tenfourfox/dom/bluetooth/bluedroid/BluetoothDaemonInterface.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

834 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "BluetoothDaemonInterface.h"
#include <cutils/properties.h>
#include <fcntl.h>
#include <stdlib.h>
#include "BluetoothDaemonA2dpInterface.h"
#include "BluetoothDaemonAvrcpInterface.h"
#include "BluetoothDaemonCoreInterface.h"
#include "BluetoothDaemonGattInterface.h"
#include "BluetoothDaemonHandsfreeInterface.h"
#include "BluetoothDaemonHelpers.h"
#include "BluetoothDaemonSetupInterface.h"
#include "BluetoothDaemonSocketInterface.h"
#include "mozilla/ipc/DaemonRunnables.h"
#include "mozilla/ipc/DaemonSocket.h"
#include "mozilla/ipc/DaemonSocketConnector.h"
#include "mozilla/ipc/ListenSocket.h"
#include "mozilla/unused.h"
BEGIN_BLUETOOTH_NAMESPACE
using namespace mozilla::ipc;
static const int sRetryInterval = 100; // ms
BluetoothNotificationHandler*
BluetoothDaemonInterface::sNotificationHandler;
//
// Protocol handling
//
// |BluetoothDaemonProtocol| is the central class for communicating
// with the Bluetooth daemon. It maintains both socket connections
// to the external daemon and implements the complete HAL protocol
// by inheriting from base-class modules.
//
// Each |BluetoothDaemon*Module| class implements an individual
// module of the HAL protocol. Each class contains the abstract
// method
//
// - |Send|.
//
// Module classes use |Send| to send out command PDUs. The socket
// in |BluetoothDaemonProtocol| is required for sending. The abstract
// method hides all these internal details from the modules.
//
// |BluetoothDaemonProtocol| also handles PDU receiving. It implements
// the method |Handle| from |DaemonSocketIOConsumer|. The socket
// connections of type |DaemonSocket| invoke this method
// to forward received PDUs for processing by higher layers. The
// implementation of |Handle| checks the service id of the PDU and
// forwards it to the correct module class using the module's method
// |HandleSvc|. Further PDU processing is module-dependent.
//
// To summarize the interface between |BluetoothDaemonProtocol| and
// modules; the former implements the abstract method
//
// - |Send|,
//
// which allow modules to send out data. Each module implements the
// method
//
// - |HandleSvc|,
//
// which is called by |BluetoothDaemonProtcol| to hand over received
// PDUs into a module.
//
class BluetoothDaemonProtocol final
: public DaemonSocketIOConsumer
, public BluetoothDaemonSetupModule
, public BluetoothDaemonCoreModule
, public BluetoothDaemonSocketModule
, public BluetoothDaemonHandsfreeModule
, public BluetoothDaemonA2dpModule
, public BluetoothDaemonAvrcpModule
, public BluetoothDaemonGattModule
{
public:
BluetoothDaemonProtocol();
void SetConnection(DaemonSocket* aConnection);
// Outgoing PDUs
//
nsresult Send(DaemonSocketPDU* aPDU,
DaemonSocketResultHandler* aRes) override;
void StoreResultHandler(const DaemonSocketPDU& aPDU) override;
// Incoming PUDs
//
void Handle(DaemonSocketPDU& aPDU) override;
already_AddRefed<DaemonSocketResultHandler> FetchResultHandler(
const DaemonSocketPDUHeader& aHeader);
private:
void HandleSetupSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes);
void HandleCoreSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes);
void HandleSocketSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes);
void HandleHandsfreeSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes);
void HandleA2dpSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aUserData);
void HandleAvrcpSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes);
void HandleGattSvc(const DaemonSocketPDUHeader& aHeader,
DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes);
DaemonSocket* mConnection;
nsTArray<RefPtr<DaemonSocketResultHandler>> mResQ;
};
BluetoothDaemonProtocol::BluetoothDaemonProtocol()
{ }
void
BluetoothDaemonProtocol::SetConnection(DaemonSocket* aConnection)
{
mConnection = aConnection;
}
nsresult
BluetoothDaemonProtocol::Send(DaemonSocketPDU* aPDU,
DaemonSocketResultHandler* aRes)
{
MOZ_ASSERT(mConnection);
MOZ_ASSERT(aPDU);
aPDU->SetConsumer(this);
aPDU->SetResultHandler(aRes);
aPDU->UpdateHeader();
if (mConnection->GetConnectionStatus() == SOCKET_DISCONNECTED) {
BT_LOGR("Connection to Bluetooth daemon is closed.");
return NS_ERROR_FAILURE;
}
mConnection->SendSocketData(aPDU); // Forward PDU to command channel
return NS_OK;
}
void
BluetoothDaemonProtocol::HandleSetupSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonSetupModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::HandleCoreSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonCoreModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::HandleSocketSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonSocketModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::HandleHandsfreeSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonHandsfreeModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::HandleA2dpSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonA2dpModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::HandleAvrcpSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonAvrcpModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::HandleGattSvc(
const DaemonSocketPDUHeader& aHeader, DaemonSocketPDU& aPDU,
DaemonSocketResultHandler* aRes)
{
BluetoothDaemonGattModule::HandleSvc(aHeader, aPDU, aRes);
}
void
BluetoothDaemonProtocol::Handle(DaemonSocketPDU& aPDU)
{
static void (BluetoothDaemonProtocol::* const HandleSvc[])(
const DaemonSocketPDUHeader&, DaemonSocketPDU&,
DaemonSocketResultHandler*) = {
[BluetoothDaemonSetupModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleSetupSvc,
[BluetoothDaemonCoreModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleCoreSvc,
[BluetoothDaemonSocketModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleSocketSvc,
[0x03] = nullptr, // HID host
[0x04] = nullptr, // PAN
[BluetoothDaemonHandsfreeModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleHandsfreeSvc,
[BluetoothDaemonA2dpModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleA2dpSvc,
[0x07] = nullptr, // Health
[BluetoothDaemonAvrcpModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleAvrcpSvc,
[BluetoothDaemonGattModule::SERVICE_ID] =
&BluetoothDaemonProtocol::HandleGattSvc
};
DaemonSocketPDUHeader header;
if (NS_FAILED(UnpackPDU(aPDU, header)) ||
NS_WARN_IF(!(header.mService < MOZ_ARRAY_LENGTH(HandleSvc))) ||
NS_WARN_IF(!(HandleSvc[header.mService]))) {
return;
}
RefPtr<DaemonSocketResultHandler> res = FetchResultHandler(header);
(this->*(HandleSvc[header.mService]))(header, aPDU, res);
}
void
BluetoothDaemonProtocol::StoreResultHandler(const DaemonSocketPDU& aPDU)
{
MOZ_ASSERT(!NS_IsMainThread());
mResQ.AppendElement(aPDU.GetResultHandler());
}
already_AddRefed<DaemonSocketResultHandler>
BluetoothDaemonProtocol::FetchResultHandler(
const DaemonSocketPDUHeader& aHeader)
{
MOZ_ASSERT(!NS_IsMainThread());
if (aHeader.mOpcode & 0x80) {
return nullptr; // Ignore notifications
}
RefPtr<DaemonSocketResultHandler> userData = mResQ.ElementAt(0);
mResQ.RemoveElementAt(0);
return userData.forget();
}
//
// Interface
//
static bool
IsDaemonRunning()
{
char value[PROPERTY_VALUE_MAX];
NS_WARN_IF(property_get("init.svc.bluetoothd", value, "") < 0);
if (strcmp(value, "running")) {
BT_LOGR("[RESTART] Bluetooth daemon state <%s>", value);
return false;
}
return true;
}
BluetoothDaemonInterface*
BluetoothDaemonInterface::GetInstance()
{
static BluetoothDaemonInterface* sBluetoothInterface;
if (sBluetoothInterface) {
return sBluetoothInterface;
}
sBluetoothInterface = new BluetoothDaemonInterface();
return sBluetoothInterface;
}
BluetoothDaemonInterface::BluetoothDaemonInterface()
{ }
BluetoothDaemonInterface::~BluetoothDaemonInterface()
{ }
class BluetoothDaemonInterface::StartDaemonTask final : public Task
{
public:
StartDaemonTask(BluetoothDaemonInterface* aInterface,
const nsACString& aCommand)
: mInterface(aInterface)
, mCommand(aCommand)
{
MOZ_ASSERT(mInterface);
}
void Run() override
{
MOZ_ASSERT(NS_IsMainThread());
BT_LOGR("Start Daemon Task");
// Start Bluetooth daemon again
if (NS_WARN_IF(property_set("ctl.start", mCommand.get()) < 0)) {
mInterface->OnConnectError(CMD_CHANNEL);
}
// We're done if Bluetooth daemon is already running
if (IsDaemonRunning()) {
return;
}
// Otherwise try again later
MessageLoop::current()->PostDelayedTask(FROM_HERE,
new StartDaemonTask(mInterface, mCommand), sRetryInterval);
}
private:
BluetoothDaemonInterface* mInterface;
nsCString mCommand;
};
class BluetoothDaemonInterface::InitResultHandler final
: public BluetoothSetupResultHandler
{
public:
InitResultHandler(BluetoothDaemonInterface* aInterface,
BluetoothResultHandler* aRes)
: mInterface(aInterface)
, mRes(aRes)
, mRegisteredSocketModule(false)
{
MOZ_ASSERT(mInterface);
}
// We need to call methods from the |BluetoothResultHandler|. Since
// we're already on the main thread and returned from Init, we don't
// need to dispatch a new runnable.
void OnError(BluetoothStatus aStatus) override
{
MOZ_ASSERT(NS_IsMainThread());
if (mRes) {
mRes->OnError(aStatus);
}
}
void RegisterModule() override
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mInterface->mProtocol);
if (!mRegisteredSocketModule) {
mRegisteredSocketModule = true;
// Init, step 5: Register Socket module
mInterface->mProtocol->RegisterModuleCmd(
SETUP_SERVICE_ID_SOCKET,
0x00,
BluetoothDaemonSocketModule::MAX_NUM_CLIENTS, this);
} else if (mRes) {
// Init, step 6: Signal success to caller
mRes->Init();
}
}
private:
BluetoothDaemonInterface* mInterface;
RefPtr<BluetoothResultHandler> mRes;
bool mRegisteredSocketModule;
};
/*
* The init procedure consists of several steps.
*
* (1) Start listening for the command channel's socket connection: We
* do this before anything else, so that we don't miss connection
* requests from the Bluetooth daemon. This step will create a
* listen socket.
*
* (2) Start the Bluetooth daemon: When the daemon starts up it will
* open two socket connections to Gecko and thus create the command
* and notification channels. Gecko already opened the listen socket
* in step (1). Step (2) ends with the creation of the command channel.
*
* (3) Start listening for the notification channel's socket connection:
* At the end of step (2), the command channel was opened by the
* daemon. In step (3), the daemon immediately tries to open the
* next socket for the notification channel. Gecko will accept the
* incoming connection request for the notification channel. The
* listen socket remained open after step (2), so there's no race
* condition between Gecko and the Bluetooth daemon.
*
* (4)(5) Register Core and Socket modules: The Core and Socket modules
* are always available and have to be registered after opening the
* socket connections during the initialization.
*
* (6) Signal success to the caller.
*
* If any step fails, we roll-back the procedure and signal an error to the
* caller.
*/
void
BluetoothDaemonInterface::Init(
BluetoothNotificationHandler* aNotificationHandler,
BluetoothResultHandler* aRes)
{
#define BASE_SOCKET_NAME "bluetoothd"
static unsigned long POSTFIX_LENGTH = 16;
// First of all, we set the notification handler. Backend crashes
// will be reported this way.
sNotificationHandler = aNotificationHandler;
// If we could not cleanup properly before and an old
// instance of the daemon is still running, we kill it
// here.
Unused << NS_WARN_IF(property_set("ctl.stop", "bluetoothd"));
mResultHandlerQ.AppendElement(aRes);
if (!mProtocol) {
mProtocol = new BluetoothDaemonProtocol();
}
if (!mListenSocket) {
mListenSocket = new ListenSocket(this, LISTEN_SOCKET);
}
// Init, step 1: Listen for command channel... */
if (!mCmdChannel) {
mCmdChannel = new DaemonSocket(mProtocol, this, CMD_CHANNEL);
} else if (
NS_WARN_IF(mCmdChannel->GetConnectionStatus() == SOCKET_CONNECTED)) {
// Command channel should not be open; let's close it.
mCmdChannel->Close();
}
// The listen socket's name is generated with a random postfix. This
// avoids naming collisions if we still have a listen socket from a
// previously failed cleanup. It also makes it hard for malicious
// external programs to capture the socket name or connect before
// the daemon can do so. If no random postfix can be generated, we
// simply use the base name as-is.
nsresult rv = DaemonSocketConnector::CreateRandomAddressString(
NS_LITERAL_CSTRING(BASE_SOCKET_NAME), POSTFIX_LENGTH, mListenSocketName);
if (NS_FAILED(rv)) {
mListenSocketName.AssignLiteral(BASE_SOCKET_NAME);
}
rv = mListenSocket->Listen(new DaemonSocketConnector(mListenSocketName),
mCmdChannel);
if (NS_FAILED(rv)) {
OnConnectError(CMD_CHANNEL);
return;
}
// The protocol implementation needs a command channel for
// sending commands to the daemon. We set it here, because
// this is the earliest time when it's available.
mProtocol->SetConnection(mCmdChannel);
}
class BluetoothDaemonInterface::CleanupResultHandler final
: public BluetoothSetupResultHandler
{
public:
CleanupResultHandler(BluetoothDaemonInterface* aInterface)
: mInterface(aInterface)
, mUnregisteredCoreModule(false)
{
MOZ_ASSERT(mInterface);
}
void OnError(BluetoothStatus aStatus) override
{
Proceed();
}
void UnregisterModule() override
{
Proceed();
}
private:
void Proceed()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mInterface->mProtocol);
if (!mUnregisteredCoreModule) {
mUnregisteredCoreModule = true;
// Cleanup, step 2: Unregister Core module
mInterface->mProtocol->UnregisterModuleCmd(SETUP_SERVICE_ID_CORE, this);
} else {
// Cleanup, step 3: Close command channel
mInterface->mCmdChannel->Close();
}
}
BluetoothDaemonInterface* mInterface;
bool mUnregisteredCoreModule;
};
/*
* Cleaning up is inverse to initialization, except for the shutdown
* of the socket connections in step (3)
*
* (1)(2) Unregister Socket and Core modules: These modules have been
* registered during initialization and need to be unregistered
* here. We assume that all other modules are already unregistered.
*
* (3) Close command socket: We only close the command socket. The
* daemon will then send any final notifications and close the
* notification socket on its side. Once we see the notification
* socket's disconnect, we continue with the cleanup.
*
* (4) Close listen socket: The listen socket is not active any longer
* and we simply close it.
*
* (5) Signal success to the caller.
*
* We don't have to stop the daemon explicitly. It will cleanup and quit
* after it closed the notification socket.
*
* Rolling-back half-completed cleanups is not possible. In the case of
* an error, we simply push forward and try to recover during the next
* initialization.
*/
void
BluetoothDaemonInterface::Cleanup(BluetoothResultHandler* aRes)
{
sNotificationHandler = nullptr;
// Cleanup, step 1: Unregister Socket module
nsresult rv = mProtocol->UnregisterModuleCmd(
SETUP_SERVICE_ID_SOCKET, new CleanupResultHandler(this));
if (NS_FAILED(rv)) {
DispatchError(aRes, rv);
return;
}
mResultHandlerQ.AppendElement(aRes);
}
void
BluetoothDaemonInterface::DispatchError(BluetoothResultHandler* aRes,
BluetoothStatus aStatus)
{
DaemonResultRunnable1<
BluetoothResultHandler, void, BluetoothStatus, BluetoothStatus>::Dispatch(
aRes, &BluetoothResultHandler::OnError,
ConstantInitOp1<BluetoothStatus>(aStatus));
}
void
BluetoothDaemonInterface::DispatchError(BluetoothResultHandler* aRes,
nsresult aRv)
{
BluetoothStatus status;
if (NS_WARN_IF(NS_FAILED(Convert(aRv, status)))) {
status = STATUS_FAIL;
}
DispatchError(aRes, status);
}
// Service Interfaces
//
BluetoothSetupInterface*
BluetoothDaemonInterface::GetBluetoothSetupInterface()
{
if (mSetupInterface) {
return mSetupInterface;
}
mSetupInterface = new BluetoothDaemonSetupInterface(mProtocol);
return mSetupInterface;
}
BluetoothCoreInterface*
BluetoothDaemonInterface::GetBluetoothCoreInterface()
{
if (mCoreInterface) {
return mCoreInterface;
}
mCoreInterface = new BluetoothDaemonCoreInterface(mProtocol);
return mCoreInterface;
}
BluetoothSocketInterface*
BluetoothDaemonInterface::GetBluetoothSocketInterface()
{
if (mSocketInterface) {
return mSocketInterface;
}
mSocketInterface = new BluetoothDaemonSocketInterface(mProtocol);
return mSocketInterface;
}
BluetoothHandsfreeInterface*
BluetoothDaemonInterface::GetBluetoothHandsfreeInterface()
{
if (mHandsfreeInterface) {
return mHandsfreeInterface;
}
mHandsfreeInterface = new BluetoothDaemonHandsfreeInterface(mProtocol);
return mHandsfreeInterface;
}
BluetoothA2dpInterface*
BluetoothDaemonInterface::GetBluetoothA2dpInterface()
{
if (mA2dpInterface) {
return mA2dpInterface;
}
mA2dpInterface = new BluetoothDaemonA2dpInterface(mProtocol);
return mA2dpInterface;
}
BluetoothAvrcpInterface*
BluetoothDaemonInterface::GetBluetoothAvrcpInterface()
{
if (mAvrcpInterface) {
return mAvrcpInterface;
}
mAvrcpInterface = new BluetoothDaemonAvrcpInterface(mProtocol);
return mAvrcpInterface;
}
BluetoothGattInterface*
BluetoothDaemonInterface::GetBluetoothGattInterface()
{
if (mGattInterface) {
return mGattInterface;
}
mGattInterface = new BluetoothDaemonGattInterface(mProtocol);
return mGattInterface;
}
// |DaemonSocketConsumer|, |ListenSocketConsumer|
void
BluetoothDaemonInterface::OnConnectSuccess(int aIndex)
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!mResultHandlerQ.IsEmpty());
switch (aIndex) {
case LISTEN_SOCKET: {
// Init, step 2: Start Bluetooth daemon */
nsCString value("bluetoothd:-a ");
value.Append(mListenSocketName);
if (NS_WARN_IF(property_set("ctl.start", value.get()) < 0)) {
OnConnectError(CMD_CHANNEL);
}
/*
* If Bluetooth daemon is not running, retry to start it later.
*
* This condition happens when when we restart Bluetooth daemon
* immediately after it crashed, as the daemon state remains 'stopping'
* instead of 'stopped'. Due to the limitation of property service,
* hereby add delay. See Bug 1143925 Comment 41.
*/
if (!IsDaemonRunning()) {
MessageLoop::current()->PostDelayedTask(FROM_HERE,
new StartDaemonTask(this, value), sRetryInterval);
}
}
break;
case CMD_CHANNEL:
// Init, step 3: Listen for notification channel...
if (!mNtfChannel) {
mNtfChannel = new DaemonSocket(mProtocol, this, NTF_CHANNEL);
} else if (
NS_WARN_IF(mNtfChannel->GetConnectionStatus() == SOCKET_CONNECTED)) {
/* Notification channel should not be open; let's close it. */
mNtfChannel->Close();
}
if (NS_FAILED(mListenSocket->Listen(mNtfChannel))) {
OnConnectError(NTF_CHANNEL);
}
break;
case NTF_CHANNEL: {
RefPtr<BluetoothResultHandler> res = mResultHandlerQ.ElementAt(0);
mResultHandlerQ.RemoveElementAt(0);
// Init, step 4: Register Core module
nsresult rv = mProtocol->RegisterModuleCmd(
SETUP_SERVICE_ID_CORE,
0x00,
BluetoothDaemonCoreModule::MAX_NUM_CLIENTS,
new InitResultHandler(this, res));
if (NS_FAILED(rv) && res) {
DispatchError(res, STATUS_FAIL);
}
}
break;
}
}
void
BluetoothDaemonInterface::OnConnectError(int aIndex)
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(!mResultHandlerQ.IsEmpty());
switch (aIndex) {
case NTF_CHANNEL:
// Close command channel
mCmdChannel->Close();
case CMD_CHANNEL:
// Stop daemon and close listen socket
Unused << NS_WARN_IF(property_set("ctl.stop", "bluetoothd"));
mListenSocket->Close();
case LISTEN_SOCKET:
if (!mResultHandlerQ.IsEmpty()) {
// Signal error to caller
RefPtr<BluetoothResultHandler> res = mResultHandlerQ.ElementAt(0);
mResultHandlerQ.RemoveElementAt(0);
if (res) {
DispatchError(res, STATUS_FAIL);
}
}
break;
}
}
/*
* Three cases for restarting:
* a) during startup
* b) during regular service
* c) during shutdown
* For (a)/(c) cases, mResultHandlerQ contains an element, but case (b)
* mResultHandlerQ shall be empty. The following procedure to recover from crashed
* consists of several steps for case (b).
* 1) Close listen socket.
* 2) Wait for all sockets disconnected and inform BluetoothServiceBluedroid to
* perform the regular stop bluetooth procedure.
* 3) When stop bluetooth procedures complete, fire
* AdapterStateChangedNotification to cleanup all necessary data members and
* deinit ProfileManagers.
* 4) After all resources cleanup, call |StartBluetooth|
*/
void
BluetoothDaemonInterface::OnDisconnect(int aIndex)
{
MOZ_ASSERT(NS_IsMainThread());
switch (aIndex) {
case CMD_CHANNEL:
// We don't have to do anything here. Step 4 is triggered
// by the daemon.
break;
case NTF_CHANNEL:
// Cleanup, step 4 (Recovery, step 1): Close listen socket
mListenSocket->Close();
break;
case LISTEN_SOCKET:
if (!mResultHandlerQ.IsEmpty()) {
RefPtr<BluetoothResultHandler> res = mResultHandlerQ.ElementAt(0);
mResultHandlerQ.RemoveElementAt(0);
// Cleanup, step 5: Signal success to caller
if (res) {
res->Cleanup();
}
}
break;
}
/* For recovery make sure all sockets disconnected, in order to avoid
* the remaining disconnects interfere with the restart procedure.
*/
if (sNotificationHandler && mResultHandlerQ.IsEmpty()) {
if (mListenSocket->GetConnectionStatus() == SOCKET_DISCONNECTED &&
mCmdChannel->GetConnectionStatus() == SOCKET_DISCONNECTED &&
mNtfChannel->GetConnectionStatus() == SOCKET_DISCONNECTED) {
// Assume daemon crashed during regular service; notify
// BluetoothServiceBluedroid to prepare restart-daemon procedure
sNotificationHandler->BackendErrorNotification(true);
sNotificationHandler = nullptr;
}
}
}
END_BLUETOOTH_NAMESPACE