/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef GFX_FONT_UTILS_H #define GFX_FONT_UTILS_H #include "gfxPlatform.h" #include "nsComponentManagerUtils.h" #include "nsTArray.h" #include "nsAutoPtr.h" #include "mozilla/Likely.h" #include "mozilla/Endian.h" #include "mozilla/MemoryReporting.h" #include "mozilla/UniquePtr.h" #include "zlib.h" #include /* Bug 341128 - w32api defines min/max which causes problems with */ #ifdef __MINGW32__ #undef min #undef max #endif typedef struct hb_blob_t hb_blob_t; class gfxSparseBitSet { private: enum { BLOCK_SIZE = 32 }; // ==> 256 codepoints per block enum { BLOCK_SIZE_BITS = BLOCK_SIZE * 8 }; enum { BLOCK_INDEX_SHIFT = 8 }; struct Block { Block(const Block& aBlock) { memcpy(mBits, aBlock.mBits, sizeof(mBits)); } explicit Block(unsigned char memsetValue = 0) { memset(mBits, memsetValue, BLOCK_SIZE); } uint8_t mBits[BLOCK_SIZE]; }; public: gfxSparseBitSet() { } gfxSparseBitSet(const gfxSparseBitSet& aBitset) { uint32_t len = aBitset.mBlocks.Length(); mBlocks.AppendElements(len); for (uint32_t i = 0; i < len; ++i) { Block *block = aBitset.mBlocks[i]; if (block) mBlocks[i] = new Block(*block); } } bool Equals(const gfxSparseBitSet *aOther) const { if (mBlocks.Length() != aOther->mBlocks.Length()) { return false; } size_t n = mBlocks.Length(); for (size_t i = 0; i < n; ++i) { const Block *b1 = mBlocks[i]; const Block *b2 = aOther->mBlocks[i]; if (!b1 != !b2) { return false; } if (!b1) { continue; } if (memcmp(&b1->mBits, &b2->mBits, BLOCK_SIZE) != 0) { return false; } } return true; } bool test(uint32_t aIndex) const { NS_ASSERTION(mBlocks.DebugGetHeader(), "mHdr is null, this is bad"); uint32_t blockIndex = aIndex/BLOCK_SIZE_BITS; if (blockIndex >= mBlocks.Length()) return false; Block *block = mBlocks[blockIndex]; if (!block) return false; return ((block->mBits[(aIndex>>3) & (BLOCK_SIZE - 1)]) & (1 << (aIndex & 0x7))) != 0; } // dump out contents of bitmap void Dump(const char* aPrefix, eGfxLog aWhichLog) const; bool TestRange(uint32_t aStart, uint32_t aEnd) { uint32_t startBlock, endBlock, blockLen; // start point is beyond the end of the block array? return false immediately startBlock = aStart >> BLOCK_INDEX_SHIFT; blockLen = mBlocks.Length(); if (startBlock >= blockLen) return false; // check for blocks in range, if none, return false uint32_t blockIndex; bool hasBlocksInRange = false; endBlock = aEnd >> BLOCK_INDEX_SHIFT; for (blockIndex = startBlock; blockIndex <= endBlock; blockIndex++) { if (blockIndex < blockLen && mBlocks[blockIndex]) hasBlocksInRange = true; } if (!hasBlocksInRange) return false; Block *block; uint32_t i, start, end; // first block, check bits if ((block = mBlocks[startBlock])) { start = aStart; end = std::min(aEnd, ((startBlock+1) << BLOCK_INDEX_SHIFT) - 1); for (i = start; i <= end; i++) { if ((block->mBits[(i>>3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) return true; } } if (endBlock == startBlock) return false; // [2..n-1] blocks check bytes for (blockIndex = startBlock + 1; blockIndex < endBlock; blockIndex++) { uint32_t index; if (blockIndex >= blockLen || !(block = mBlocks[blockIndex])) continue; for (index = 0; index < BLOCK_SIZE; index++) { if (block->mBits[index]) return true; } } // last block, check bits if (endBlock < blockLen && (block = mBlocks[endBlock])) { start = endBlock << BLOCK_INDEX_SHIFT; end = aEnd; for (i = start; i <= end; i++) { if ((block->mBits[(i>>3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) return true; } } return false; } void set(uint32_t aIndex) { uint32_t blockIndex = aIndex/BLOCK_SIZE_BITS; if (blockIndex >= mBlocks.Length()) { nsAutoPtr *blocks = mBlocks.AppendElements(blockIndex + 1 - mBlocks.Length()); if (MOZ_UNLIKELY(!blocks)) // OOM return; } Block *block = mBlocks[blockIndex]; if (!block) { block = new Block; mBlocks[blockIndex] = block; } block->mBits[(aIndex>>3) & (BLOCK_SIZE - 1)] |= 1 << (aIndex & 0x7); } void set(uint32_t aIndex, bool aValue) { if (aValue) set(aIndex); else clear(aIndex); } void SetRange(uint32_t aStart, uint32_t aEnd) { const uint32_t startIndex = aStart/BLOCK_SIZE_BITS; const uint32_t endIndex = aEnd/BLOCK_SIZE_BITS; if (endIndex >= mBlocks.Length()) { uint32_t numNewBlocks = endIndex + 1 - mBlocks.Length(); nsAutoPtr *blocks = mBlocks.AppendElements(numNewBlocks); if (MOZ_UNLIKELY(!blocks)) // OOM return; } for (uint32_t i = startIndex; i <= endIndex; ++i) { const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS; const uint32_t blockLastBit = blockFirstBit + BLOCK_SIZE_BITS - 1; Block *block = mBlocks[i]; if (!block) { bool fullBlock = false; if (aStart <= blockFirstBit && aEnd >= blockLastBit) fullBlock = true; block = new Block(fullBlock ? 0xFF : 0); mBlocks[i] = block; if (fullBlock) continue; } const uint32_t start = aStart > blockFirstBit ? aStart - blockFirstBit : 0; const uint32_t end = std::min(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1); for (uint32_t bit = start; bit <= end; ++bit) { block->mBits[bit>>3] |= 1 << (bit & 0x7); } } } void clear(uint32_t aIndex) { uint32_t blockIndex = aIndex/BLOCK_SIZE_BITS; if (blockIndex >= mBlocks.Length()) { nsAutoPtr *blocks = mBlocks.AppendElements(blockIndex + 1 - mBlocks.Length()); if (MOZ_UNLIKELY(!blocks)) // OOM return; } Block *block = mBlocks[blockIndex]; if (!block) { return; } block->mBits[(aIndex>>3) & (BLOCK_SIZE - 1)] &= ~(1 << (aIndex & 0x7)); } void ClearRange(uint32_t aStart, uint32_t aEnd) { const uint32_t startIndex = aStart/BLOCK_SIZE_BITS; const uint32_t endIndex = aEnd/BLOCK_SIZE_BITS; if (endIndex >= mBlocks.Length()) { uint32_t numNewBlocks = endIndex + 1 - mBlocks.Length(); nsAutoPtr *blocks = mBlocks.AppendElements(numNewBlocks); if (MOZ_UNLIKELY(!blocks)) // OOM return; } for (uint32_t i = startIndex; i <= endIndex; ++i) { const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS; Block *block = mBlocks[i]; if (!block) { // any nonexistent block is implicitly all clear, // so there's no need to even create it continue; } const uint32_t start = aStart > blockFirstBit ? aStart - blockFirstBit : 0; const uint32_t end = std::min(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1); for (uint32_t bit = start; bit <= end; ++bit) { block->mBits[bit>>3] &= ~(1 << (bit & 0x7)); } } } size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { size_t total = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf); for (uint32_t i = 0; i < mBlocks.Length(); i++) { if (mBlocks[i]) { total += aMallocSizeOf(mBlocks[i]); } } return total; } size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } // clear out all blocks in the array void reset() { uint32_t i; for (i = 0; i < mBlocks.Length(); i++) mBlocks[i] = nullptr; } // set this bitset to the union of its current contents and another void Union(const gfxSparseBitSet& aBitset) { // ensure mBlocks is large enough uint32_t blockCount = aBitset.mBlocks.Length(); if (blockCount > mBlocks.Length()) { uint32_t needed = blockCount - mBlocks.Length(); nsAutoPtr *blocks = mBlocks.AppendElements(needed); if (MOZ_UNLIKELY(!blocks)) { // OOM return; } } // for each block that may be present in aBitset... for (uint32_t i = 0; i < blockCount; ++i) { // if it is missing (implicitly empty), just skip if (!aBitset.mBlocks[i]) { continue; } // if the block is missing in this set, just copy the other if (!mBlocks[i]) { mBlocks[i] = new Block(*aBitset.mBlocks[i]); continue; } // else set existing block to the union of both uint32_t *dst = reinterpret_cast(mBlocks[i]->mBits); const uint32_t *src = reinterpret_cast(aBitset.mBlocks[i]->mBits); for (uint32_t j = 0; j < BLOCK_SIZE / 4; ++j) { dst[j] |= src[j]; } } } void Compact() { mBlocks.Compact(); } uint32_t GetChecksum() const { uint32_t check = adler32(0, Z_NULL, 0); for (uint32_t i = 0; i < mBlocks.Length(); i++) { if (mBlocks[i]) { const Block *block = mBlocks[i]; check = adler32(check, (uint8_t*) (&i), 4); check = adler32(check, (uint8_t*) block, sizeof(Block)); } } return check; } private: nsTArray< nsAutoPtr > mBlocks; }; #define TRUETYPE_TAG(a, b, c, d) ((a) << 24 | (b) << 16 | (c) << 8 | (d)) namespace mozilla { // Byte-swapping types and name table structure definitions moved from // gfxFontUtils.cpp to .h file so that gfxFont.cpp can also refer to them #pragma pack(1) struct AutoSwap_PRUint16 { #ifdef __SUNPRO_CC AutoSwap_PRUint16& operator = (const uint16_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRUint16(uint16_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator uint16_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } operator uint32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } operator uint64_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: uint16_t value; }; struct AutoSwap_PRInt16 { #ifdef __SUNPRO_CC AutoSwap_PRInt16& operator = (const int16_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRInt16(int16_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator int16_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } operator uint32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: int16_t value; }; struct AutoSwap_PRUint32 { #ifdef __SUNPRO_CC AutoSwap_PRUint32& operator = (const uint32_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRUint32(uint32_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator uint32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: uint32_t value; }; struct AutoSwap_PRInt32 { #ifdef __SUNPRO_CC AutoSwap_PRInt32& operator = (const int32_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRInt32(int32_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator int32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: int32_t value; }; struct AutoSwap_PRUint64 { #ifdef __SUNPRO_CC AutoSwap_PRUint64& operator = (const uint64_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRUint64(uint64_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator uint64_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: uint64_t value; }; struct AutoSwap_PRUint24 { operator uint32_t() const { return value[0] << 16 | value[1] << 8 | value[2]; } private: AutoSwap_PRUint24() { } uint8_t value[3]; }; struct SFNTHeader { AutoSwap_PRUint32 sfntVersion; // Fixed, 0x00010000 for version 1.0. AutoSwap_PRUint16 numTables; // Number of tables. AutoSwap_PRUint16 searchRange; // (Maximum power of 2 <= numTables) x 16. AutoSwap_PRUint16 entrySelector; // Log2(maximum power of 2 <= numTables). AutoSwap_PRUint16 rangeShift; // NumTables x 16-searchRange. }; struct TableDirEntry { AutoSwap_PRUint32 tag; // 4 -byte identifier. AutoSwap_PRUint32 checkSum; // CheckSum for this table. AutoSwap_PRUint32 offset; // Offset from beginning of TrueType font file. AutoSwap_PRUint32 length; // Length of this table. }; struct HeadTable { enum { HEAD_VERSION = 0x00010000, HEAD_MAGIC_NUMBER = 0x5F0F3CF5, HEAD_CHECKSUM_CALC_CONST = 0xB1B0AFBA }; AutoSwap_PRUint32 tableVersionNumber; // Fixed, 0x00010000 for version 1.0. AutoSwap_PRUint32 fontRevision; // Set by font manufacturer. AutoSwap_PRUint32 checkSumAdjustment; // To compute: set it to 0, sum the entire font as ULONG, then store 0xB1B0AFBA - sum. AutoSwap_PRUint32 magicNumber; // Set to 0x5F0F3CF5. AutoSwap_PRUint16 flags; AutoSwap_PRUint16 unitsPerEm; // Valid range is from 16 to 16384. This value should be a power of 2 for fonts that have TrueType outlines. AutoSwap_PRUint64 created; // Number of seconds since 12:00 midnight, January 1, 1904. 64-bit integer AutoSwap_PRUint64 modified; // Number of seconds since 12:00 midnight, January 1, 1904. 64-bit integer AutoSwap_PRInt16 xMin; // For all glyph bounding boxes. AutoSwap_PRInt16 yMin; // For all glyph bounding boxes. AutoSwap_PRInt16 xMax; // For all glyph bounding boxes. AutoSwap_PRInt16 yMax; // For all glyph bounding boxes. AutoSwap_PRUint16 macStyle; // Bit 0: Bold (if set to 1); AutoSwap_PRUint16 lowestRecPPEM; // Smallest readable size in pixels. AutoSwap_PRInt16 fontDirectionHint; AutoSwap_PRInt16 indexToLocFormat; AutoSwap_PRInt16 glyphDataFormat; }; struct OS2Table { AutoSwap_PRUint16 version; // 0004 = OpenType 1.5 AutoSwap_PRInt16 xAvgCharWidth; AutoSwap_PRUint16 usWeightClass; AutoSwap_PRUint16 usWidthClass; AutoSwap_PRUint16 fsType; AutoSwap_PRInt16 ySubscriptXSize; AutoSwap_PRInt16 ySubscriptYSize; AutoSwap_PRInt16 ySubscriptXOffset; AutoSwap_PRInt16 ySubscriptYOffset; AutoSwap_PRInt16 ySuperscriptXSize; AutoSwap_PRInt16 ySuperscriptYSize; AutoSwap_PRInt16 ySuperscriptXOffset; AutoSwap_PRInt16 ySuperscriptYOffset; AutoSwap_PRInt16 yStrikeoutSize; AutoSwap_PRInt16 yStrikeoutPosition; AutoSwap_PRInt16 sFamilyClass; uint8_t panose[10]; AutoSwap_PRUint32 unicodeRange1; AutoSwap_PRUint32 unicodeRange2; AutoSwap_PRUint32 unicodeRange3; AutoSwap_PRUint32 unicodeRange4; uint8_t achVendID[4]; AutoSwap_PRUint16 fsSelection; AutoSwap_PRUint16 usFirstCharIndex; AutoSwap_PRUint16 usLastCharIndex; AutoSwap_PRInt16 sTypoAscender; AutoSwap_PRInt16 sTypoDescender; AutoSwap_PRInt16 sTypoLineGap; AutoSwap_PRUint16 usWinAscent; AutoSwap_PRUint16 usWinDescent; AutoSwap_PRUint32 codePageRange1; AutoSwap_PRUint32 codePageRange2; AutoSwap_PRInt16 sxHeight; AutoSwap_PRInt16 sCapHeight; AutoSwap_PRUint16 usDefaultChar; AutoSwap_PRUint16 usBreakChar; AutoSwap_PRUint16 usMaxContext; }; struct PostTable { AutoSwap_PRUint32 version; AutoSwap_PRInt32 italicAngle; AutoSwap_PRInt16 underlinePosition; AutoSwap_PRUint16 underlineThickness; AutoSwap_PRUint32 isFixedPitch; AutoSwap_PRUint32 minMemType42; AutoSwap_PRUint32 maxMemType42; AutoSwap_PRUint32 minMemType1; AutoSwap_PRUint32 maxMemType1; }; // This structure is used for both 'hhea' and 'vhea' tables. // The field names here are those of the horizontal version; the // vertical table just exchanges vertical and horizontal coordinates. struct MetricsHeader { AutoSwap_PRUint32 version; AutoSwap_PRInt16 ascender; AutoSwap_PRInt16 descender; AutoSwap_PRInt16 lineGap; AutoSwap_PRUint16 advanceWidthMax; AutoSwap_PRInt16 minLeftSideBearing; AutoSwap_PRInt16 minRightSideBearing; AutoSwap_PRInt16 xMaxExtent; AutoSwap_PRInt16 caretSlopeRise; AutoSwap_PRInt16 caretSlopeRun; AutoSwap_PRInt16 caretOffset; AutoSwap_PRInt16 reserved1; AutoSwap_PRInt16 reserved2; AutoSwap_PRInt16 reserved3; AutoSwap_PRInt16 reserved4; AutoSwap_PRInt16 metricDataFormat; AutoSwap_PRUint16 numOfLongMetrics; }; struct MaxpTableHeader { AutoSwap_PRUint32 version; // CFF: 0x00005000; TrueType: 0x00010000 AutoSwap_PRUint16 numGlyphs; // truetype version has additional fields that we don't currently use }; // old 'kern' table, supported on Windows // see http://www.microsoft.com/typography/otspec/kern.htm struct KernTableVersion0 { AutoSwap_PRUint16 version; // 0x0000 AutoSwap_PRUint16 nTables; }; struct KernTableSubtableHeaderVersion0 { AutoSwap_PRUint16 version; AutoSwap_PRUint16 length; AutoSwap_PRUint16 coverage; }; // newer Mac-only 'kern' table, ignored by Windows // see http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6kern.html struct KernTableVersion1 { AutoSwap_PRUint32 version; // 0x00010000 AutoSwap_PRUint32 nTables; }; struct KernTableSubtableHeaderVersion1 { AutoSwap_PRUint32 length; AutoSwap_PRUint16 coverage; AutoSwap_PRUint16 tupleIndex; }; struct COLRHeader { AutoSwap_PRUint16 version; AutoSwap_PRUint16 numBaseGlyphRecord; AutoSwap_PRUint32 offsetBaseGlyphRecord; AutoSwap_PRUint32 offsetLayerRecord; AutoSwap_PRUint16 numLayerRecords; }; struct CPALHeaderVersion0 { AutoSwap_PRUint16 version; AutoSwap_PRUint16 numPaletteEntries; AutoSwap_PRUint16 numPalettes; AutoSwap_PRUint16 numColorRecords; AutoSwap_PRUint32 offsetFirstColorRecord; }; #pragma pack() // Return just the highest bit of the given value, i.e., the highest // power of 2 that is <= value, or zero if the input value is zero. inline uint32_t FindHighestBit(uint32_t value) { // propagate highest bit into all lower bits of the value value |= (value >> 1); value |= (value >> 2); value |= (value >> 4); value |= (value >> 8); value |= (value >> 16); // isolate the leftmost bit return (value & ~(value >> 1)); } } // namespace mozilla // used for overlaying name changes without touching original font data struct FontDataOverlay { // overlaySrc != 0 ==> use overlay uint32_t overlaySrc; // src offset from start of font data uint32_t overlaySrcLen; // src length uint32_t overlayDest; // dest offset from start of font data }; enum gfxUserFontType { GFX_USERFONT_UNKNOWN = 0, GFX_USERFONT_OPENTYPE = 1, GFX_USERFONT_SVG = 2, GFX_USERFONT_WOFF = 3, GFX_USERFONT_WOFF2 = 4 }; #define GFX_PREF_WOFF2_ENABLED "gfx.downloadable_fonts.woff2.enabled" extern const uint8_t sCJKCompatSVSTable[]; class gfxFontUtils { public: // these are public because gfxFont.cpp also looks into the name table enum { NAME_ID_FAMILY = 1, NAME_ID_STYLE = 2, NAME_ID_UNIQUE = 3, NAME_ID_FULL = 4, NAME_ID_VERSION = 5, NAME_ID_POSTSCRIPT = 6, NAME_ID_PREFERRED_FAMILY = 16, NAME_ID_PREFERRED_STYLE = 17, PLATFORM_ALL = -1, PLATFORM_ID_UNICODE = 0, // Mac OS uses this typically PLATFORM_ID_MAC = 1, PLATFORM_ID_ISO = 2, PLATFORM_ID_MICROSOFT = 3, ENCODING_ID_MAC_ROMAN = 0, // traditional Mac OS script manager encodings ENCODING_ID_MAC_JAPANESE = 1, // (there are others defined, but some were never ENCODING_ID_MAC_TRAD_CHINESE = 2, // implemented by Apple, and I have never seen them ENCODING_ID_MAC_KOREAN = 3, // used in font names) ENCODING_ID_MAC_ARABIC = 4, ENCODING_ID_MAC_HEBREW = 5, ENCODING_ID_MAC_GREEK = 6, ENCODING_ID_MAC_CYRILLIC = 7, ENCODING_ID_MAC_DEVANAGARI = 9, ENCODING_ID_MAC_GURMUKHI = 10, ENCODING_ID_MAC_GUJARATI = 11, ENCODING_ID_MAC_SIMP_CHINESE = 25, ENCODING_ID_MICROSOFT_SYMBOL = 0, // Microsoft platform encoding IDs ENCODING_ID_MICROSOFT_UNICODEBMP = 1, ENCODING_ID_MICROSOFT_SHIFTJIS = 2, ENCODING_ID_MICROSOFT_PRC = 3, ENCODING_ID_MICROSOFT_BIG5 = 4, ENCODING_ID_MICROSOFT_WANSUNG = 5, ENCODING_ID_MICROSOFT_JOHAB = 6, ENCODING_ID_MICROSOFT_UNICODEFULL = 10, LANG_ALL = -1, LANG_ID_MAC_ENGLISH = 0, // many others are defined, but most don't affect LANG_ID_MAC_HEBREW = 10, // the charset; should check all the central/eastern LANG_ID_MAC_JAPANESE = 11, // european codes, though LANG_ID_MAC_ARABIC = 12, LANG_ID_MAC_ICELANDIC = 15, LANG_ID_MAC_TURKISH = 17, LANG_ID_MAC_TRAD_CHINESE = 19, LANG_ID_MAC_URDU = 20, LANG_ID_MAC_KOREAN = 23, LANG_ID_MAC_POLISH = 25, LANG_ID_MAC_FARSI = 31, LANG_ID_MAC_SIMP_CHINESE = 33, LANG_ID_MAC_ROMANIAN = 37, LANG_ID_MAC_CZECH = 38, LANG_ID_MAC_SLOVAK = 39, LANG_ID_MICROSOFT_EN_US = 0x0409, // with Microsoft platformID, EN US lang code CMAP_MAX_CODEPOINT = 0x10ffff // maximum possible Unicode codepoint // contained in a cmap }; // name table has a header, followed by name records, followed by string data struct NameHeader { mozilla::AutoSwap_PRUint16 format; // Format selector (=0). mozilla::AutoSwap_PRUint16 count; // Number of name records. mozilla::AutoSwap_PRUint16 stringOffset; // Offset to start of string storage // (from start of table) }; struct NameRecord { mozilla::AutoSwap_PRUint16 platformID; // Platform ID mozilla::AutoSwap_PRUint16 encodingID; // Platform-specific encoding ID mozilla::AutoSwap_PRUint16 languageID; // Language ID mozilla::AutoSwap_PRUint16 nameID; // Name ID. mozilla::AutoSwap_PRUint16 length; // String length (in bytes). mozilla::AutoSwap_PRUint16 offset; // String offset from start of storage // (in bytes). }; // for reading big-endian font data on either big or little-endian platforms static inline uint16_t ReadShortAt(const uint8_t *aBuf, uint32_t aIndex) { return (aBuf[aIndex] << 8) | aBuf[aIndex + 1]; } static inline uint16_t ReadShortAt16(const uint16_t *aBuf, uint32_t aIndex) { const uint8_t *buf = reinterpret_cast(aBuf); uint32_t index = aIndex << 1; return (buf[index] << 8) | buf[index+1]; } static inline uint32_t ReadUint24At(const uint8_t *aBuf, uint32_t aIndex) { return ((aBuf[aIndex] << 16) | (aBuf[aIndex + 1] << 8) | (aBuf[aIndex + 2])); } static inline uint32_t ReadLongAt(const uint8_t *aBuf, uint32_t aIndex) { return ((aBuf[aIndex] << 24) | (aBuf[aIndex + 1] << 16) | (aBuf[aIndex + 2] << 8) | (aBuf[aIndex + 3])); } static nsresult ReadCMAPTableFormat10(const uint8_t *aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap); static nsresult ReadCMAPTableFormat12(const uint8_t *aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap); static nsresult ReadCMAPTableFormat4(const uint8_t *aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap); static nsresult ReadCMAPTableFormat14(const uint8_t *aBuf, uint32_t aLength, mozilla::UniquePtr& aTable); static uint32_t FindPreferredSubtable(const uint8_t *aBuf, uint32_t aBufLength, uint32_t *aTableOffset, uint32_t *aUVSTableOffset, bool *aSymbolEncoding); static nsresult ReadCMAP(const uint8_t *aBuf, uint32_t aBufLength, gfxSparseBitSet& aCharacterMap, uint32_t& aUVSOffset, bool& aUnicodeFont, bool& aSymbolFont); static uint32_t MapCharToGlyphFormat4(const uint8_t *aBuf, char16_t aCh); static uint32_t MapCharToGlyphFormat10(const uint8_t *aBuf, uint32_t aCh); static uint32_t MapCharToGlyphFormat12(const uint8_t *aBuf, uint32_t aCh); static uint16_t MapUVSToGlyphFormat14(const uint8_t *aBuf, uint32_t aCh, uint32_t aVS); // sCJKCompatSVSTable is a 'cmap' format 14 subtable that maps // pairs to the corresponding Unicode // compatibility ideograph codepoints. static MOZ_ALWAYS_INLINE uint32_t GetUVSFallback(uint32_t aCh, uint32_t aVS) { aCh = MapUVSToGlyphFormat14(sCJKCompatSVSTable, aCh, aVS); return aCh >= 0xFB00 ? aCh + (0x2F800 - 0xFB00) : aCh; } static uint32_t MapCharToGlyph(const uint8_t *aCmapBuf, uint32_t aBufLength, uint32_t aUnicode, uint32_t aVarSelector = 0); #ifdef XP_WIN // determine whether a font (which has already been sanitized, so is known // to be a valid sfnt) is CFF format rather than TrueType static bool IsCffFont(const uint8_t* aFontData); #endif // determine the format of font data static gfxUserFontType DetermineFontDataType(const uint8_t *aFontData, uint32_t aFontDataLength); // Read the fullname from the sfnt data (used to save the original name // prior to renaming the font for installation). // This is called with sfnt data that has already been validated, // so it should always succeed in finding the name table. static nsresult GetFullNameFromSFNT(const uint8_t* aFontData, uint32_t aLength, nsAString& aFullName); // helper to get fullname from name table, constructing from family+style // if no explicit fullname is present static nsresult GetFullNameFromTable(hb_blob_t *aNameTable, nsAString& aFullName); // helper to get family name from name table static nsresult GetFamilyNameFromTable(hb_blob_t *aNameTable, nsAString& aFamilyName); // create a new name table and build a new font with that name table // appended on the end, returns true on success static nsresult RenameFont(const nsAString& aName, const uint8_t *aFontData, uint32_t aFontDataLength, FallibleTArray *aNewFont); // read all names matching aNameID, returning in aNames array static nsresult ReadNames(const char *aNameData, uint32_t aDataLen, uint32_t aNameID, int32_t aPlatformID, nsTArray& aNames); // reads English or first name matching aNameID, returning in aName // platform based on OS static nsresult ReadCanonicalName(hb_blob_t *aNameTable, uint32_t aNameID, nsString& aName); static nsresult ReadCanonicalName(const char *aNameData, uint32_t aDataLen, uint32_t aNameID, nsString& aName); // convert a name from the raw name table data into an nsString, // provided we know how; return true if successful, or false // if we can't handle the encoding static bool DecodeFontName(const char *aBuf, int32_t aLength, uint32_t aPlatformCode, uint32_t aScriptCode, uint32_t aLangCode, nsAString& dest); static inline bool IsJoinCauser(uint32_t ch) { return (ch == 0x200D); } static inline bool IsJoinControl(uint32_t ch) { return (ch == 0x200C || ch == 0x200D); } enum { kUnicodeVS1 = 0xFE00, kUnicodeVS16 = 0xFE0F, kUnicodeVS17 = 0xE0100, kUnicodeVS256 = 0xE01EF }; static inline bool IsVarSelector(uint32_t ch) { return (ch >= kUnicodeVS1 && ch <= kUnicodeVS16) || (ch >= kUnicodeVS17 && ch <= kUnicodeVS256); } enum { kUnicodeRegionalIndicatorA = 0x1F1E6, kUnicodeRegionalIndicatorZ = 0x1F1FF }; static inline bool IsRegionalIndicator(uint32_t aCh) { return aCh >= kUnicodeRegionalIndicatorA && aCh <= kUnicodeRegionalIndicatorZ; } static inline bool IsInvalid(uint32_t ch) { return (ch == 0xFFFD); } // Font code may want to know if there is the potential for bidi behavior // to be triggered by any of the characters in a text run; this can be // used to test that possibility. enum { kUnicodeBidiScriptsStart = 0x0590, kUnicodeBidiScriptsEnd = 0x08FF, kUnicodeBidiPresentationStart = 0xFB1D, kUnicodeBidiPresentationEnd = 0xFEFC, kUnicodeFirstHighSurrogateBlock = 0xD800, kUnicodeRLM = 0x200F, kUnicodeRLE = 0x202B, kUnicodeRLO = 0x202E }; static inline bool PotentialRTLChar(char16_t aCh) { if (aCh >= kUnicodeBidiScriptsStart && aCh <= kUnicodeBidiScriptsEnd) // bidi scripts Hebrew, Arabic, Syriac, Thaana, N'Ko are all encoded together return true; if (aCh == kUnicodeRLM || aCh == kUnicodeRLE || aCh == kUnicodeRLO) // directional controls that trigger bidi layout return true; if (aCh >= kUnicodeBidiPresentationStart && aCh <= kUnicodeBidiPresentationEnd) // presentation forms of Arabic and Hebrew letters return true; if ((aCh & 0xFF00) == kUnicodeFirstHighSurrogateBlock) // surrogate that could be part of a bidi supplementary char // (Cypriot, Aramaic, Phoenecian, etc) return true; // otherwise we know this char cannot trigger bidi reordering return false; } // parse a simple list of font family names into // an array of strings static void ParseFontList(const nsAString& aFamilyList, nsTArray& aFontList); // for a given font list pref name, append list of font names static void AppendPrefsFontList(const char *aPrefName, nsTArray& aFontList); // for a given font list pref name, initialize a list of font names static void GetPrefsFontList(const char *aPrefName, nsTArray& aFontList); // generate a unique font name static nsresult MakeUniqueUserFontName(nsAString& aName); // for color layer from glyph using COLR and CPAL tables static bool ValidateColorGlyphs(hb_blob_t* aCOLR, hb_blob_t* aCPAL); static bool GetColorGlyphLayers(hb_blob_t* aCOLR, hb_blob_t* aCPAL, uint32_t aGlyphId, nsTArray &aGlyphs, nsTArray &aColors); protected: friend struct MacCharsetMappingComparator; static nsresult ReadNames(const char *aNameData, uint32_t aDataLen, uint32_t aNameID, int32_t aLangID, int32_t aPlatformID, nsTArray& aNames); // convert opentype name-table platform/encoding/language values to a charset name // we can use to convert the name data to unicode, or "" if data is UTF16BE static const char* GetCharsetForFontName(uint16_t aPlatform, uint16_t aScript, uint16_t aLanguage); struct MacFontNameCharsetMapping { uint16_t mEncoding; uint16_t mLanguage; const char *mCharsetName; bool operator<(const MacFontNameCharsetMapping& rhs) const { return (mEncoding < rhs.mEncoding) || ((mEncoding == rhs.mEncoding) && (mLanguage < rhs.mLanguage)); } }; static const MacFontNameCharsetMapping gMacFontNameCharsets[]; static const char* gISOFontNameCharsets[]; static const char* gMSFontNameCharsets[]; }; #endif /* GFX_FONT_UTILS_H */