSuccess) { // Attempt to enforce that if DetermineCertOverrideErrors failed, // PR_SetError was set with a non-overridable error. This is because if we // return from CreateCertErrorRunnable without calling // infoObject->SetStatusErrorBits, we won't have the required information // to actually add a certificate error override. This results in a broken // UI which is annoying but not a security disaster. MOZ_ASSERT(!ErrorIsOverridable(PR_GetError())); return nullptr; } RefPtr nssCert(nsNSSCertificate::Create(cert)); if (!nssCert) { NS_ERROR("nsNSSCertificate::Create failed"); PR_SetError(SEC_ERROR_NO_MEMORY, 0); return nullptr; } if (!collected_errors) { // This will happen when CERT_*Verify* only returned error(s) that are // not on our whitelist of overridable certificate errors. MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] !collected_errors: %d\n", fdForLogging, static_cast(defaultErrorCodeToReport))); PR_SetError(defaultErrorCodeToReport, 0); return nullptr; } infoObject->SetStatusErrorBits(nssCert, collected_errors); return new CertErrorRunnable(fdForLogging, static_cast(nssCert.get()), infoObject, defaultErrorCodeToReport, collected_errors, errorCodeTrust, errorCodeMismatch, errorCodeTime, providerFlags); } // When doing async cert processing, we dispatch one of these runnables to the // socket transport service thread, which blocks the socket transport // service thread while it waits for the inner CertErrorRunnable to execute // CheckCertOverrides on the main thread. CheckCertOverrides must block events // on both of these threads because it calls TransportSecurityInfo::GetInterface(), // which may call nsHttpConnection::GetInterface() through // TransportSecurityInfo::mCallbacks. nsHttpConnection::GetInterface must always // execute on the main thread, with the socket transport service thread // blocked. class CertErrorRunnableRunnable : public nsRunnable { public: explicit CertErrorRunnableRunnable(CertErrorRunnable* certErrorRunnable) : mCertErrorRunnable(certErrorRunnable) { } private: NS_IMETHOD Run() { nsresult rv = mCertErrorRunnable->DispatchToMainThreadAndWait(); // The result must run on the socket transport thread, which we are already // on, so we can just run it directly, instead of dispatching it. if (NS_SUCCEEDED(rv)) { rv = mCertErrorRunnable->mResult ? mCertErrorRunnable->mResult->Run() : NS_ERROR_UNEXPECTED; } return rv; } RefPtr mCertErrorRunnable; }; class SSLServerCertVerificationJob : public nsRunnable { public: // Must be called only on the socket transport thread static SECStatus Dispatch(const RefPtr& certVerifier, const void* fdForLogging, nsNSSSocketInfo* infoObject, CERTCertificate* serverCert, ScopedCERTCertList& peerCertChain, SECItem* stapledOCSPResponse, uint32_t providerFlags, Time time, PRTime prtime); private: NS_DECL_NSIRUNNABLE // Must be called only on the socket transport thread SSLServerCertVerificationJob(const RefPtr& certVerifier, const void* fdForLogging, nsNSSSocketInfo* infoObject, CERTCertificate* cert, CERTCertList* peerCertChain, SECItem* stapledOCSPResponse, uint32_t providerFlags, Time time, PRTime prtime); const RefPtr mCertVerifier; const void* const mFdForLogging; const RefPtr mInfoObject; const ScopedCERTCertificate mCert; ScopedCERTCertList mPeerCertChain; const uint32_t mProviderFlags; const Time mTime; const PRTime mPRTime; const TimeStamp mJobStartTime; const ScopedSECItem mStapledOCSPResponse; }; SSLServerCertVerificationJob::SSLServerCertVerificationJob( const RefPtr& certVerifier, const void* fdForLogging, nsNSSSocketInfo* infoObject, CERTCertificate* cert, CERTCertList* peerCertChain, SECItem* stapledOCSPResponse, uint32_t providerFlags, Time time, PRTime prtime) : mCertVerifier(certVerifier) , mFdForLogging(fdForLogging) , mInfoObject(infoObject) , mCert(CERT_DupCertificate(cert)) , mPeerCertChain(peerCertChain) , mProviderFlags(providerFlags) , mTime(time) , mPRTime(prtime) , mJobStartTime(TimeStamp::Now()) , mStapledOCSPResponse(SECITEM_DupItem(stapledOCSPResponse)) { } // This function assumes that we will only use the SPDY connection coalescing // feature on connections where we have negotiated SPDY using NPN. If we ever // talk SPDY without having negotiated it with SPDY, this code will give wrong // and perhaps unsafe results. // // Returns SECSuccess on the initial handshake of all connections, on // renegotiations for any connections where we did not negotiate SPDY, or on any // SPDY connection where the server's certificate did not change. // // Prohibit changing the server cert only if we negotiated SPDY, // in order to support SPDY's cross-origin connection pooling. static SECStatus BlockServerCertChangeForSpdy(nsNSSSocketInfo* infoObject, CERTCertificate* serverCert) { // Get the existing cert. If there isn't one, then there is // no cert change to worry about. nsCOMPtr cert; RefPtr status(infoObject->SSLStatus()); if (!status) { // If we didn't have a status, then this is the // first handshake on this connection, not a // renegotiation. return SECSuccess; } status->GetServerCert(getter_AddRefs(cert)); if (!cert) { NS_NOTREACHED("every nsSSLStatus must have a cert" "that implements nsIX509Cert"); PR_SetError(SEC_ERROR_LIBRARY_FAILURE, 0); return SECFailure; } // Filter out sockets that did not neogtiate SPDY via NPN nsAutoCString negotiatedNPN; nsresult rv = infoObject->GetNegotiatedNPN(negotiatedNPN); NS_ASSERTION(NS_SUCCEEDED(rv), "GetNegotiatedNPN() failed during renegotiation"); if (NS_SUCCEEDED(rv) && !StringBeginsWith(negotiatedNPN, NS_LITERAL_CSTRING("spdy/"))) { return SECSuccess; } // If GetNegotiatedNPN() failed we will assume spdy for safety's safe if (NS_FAILED(rv)) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BlockServerCertChangeForSpdy failed GetNegotiatedNPN() call." " Assuming spdy.\n")); } // Check to see if the cert has actually changed ScopedCERTCertificate c(cert->GetCert()); NS_ASSERTION(c, "very bad and hopefully impossible state"); bool sameCert = CERT_CompareCerts(c, serverCert); if (sameCert) { return SECSuccess; } // Report an error - changed cert is confirmed MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("SPDY Refused to allow new cert during renegotiation\n")); PR_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED, 0); return SECFailure; } void AccumulateSubjectCommonNameTelemetry(const char* commonName, bool commonNameInSubjectAltNames) { if (!commonName) { // 1 means no common name present Telemetry::Accumulate(Telemetry::BR_9_2_2_SUBJECT_COMMON_NAME, 1); } else if (!commonNameInSubjectAltNames) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: common name '%s' not in subject alt. names " "(or the subject alt. names extension is not present)\n", commonName)); // 2 means the common name is not present in subject alt names Telemetry::Accumulate(Telemetry::BR_9_2_2_SUBJECT_COMMON_NAME, 2); } else { // 0 means the common name is present in subject alt names Telemetry::Accumulate(Telemetry::BR_9_2_2_SUBJECT_COMMON_NAME, 0); } } // Returns true if and only if commonName ends with altName (minus its leading // "*"). altName has already been checked to be of the form "*.". // commonName may be NULL. static bool TryMatchingWildcardSubjectAltName(const char* commonName, const nsACString& altName) { return commonName && StringEndsWith(nsDependentCString(commonName), Substring(altName, 1)); } // Gathers telemetry on Baseline Requirements 9.2.1 (Subject Alternative // Names Extension) and 9.2.2 (Subject Common Name Field). // Specifically: // - whether or not the subject common name field is present // - whether or not the subject alternative names extension is present // - if there is a malformed entry in the subject alt. names extension // - if there is an entry in the subject alt. names extension corresponding // to the subject common name // Telemetry is only gathered for certificates that chain to a trusted root // in Mozilla's Root CA program. // certList consists of a validated certificate chain. The end-entity // certificate is first and the root (trust anchor) is last. void GatherBaselineRequirementsTelemetry(const ScopedCERTCertList& certList) { CERTCertListNode* endEntityNode = CERT_LIST_HEAD(certList); CERTCertListNode* rootNode = CERT_LIST_TAIL(certList); PR_ASSERT(!(CERT_LIST_END(endEntityNode, certList) || CERT_LIST_END(rootNode, certList))); if (CERT_LIST_END(endEntityNode, certList) || CERT_LIST_END(rootNode, certList)) { return; } CERTCertificate* cert = endEntityNode->cert; PR_ASSERT(cert); if (!cert) { return; } UniquePtr commonName(CERT_GetCommonName(&cert->subject), PORT_Free); // This only applies to certificates issued by authorities in our root // program. CERTCertificate* rootCert = rootNode->cert; PR_ASSERT(rootCert); if (!rootCert) { return; } bool isBuiltIn = false; SECStatus rv = IsCertBuiltInRoot(rootCert, isBuiltIn); if (rv != SECSuccess || !isBuiltIn) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: root certificate for '%s' is not a built-in root " "(or IsCertBuiltInRoot failed)\n", commonName.get())); return; } SECItem altNameExtension; rv = CERT_FindCertExtension(cert, SEC_OID_X509_SUBJECT_ALT_NAME, &altNameExtension); if (rv != SECSuccess) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: no subject alt names extension for '%s'\n", commonName.get())); // 1 means there is no subject alt names extension Telemetry::Accumulate(Telemetry::BR_9_2_1_SUBJECT_ALT_NAMES, 1); AccumulateSubjectCommonNameTelemetry(commonName.get(), false); return; } ScopedPLArenaPool arena(PORT_NewArena(DER_DEFAULT_CHUNKSIZE)); CERTGeneralName* subjectAltNames = CERT_DecodeAltNameExtension(arena, &altNameExtension); // CERT_FindCertExtension takes a pointer to a SECItem and allocates memory // in its data field. This is a bad way to do this because we can't use a // ScopedSECItem and neither is that memory tracked by an arena. We have to // manually reach in and free the memory. PORT_Free(altNameExtension.data); if (!subjectAltNames) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: could not decode subject alt names for '%s'\n", commonName.get())); // 2 means the subject alt names extension could not be decoded Telemetry::Accumulate(Telemetry::BR_9_2_1_SUBJECT_ALT_NAMES, 2); AccumulateSubjectCommonNameTelemetry(commonName.get(), false); return; } CERTGeneralName* currentName = subjectAltNames; bool commonNameInSubjectAltNames = false; bool nonDNSNameOrIPAddressPresent = false; bool malformedDNSNameOrIPAddressPresent = false; bool nonFQDNPresent = false; do { nsAutoCString altName; if (currentName->type == certDNSName) { altName.Assign(reinterpret_cast(currentName->name.other.data), currentName->name.other.len); nsDependentCString altNameWithoutWildcard(altName, 0); if (StringBeginsWith(altNameWithoutWildcard, NS_LITERAL_CSTRING("*."))) { altNameWithoutWildcard.Rebind(altName, 2); commonNameInSubjectAltNames |= TryMatchingWildcardSubjectAltName(commonName.get(), altName); } // net_IsValidHostName appears to return true for valid IP addresses, // which would be invalid for a DNS name. // Note that the net_IsValidHostName check will catch things like // "a.*.example.com". if (!net_IsValidHostName(altNameWithoutWildcard) || net_IsValidIPv4Addr(altName.get(), altName.Length()) || net_IsValidIPv6Addr(altName.get(), altName.Length())) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: DNSName '%s' not valid (for '%s')\n", altName.get(), commonName.get())); malformedDNSNameOrIPAddressPresent = true; } if (!altName.Contains('.')) { nonFQDNPresent = true; } } else if (currentName->type == certIPAddress) { // According to DNS.h, this includes space for the null-terminator char buf[net::kNetAddrMaxCStrBufSize] = { 0 }; PRNetAddr addr; memset(&addr, 0, sizeof(addr)); if (currentName->name.other.len == 4) { addr.inet.family = PR_AF_INET; memcpy(&addr.inet.ip, currentName->name.other.data, currentName->name.other.len); if (PR_NetAddrToString(&addr, buf, sizeof(buf) - 1) != PR_SUCCESS) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: IPAddress (v4) not valid (for '%s')\n", commonName.get())); malformedDNSNameOrIPAddressPresent = true; } else { altName.Assign(buf); } } else if (currentName->name.other.len == 16) { addr.inet.family = PR_AF_INET6; memcpy(&addr.ipv6.ip, currentName->name.other.data, currentName->name.other.len); if (PR_NetAddrToString(&addr, buf, sizeof(buf) - 1) != PR_SUCCESS) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: IPAddress (v6) not valid (for '%s')\n", commonName.get())); malformedDNSNameOrIPAddressPresent = true; } else { altName.Assign(buf); } } else { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: IPAddress not valid (for '%s')\n", commonName.get())); malformedDNSNameOrIPAddressPresent = true; } } else { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("BR telemetry: non-DNSName, non-IPAddress present for '%s'\n", commonName.get())); nonDNSNameOrIPAddressPresent = true; } if (commonName && altName.Equals(commonName.get())) { commonNameInSubjectAltNames = true; } currentName = CERT_GetNextGeneralName(currentName); } while (currentName && currentName != subjectAltNames); if (nonDNSNameOrIPAddressPresent) { // 3 means there's an entry that isn't an ip address or dns name Telemetry::Accumulate(Telemetry::BR_9_2_1_SUBJECT_ALT_NAMES, 3); } if (malformedDNSNameOrIPAddressPresent) { // 4 means there's a malformed ip address or dns name entry Telemetry::Accumulate(Telemetry::BR_9_2_1_SUBJECT_ALT_NAMES, 4); } if (nonFQDNPresent) { // 5 means there's a DNS name entry with a non-fully-qualified domain name Telemetry::Accumulate(Telemetry::BR_9_2_1_SUBJECT_ALT_NAMES, 5); } if (!nonDNSNameOrIPAddressPresent && !malformedDNSNameOrIPAddressPresent && !nonFQDNPresent) { // 0 means the extension is acceptable Telemetry::Accumulate(Telemetry::BR_9_2_1_SUBJECT_ALT_NAMES, 0); } AccumulateSubjectCommonNameTelemetry(commonName.get(), commonNameInSubjectAltNames); } // Gather telemetry on whether the end-entity cert for a server has the // required TLS Server Authentication EKU, or any others void GatherEKUTelemetry(const ScopedCERTCertList& certList) { CERTCertListNode* endEntityNode = CERT_LIST_HEAD(certList); CERTCertListNode* rootNode = CERT_LIST_TAIL(certList); PR_ASSERT(!(CERT_LIST_END(endEntityNode, certList) || CERT_LIST_END(rootNode, certList))); if (CERT_LIST_END(endEntityNode, certList) || CERT_LIST_END(rootNode, certList)) { return; } CERTCertificate* endEntityCert = endEntityNode->cert; PR_ASSERT(endEntityCert); if (!endEntityCert) { return; } // Only log telemetry if the root CA is built-in CERTCertificate* rootCert = rootNode->cert; PR_ASSERT(rootCert); if (!rootCert) { return; } bool isBuiltIn = false; SECStatus rv = IsCertBuiltInRoot(rootCert, isBuiltIn); if (rv != SECSuccess || !isBuiltIn) { return; } // Find the EKU extension, if present bool foundEKU = false; SECOidTag oidTag; CERTCertExtension* ekuExtension = nullptr; for (size_t i = 0; endEntityCert->extensions && endEntityCert->extensions[i]; i++) { oidTag = SECOID_FindOIDTag(&endEntityCert->extensions[i]->id); if (oidTag == SEC_OID_X509_EXT_KEY_USAGE) { foundEKU = true; ekuExtension = endEntityCert->extensions[i]; } } if (!foundEKU) { Telemetry::Accumulate(Telemetry::SSL_SERVER_AUTH_EKU, 0); return; } // Parse the EKU extension ScopedCERTOidSequence ekuSequence( CERT_DecodeOidSequence(&ekuExtension->value)); if (!ekuSequence) { return; } // Search through the available EKUs bool foundServerAuth = false; bool foundOther = false; for (SECItem** oids = ekuSequence->oids; oids && *oids; oids++) { oidTag = SECOID_FindOIDTag(*oids); if (oidTag == SEC_OID_EXT_KEY_USAGE_SERVER_AUTH) { foundServerAuth = true; } else { foundOther = true; } } // Cases 3 is included only for completeness. It should never // appear in these statistics, because CheckExtendedKeyUsage() // should require the EKU extension, if present, to contain the // value id_kp_serverAuth. if (foundServerAuth && !foundOther) { Telemetry::Accumulate(Telemetry::SSL_SERVER_AUTH_EKU, 1); } else if (foundServerAuth && foundOther) { Telemetry::Accumulate(Telemetry::SSL_SERVER_AUTH_EKU, 2); } else if (!foundServerAuth) { Telemetry::Accumulate(Telemetry::SSL_SERVER_AUTH_EKU, 3); } } // Gathers telemetry on which CA is the root of a given cert chain. // If the root is a built-in root, then the telemetry makes a count // by root. Roots that are not built-in are counted in one bin. void GatherRootCATelemetry(const ScopedCERTCertList& certList) { CERTCertListNode* rootNode = CERT_LIST_TAIL(certList); PR_ASSERT(rootNode); if (!rootNode) { return; } PR_ASSERT(!CERT_LIST_END(rootNode, certList)); if (CERT_LIST_END(rootNode, certList)) { return; } CERTCertificate* rootCert = rootNode->cert; PR_ASSERT(rootCert); if (!rootCert) { return; } AccumulateTelemetryForRootCA(Telemetry::CERT_VALIDATION_SUCCESS_BY_CA, rootCert); } // These time are appoximate, i.e., doesn't account for leap seconds, etc const uint64_t ONE_WEEK_IN_SECONDS = (7 * (24 * 60 *60)); const uint64_t ONE_YEAR_IN_WEEKS = 52; // Gathers telemetry on the certificate lifetimes we observe in the wild void GatherEndEntityTelemetry(const ScopedCERTCertList& certList) { CERTCertListNode* endEntityNode = CERT_LIST_HEAD(certList); PR_ASSERT(endEntityNode); if (!endEntityNode) { return; } CERTCertificate * endEntityCert = endEntityNode->cert; PR_ASSERT(endEntityCert); if (!endEntityCert) { return; } PRTime notBefore; PRTime notAfter; if (CERT_GetCertTimes(endEntityCert, ¬Before, ¬After) != SECSuccess) { return; } PR_ASSERT(notAfter > notBefore); if (notAfter <= notBefore) { return; } uint64_t durationInWeeks = (notAfter - notBefore) / PR_USEC_PER_SEC / ONE_WEEK_IN_SECONDS; if (durationInWeeks > (2 * ONE_YEAR_IN_WEEKS)) { durationInWeeks = (2 * ONE_YEAR_IN_WEEKS) + 1; } Telemetry::Accumulate(Telemetry::SSL_OBSERVED_END_ENTITY_CERTIFICATE_LIFETIME, durationInWeeks); } // There are various things that we want to measure about certificate // chains that we accept. This is a single entry point for all of them. void GatherSuccessfulValidationTelemetry(const ScopedCERTCertList& certList) { GatherBaselineRequirementsTelemetry(certList); GatherEKUTelemetry(certList); GatherRootCATelemetry(certList); GatherEndEntityTelemetry(certList); } SECStatus AuthCertificate(CertVerifier& certVerifier, nsNSSSocketInfo* infoObject, CERTCertificate* cert, ScopedCERTCertList& peerCertChain, SECItem* stapledOCSPResponse, uint32_t providerFlags, Time time) { MOZ_ASSERT(infoObject); MOZ_ASSERT(cert); SECStatus rv; // We want to avoid storing any intermediate cert information when browsing // in private, transient contexts. bool saveIntermediates = !(providerFlags & nsISocketProvider::NO_PERMANENT_STORAGE); SECOidTag evOidPolicy; ScopedCERTCertList certList; CertVerifier::OCSPStaplingStatus ocspStaplingStatus = CertVerifier::OCSP_STAPLING_NEVER_CHECKED; KeySizeStatus keySizeStatus = KeySizeStatus::NeverChecked; SignatureDigestStatus sigDigestStatus = SignatureDigestStatus::NeverChecked; PinningTelemetryInfo pinningTelemetryInfo; int flags = 0; if (!infoObject->SharedState().IsOCSPStaplingEnabled() || !infoObject->SharedState().IsOCSPMustStapleEnabled()) { flags |= CertVerifier::FLAG_TLS_IGNORE_STATUS_REQUEST; } rv = certVerifier.VerifySSLServerCert(cert, stapledOCSPResponse, time, infoObject, infoObject->GetHostNameRaw(), saveIntermediates, flags, &certList, &evOidPolicy, &ocspStaplingStatus, &keySizeStatus, &sigDigestStatus, &pinningTelemetryInfo); PRErrorCode savedErrorCode; if (rv != SECSuccess) { savedErrorCode = PR_GetError(); } if (ocspStaplingStatus != CertVerifier::OCSP_STAPLING_NEVER_CHECKED) { Telemetry::Accumulate(Telemetry::SSL_OCSP_STAPLING, ocspStaplingStatus); } if (keySizeStatus != KeySizeStatus::NeverChecked) { Telemetry::Accumulate(Telemetry::CERT_CHAIN_KEY_SIZE_STATUS, static_cast(keySizeStatus)); } if (sigDigestStatus != SignatureDigestStatus::NeverChecked) { Telemetry::Accumulate(Telemetry::CERT_CHAIN_SIGNATURE_DIGEST_STATUS, static_cast(sigDigestStatus)); } if (pinningTelemetryInfo.accumulateForRoot) { Telemetry::Accumulate(Telemetry::CERT_PINNING_FAILURES_BY_CA, pinningTelemetryInfo.rootBucket); } if (pinningTelemetryInfo.accumulateResult) { Telemetry::Accumulate(pinningTelemetryInfo.certPinningResultHistogram, pinningTelemetryInfo.certPinningResultBucket); } // We want to remember the CA certs in the temp db, so that the application can find the // complete chain at any time it might need it. // But we keep only those CA certs in the temp db, that we didn't already know. RefPtr status(infoObject->SSLStatus()); RefPtr nsc; if (!status || !status->HasServerCert()) { if( rv == SECSuccess ){ nsc = nsNSSCertificate::Create(cert, &evOidPolicy); } else { nsc = nsNSSCertificate::Create(cert); } } if (rv == SECSuccess) { GatherSuccessfulValidationTelemetry(certList); // The connection may get terminated, for example, if the server requires // a client cert. Let's provide a minimal SSLStatus // to the caller that contains at least the cert and its status. if (!status) { status = new nsSSLStatus(); infoObject->SetSSLStatus(status); } if (rv == SECSuccess) { // Certificate verification succeeded delete any potential record // of certificate error bits. RememberCertErrorsTable::GetInstance().RememberCertHasError(infoObject, nullptr, rv); } else { // Certificate verification failed, update the status' bits. RememberCertErrorsTable::GetInstance().LookupCertErrorBits( infoObject, status); } if (status && !status->HasServerCert()) { nsNSSCertificate::EVStatus evStatus; if (evOidPolicy == SEC_OID_UNKNOWN || rv != SECSuccess) { evStatus = nsNSSCertificate::ev_status_invalid; } else { evStatus = nsNSSCertificate::ev_status_valid; } status->SetServerCert(nsc, evStatus); MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("AuthCertificate setting NEW cert %p\n", nsc.get())); } } if (rv != SECSuccess) { // Certificate validation failed; store the peer certificate chain on // infoObject so it can be used for error reporting. Note: infoObject // indirectly takes ownership of peerCertChain. infoObject->SetFailedCertChain(peerCertChain); PR_SetError(savedErrorCode, 0); } return rv; } /*static*/ SECStatus SSLServerCertVerificationJob::Dispatch( const RefPtr& certVerifier, const void* fdForLogging, nsNSSSocketInfo* infoObject, CERTCertificate* serverCert, ScopedCERTCertList& peerCertChain, SECItem* stapledOCSPResponse, uint32_t providerFlags, Time time, PRTime prtime) { // Runs on the socket transport thread if (!certVerifier || !infoObject || !serverCert) { NS_ERROR("Invalid parameters for SSL server cert validation"); PR_SetError(PR_INVALID_ARGUMENT_ERROR, 0); return SECFailure; } // Copy the certificate list so the runnable can take ownership of it in the // constructor. // We can safely skip checking if NSS has already shut down here since we're // in the middle of verifying a certificate. nsNSSShutDownPreventionLock lock; CERTCertList* peerCertChainCopy = nsNSSCertList::DupCertList(peerCertChain, lock); RefPtr job( new SSLServerCertVerificationJob(certVerifier, fdForLogging, infoObject, serverCert, peerCertChainCopy, stapledOCSPResponse, providerFlags, time, prtime)); nsresult nrv; if (!gCertVerificationThreadPool) { nrv = NS_ERROR_NOT_INITIALIZED; } else { nrv = gCertVerificationThreadPool->Dispatch(job, NS_DISPATCH_NORMAL); } if (NS_FAILED(nrv)) { // We can't call SetCertVerificationResult here to change // mCertVerificationState because SetCertVerificationResult will call // libssl functions that acquire SSL locks that are already being held at // this point. infoObject->mCertVerificationState will be stuck at // waiting_for_cert_verification here, but that is OK because we already // have to be able to handle cases where we encounter non-cert errors while // in that state. PRErrorCode error = nrv == NS_ERROR_OUT_OF_MEMORY ? SEC_ERROR_NO_MEMORY : PR_INVALID_STATE_ERROR; PORT_SetError(error); return SECFailure; } PORT_SetError(PR_WOULD_BLOCK_ERROR); return SECWouldBlock; } NS_IMETHODIMP SSLServerCertVerificationJob::Run() { // Runs on a cert verification thread MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] SSLServerCertVerificationJob::Run\n", mInfoObject.get())); PRErrorCode error; nsNSSShutDownPreventionLock nssShutdownPrevention; if (mInfoObject->isAlreadyShutDown()) { error = SEC_ERROR_USER_CANCELLED; } else { Telemetry::ID successTelemetry = Telemetry::SSL_SUCCESFUL_CERT_VALIDATION_TIME_MOZILLAPKIX; Telemetry::ID failureTelemetry = Telemetry::SSL_INITIAL_FAILED_CERT_VALIDATION_TIME_MOZILLAPKIX; // Reset the error code here so we can detect if AuthCertificate fails to // set the error code if/when it fails. PR_SetError(0, 0); SECStatus rv = AuthCertificate(*mCertVerifier, mInfoObject, mCert.get(), mPeerCertChain, mStapledOCSPResponse, mProviderFlags, mTime); if (rv == SECSuccess) { uint32_t interval = (uint32_t) ((TimeStamp::Now() - mJobStartTime).ToMilliseconds()); RefPtr restart( new SSLServerCertVerificationResult(mInfoObject, 0, successTelemetry, interval)); restart->Dispatch(); Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, 1); return NS_OK; } // Note: the interval is not calculated once as PR_GetError MUST be called // before any other function call error = PR_GetError(); { TimeStamp now = TimeStamp::Now(); MutexAutoLock telemetryMutex(*gSSLVerificationTelemetryMutex); Telemetry::AccumulateTimeDelta(failureTelemetry, mJobStartTime, now); } if (error != 0) { RefPtr runnable( CreateCertErrorRunnable(*mCertVerifier, error, mInfoObject, mCert.get(), mFdForLogging, mProviderFlags, mPRTime)); if (!runnable) { // CreateCertErrorRunnable set a new error code error = PR_GetError(); } else { // We must block the the socket transport service thread while the // main thread executes the CertErrorRunnable. The CertErrorRunnable // will dispatch the result asynchronously, so we don't have to block // this thread waiting for it. MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p][%p] Before dispatching CertErrorRunnable\n", mFdForLogging, runnable.get())); nsresult nrv; nsCOMPtr stsTarget = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &nrv); if (NS_SUCCEEDED(nrv)) { nrv = stsTarget->Dispatch(new CertErrorRunnableRunnable(runnable), NS_DISPATCH_NORMAL); } if (NS_SUCCEEDED(nrv)) { return NS_OK; } NS_ERROR("Failed to dispatch CertErrorRunnable"); error = PR_INVALID_STATE_ERROR; } } } if (error == 0) { NS_NOTREACHED("no error set during certificate validation failure"); error = PR_INVALID_STATE_ERROR; } RefPtr failure( new SSLServerCertVerificationResult(mInfoObject, error)); failure->Dispatch(); return NS_OK; } } // unnamed namespace // Extracts whatever information we need out of fd (using SSL_*) and passes it // to SSLServerCertVerificationJob::Dispatch. SSLServerCertVerificationJob should // never do anything with fd except logging. SECStatus AuthCertificateHook(void* arg, PRFileDesc* fd, PRBool checkSig, PRBool isServer) { RefPtr certVerifier(GetDefaultCertVerifier()); if (!certVerifier) { PR_SetError(SEC_ERROR_NOT_INITIALIZED, 0); return SECFailure; } // Runs on the socket transport thread MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] starting AuthCertificateHook\n", fd)); // Modern libssl always passes PR_TRUE for checkSig, and we have no means of // doing verification without checking signatures. NS_ASSERTION(checkSig, "AuthCertificateHook: checkSig unexpectedly false"); // PSM never causes libssl to call this function with PR_TRUE for isServer, // and many things in PSM assume that we are a client. NS_ASSERTION(!isServer, "AuthCertificateHook: isServer unexpectedly true"); nsNSSSocketInfo* socketInfo = static_cast(arg); ScopedCERTCertificate serverCert(SSL_PeerCertificate(fd)); if (!checkSig || isServer || !socketInfo || !serverCert) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } // Get the peer certificate chain for error reporting ScopedCERTCertList peerCertChain(SSL_PeerCertificateChain(fd)); socketInfo->SetFullHandshake(); Time now(Now()); PRTime prnow(PR_Now()); if (BlockServerCertChangeForSpdy(socketInfo, serverCert) != SECSuccess) return SECFailure; nsCOMPtr sslSocketControl = do_QueryInterface( NS_ISUPPORTS_CAST(nsITransportSecurityInfo*, socketInfo)); if (sslSocketControl && sslSocketControl->GetBypassAuthentication()) { MOZ_LOG(gPIPNSSLog, LogLevel::Debug, ("[%p] Bypass Auth in AuthCertificateHook\n", fd)); return SECSuccess; } bool onSTSThread; nsresult nrv; nsCOMPtr sts = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &nrv); if (NS_SUCCEEDED(nrv)) { nrv = sts->IsOnCurrentThread(&onSTSThread); } if (NS_FAILED(nrv)) { NS_ERROR("Could not get STS service or IsOnCurrentThread failed"); PR_SetError(PR_UNKNOWN_ERROR, 0); return SECFailure; } // SSL_PeerStapledOCSPResponses will never return a non-empty response if // OCSP stapling wasn't enabled because libssl wouldn't have let the server // return a stapled OCSP response. // We don't own these pointers. const SECItemArray* csa = SSL_PeerStapledOCSPResponses(fd); SECItem* stapledOCSPResponse = nullptr; // we currently only support single stapled responses if (csa && csa->len == 1) { stapledOCSPResponse = &csa->items[0]; } uint32_t providerFlags = 0; socketInfo->GetProviderFlags(&providerFlags); if (onSTSThread) { // We *must* do certificate verification on a background thread because // we need the socket transport thread to be free for our OCSP requests, // and we *want* to do certificate verification on a background thread // because of the performance benefits of doing so. socketInfo->SetCertVerificationWaiting(); SECStatus rv = SSLServerCertVerificationJob::Dispatch( certVerifier, static_cast(fd), socketInfo, serverCert, peerCertChain, stapledOCSPResponse, providerFlags, now, prnow); return rv; } // We can't do certificate verification on a background thread, because the // thread doing the network I/O may not interrupt its network I/O on receipt // of our SSLServerCertVerificationResult event, and/or it might not even be // a non-blocking socket. SECStatus rv = AuthCertificate(*certVerifier, socketInfo, serverCert, peerCertChain, stapledOCSPResponse, providerFlags, now); if (rv == SECSuccess) { Telemetry::Accumulate(Telemetry::SSL_CERT_ERROR_OVERRIDES, 1); return SECSuccess; } PRErrorCode error = PR_GetError(); if (error != 0) { RefPtr runnable( CreateCertErrorRunnable(*certVerifier, error, socketInfo, serverCert, static_cast(fd), providerFlags, prnow)); if (!runnable) { // CreateCertErrorRunnable sets a new error code when it fails error = PR_GetError(); } else { // We have to return SECSuccess or SECFailure based on the result of the // override processing, so we must block this thread waiting for it. The // CertErrorRunnable will NOT dispatch the result at all, since we passed // false for CreateCertErrorRunnable's async parameter nrv = runnable->DispatchToMainThreadAndWait(); if (NS_FAILED(nrv)) { NS_ERROR("Failed to dispatch CertErrorRunnable"); PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } if (!runnable->mResult) { NS_ERROR("CertErrorRunnable did not set result"); PR_SetError(PR_INVALID_STATE_ERROR, 0); return SECFailure; } if (runnable->mResult->mErrorCode == 0) { return SECSuccess; // cert error override occurred. } // We must call SetCanceled here to set the error message type // in case it isn't PlainErrorMessage, which is what we would // default to if we just called // PR_SetError(runnable->mResult->mErrorCode, 0) and returned // SECFailure without doing this. socketInfo->SetCanceled(runnable->mResult->mErrorCode, runnable->mResult->mErrorMessageType); error = runnable->mResult->mErrorCode; } } if (error == 0) { NS_ERROR("error code not set"); error = PR_UNKNOWN_ERROR; } PR_SetError(error, 0); return SECFailure; } #ifndef MOZ_NO_EV_CERTS class InitializeIdentityInfo : public CryptoTask { virtual nsresult CalculateResult() override { EnsureIdentityInfoLoaded(); return NS_OK; } virtual void ReleaseNSSResources() override { } // no-op virtual void CallCallback(nsresult rv) override { } // no-op }; #endif void EnsureServerVerificationInitialized() { #ifndef MOZ_NO_EV_CERTS // Should only be called from socket transport thread due to the static // variable and the reference to gCertVerificationThreadPool static bool triggeredCertVerifierInit = false; if (triggeredCertVerifierInit) return; triggeredCertVerifierInit = true; RefPtr initJob = new InitializeIdentityInfo(); if (gCertVerificationThreadPool) gCertVerificationThreadPool->Dispatch(initJob, NS_DISPATCH_NORMAL); #endif } SSLServerCertVerificationResult::SSLServerCertVerificationResult( nsNSSSocketInfo* infoObject, PRErrorCode errorCode, Telemetry::ID telemetryID, uint32_t telemetryValue, SSLErrorMessageType errorMessageType) : mInfoObject(infoObject) , mErrorCode(errorCode) , mErrorMessageType(errorMessageType) , mTelemetryID(telemetryID) , mTelemetryValue(telemetryValue) { // We accumulate telemetry for (only) successful validations on the main thread // to avoid adversely affecting performance by acquiring the mutex that we use // when accumulating the telemetry for unsuccessful validations. Unsuccessful // validations times are accumulated elsewhere. MOZ_ASSERT(telemetryID == Telemetry::HistogramCount || errorCode == 0); } void SSLServerCertVerificationResult::Dispatch() { nsresult rv; nsCOMPtr stsTarget = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv); NS_ASSERTION(stsTarget, "Failed to get socket transport service event target"); rv = stsTarget->Dispatch(this, NS_DISPATCH_NORMAL); NS_ASSERTION(NS_SUCCEEDED(rv), "Failed to dispatch SSLServerCertVerificationResult"); } NS_IMETHODIMP SSLServerCertVerificationResult::Run() { // TODO: Assert that we're on the socket transport thread if (mTelemetryID != Telemetry::HistogramCount) { Telemetry::Accumulate(mTelemetryID, mTelemetryValue); } // XXX: This cast will be removed by the next patch ((nsNSSSocketInfo*) mInfoObject.get()) ->SetCertVerificationResult(mErrorCode, mErrorMessageType); return NS_OK; } } } // namespace mozilla::psm