tenfourfox/gfx/src/FilterSupport.cpp

2169 lines
78 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "FilterSupport.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Filters.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/PodOperations.h"
#include "gfxContext.h"
#include "gfxPattern.h"
#include "gfxPlatform.h"
#include "gfx2DGlue.h"
#include "nsMargin.h"
// c = n / 255
// c <= 0.0031308f ? c * 12.92f : 1.055f * powf(c, 1 / 2.4f) - 0.055f
static const float glinearRGBTosRGBMap[256] = {
0.000f, 0.050f, 0.085f, 0.111f, 0.132f, 0.150f, 0.166f, 0.181f,
0.194f, 0.207f, 0.219f, 0.230f, 0.240f, 0.250f, 0.260f, 0.269f,
0.278f, 0.286f, 0.295f, 0.303f, 0.310f, 0.318f, 0.325f, 0.332f,
0.339f, 0.346f, 0.352f, 0.359f, 0.365f, 0.371f, 0.378f, 0.383f,
0.389f, 0.395f, 0.401f, 0.406f, 0.412f, 0.417f, 0.422f, 0.427f,
0.433f, 0.438f, 0.443f, 0.448f, 0.452f, 0.457f, 0.462f, 0.466f,
0.471f, 0.476f, 0.480f, 0.485f, 0.489f, 0.493f, 0.498f, 0.502f,
0.506f, 0.510f, 0.514f, 0.518f, 0.522f, 0.526f, 0.530f, 0.534f,
0.538f, 0.542f, 0.546f, 0.549f, 0.553f, 0.557f, 0.561f, 0.564f,
0.568f, 0.571f, 0.575f, 0.579f, 0.582f, 0.586f, 0.589f, 0.592f,
0.596f, 0.599f, 0.603f, 0.606f, 0.609f, 0.613f, 0.616f, 0.619f,
0.622f, 0.625f, 0.629f, 0.632f, 0.635f, 0.638f, 0.641f, 0.644f,
0.647f, 0.650f, 0.653f, 0.656f, 0.659f, 0.662f, 0.665f, 0.668f,
0.671f, 0.674f, 0.677f, 0.680f, 0.683f, 0.685f, 0.688f, 0.691f,
0.694f, 0.697f, 0.699f, 0.702f, 0.705f, 0.708f, 0.710f, 0.713f,
0.716f, 0.718f, 0.721f, 0.724f, 0.726f, 0.729f, 0.731f, 0.734f,
0.737f, 0.739f, 0.742f, 0.744f, 0.747f, 0.749f, 0.752f, 0.754f,
0.757f, 0.759f, 0.762f, 0.764f, 0.767f, 0.769f, 0.772f, 0.774f,
0.776f, 0.779f, 0.781f, 0.784f, 0.786f, 0.788f, 0.791f, 0.793f,
0.795f, 0.798f, 0.800f, 0.802f, 0.805f, 0.807f, 0.809f, 0.812f,
0.814f, 0.816f, 0.818f, 0.821f, 0.823f, 0.825f, 0.827f, 0.829f,
0.832f, 0.834f, 0.836f, 0.838f, 0.840f, 0.843f, 0.845f, 0.847f,
0.849f, 0.851f, 0.853f, 0.855f, 0.857f, 0.860f, 0.862f, 0.864f,
0.866f, 0.868f, 0.870f, 0.872f, 0.874f, 0.876f, 0.878f, 0.880f,
0.882f, 0.884f, 0.886f, 0.888f, 0.890f, 0.892f, 0.894f, 0.896f,
0.898f, 0.900f, 0.902f, 0.904f, 0.906f, 0.908f, 0.910f, 0.912f,
0.914f, 0.916f, 0.918f, 0.920f, 0.922f, 0.924f, 0.926f, 0.928f,
0.930f, 0.931f, 0.933f, 0.935f, 0.937f, 0.939f, 0.941f, 0.943f,
0.945f, 0.946f, 0.948f, 0.950f, 0.952f, 0.954f, 0.956f, 0.957f,
0.959f, 0.961f, 0.963f, 0.965f, 0.967f, 0.968f, 0.970f, 0.972f,
0.974f, 0.975f, 0.977f, 0.979f, 0.981f, 0.983f, 0.984f, 0.986f,
0.988f, 0.990f, 0.991f, 0.993f, 0.995f, 0.997f, 0.998f, 1.000f
};
// c = n / 255
// c <= 0.04045f ? c / 12.92f : powf((c + 0.055f) / 1.055f, 2.4f)
static const float gsRGBToLinearRGBMap[256] = {
0.000f, 0.000f, 0.001f, 0.001f, 0.001f, 0.002f, 0.002f, 0.002f,
0.002f, 0.003f, 0.003f, 0.003f, 0.004f, 0.004f, 0.004f, 0.005f,
0.005f, 0.006f, 0.006f, 0.007f, 0.007f, 0.007f, 0.008f, 0.009f,
0.009f, 0.010f, 0.010f, 0.011f, 0.012f, 0.012f, 0.013f, 0.014f,
0.014f, 0.015f, 0.016f, 0.017f, 0.018f, 0.019f, 0.019f, 0.020f,
0.021f, 0.022f, 0.023f, 0.024f, 0.025f, 0.026f, 0.027f, 0.028f,
0.030f, 0.031f, 0.032f, 0.033f, 0.034f, 0.036f, 0.037f, 0.038f,
0.040f, 0.041f, 0.042f, 0.044f, 0.045f, 0.047f, 0.048f, 0.050f,
0.051f, 0.053f, 0.054f, 0.056f, 0.058f, 0.060f, 0.061f, 0.063f,
0.065f, 0.067f, 0.068f, 0.070f, 0.072f, 0.074f, 0.076f, 0.078f,
0.080f, 0.082f, 0.084f, 0.087f, 0.089f, 0.091f, 0.093f, 0.095f,
0.098f, 0.100f, 0.102f, 0.105f, 0.107f, 0.109f, 0.112f, 0.114f,
0.117f, 0.120f, 0.122f, 0.125f, 0.127f, 0.130f, 0.133f, 0.136f,
0.138f, 0.141f, 0.144f, 0.147f, 0.150f, 0.153f, 0.156f, 0.159f,
0.162f, 0.165f, 0.168f, 0.171f, 0.175f, 0.178f, 0.181f, 0.184f,
0.188f, 0.191f, 0.195f, 0.198f, 0.202f, 0.205f, 0.209f, 0.212f,
0.216f, 0.220f, 0.223f, 0.227f, 0.231f, 0.235f, 0.238f, 0.242f,
0.246f, 0.250f, 0.254f, 0.258f, 0.262f, 0.266f, 0.270f, 0.275f,
0.279f, 0.283f, 0.287f, 0.292f, 0.296f, 0.301f, 0.305f, 0.309f,
0.314f, 0.319f, 0.323f, 0.328f, 0.332f, 0.337f, 0.342f, 0.347f,
0.352f, 0.356f, 0.361f, 0.366f, 0.371f, 0.376f, 0.381f, 0.386f,
0.392f, 0.397f, 0.402f, 0.407f, 0.413f, 0.418f, 0.423f, 0.429f,
0.434f, 0.440f, 0.445f, 0.451f, 0.456f, 0.462f, 0.468f, 0.474f,
0.479f, 0.485f, 0.491f, 0.497f, 0.503f, 0.509f, 0.515f, 0.521f,
0.527f, 0.533f, 0.539f, 0.546f, 0.552f, 0.558f, 0.565f, 0.571f,
0.578f, 0.584f, 0.591f, 0.597f, 0.604f, 0.610f, 0.617f, 0.624f,
0.631f, 0.638f, 0.644f, 0.651f, 0.658f, 0.665f, 0.672f, 0.680f,
0.687f, 0.694f, 0.701f, 0.708f, 0.716f, 0.723f, 0.730f, 0.738f,
0.745f, 0.753f, 0.761f, 0.768f, 0.776f, 0.784f, 0.791f, 0.799f,
0.807f, 0.815f, 0.823f, 0.831f, 0.839f, 0.847f, 0.855f, 0.863f,
0.871f, 0.880f, 0.888f, 0.896f, 0.905f, 0.913f, 0.922f, 0.930f,
0.939f, 0.947f, 0.956f, 0.965f, 0.973f, 0.982f, 0.991f, 1.000f
};
namespace mozilla {
namespace gfx {
// Some convenience FilterNode creation functions.
namespace FilterWrappers {
static already_AddRefed<FilterNode>
Unpremultiply(DrawTarget* aDT, FilterNode* aInput)
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::UNPREMULTIPLY);
if (filter) {
filter->SetInput(IN_UNPREMULTIPLY_IN, aInput);
return filter.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
Premultiply(DrawTarget* aDT, FilterNode* aInput)
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::PREMULTIPLY);
if (filter) {
filter->SetInput(IN_PREMULTIPLY_IN, aInput);
return filter.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
LinearRGBToSRGB(DrawTarget* aDT, FilterNode* aInput)
{
RefPtr<FilterNode> transfer = aDT->CreateFilter(FilterType::DISCRETE_TRANSFER);
if (transfer) {
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_R, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_R, glinearRGBTosRGBMap, 256);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_G, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_G, glinearRGBTosRGBMap, 256);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_B, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_B, glinearRGBTosRGBMap, 256);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_A, true);
transfer->SetInput(IN_DISCRETE_TRANSFER_IN, aInput);
return transfer.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
SRGBToLinearRGB(DrawTarget* aDT, FilterNode* aInput)
{
RefPtr<FilterNode> transfer = aDT->CreateFilter(FilterType::DISCRETE_TRANSFER);
if (transfer) {
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_R, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_R, gsRGBToLinearRGBMap, 256);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_G, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_G, gsRGBToLinearRGBMap, 256);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_B, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_B, gsRGBToLinearRGBMap, 256);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_A, true);
transfer->SetInput(IN_DISCRETE_TRANSFER_IN, aInput);
return transfer.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
Crop(DrawTarget* aDT, FilterNode* aInputFilter, const IntRect& aRect)
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::CROP);
if (filter) {
filter->SetAttribute(ATT_CROP_RECT, Rect(aRect));
filter->SetInput(IN_CROP_IN, aInputFilter);
return filter.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
Offset(DrawTarget* aDT, FilterNode* aInputFilter, const IntPoint& aOffset)
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::TRANSFORM);
if (filter) {
filter->SetAttribute(ATT_TRANSFORM_MATRIX, Matrix::Translation(aOffset.x, aOffset.y));
filter->SetInput(IN_TRANSFORM_IN, aInputFilter);
return filter.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
GaussianBlur(DrawTarget* aDT, FilterNode* aInputFilter, const Size& aStdDeviation)
{
float stdX = float(std::min(aStdDeviation.width, kMaxStdDeviation));
float stdY = float(std::min(aStdDeviation.height, kMaxStdDeviation));
if (stdX == stdY) {
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::GAUSSIAN_BLUR);
if (filter) {
filter->SetAttribute(ATT_GAUSSIAN_BLUR_STD_DEVIATION, stdX);
filter->SetInput(IN_GAUSSIAN_BLUR_IN, aInputFilter);
return filter.forget();
}
return nullptr;
}
RefPtr<FilterNode> filterH = aDT->CreateFilter(FilterType::DIRECTIONAL_BLUR);
RefPtr<FilterNode> filterV = aDT->CreateFilter(FilterType::DIRECTIONAL_BLUR);
if (filterH && filterV) {
filterH->SetAttribute(ATT_DIRECTIONAL_BLUR_DIRECTION, (uint32_t)BLUR_DIRECTION_X);
filterH->SetAttribute(ATT_DIRECTIONAL_BLUR_STD_DEVIATION, stdX);
filterV->SetAttribute(ATT_DIRECTIONAL_BLUR_DIRECTION, (uint32_t)BLUR_DIRECTION_Y);
filterV->SetAttribute(ATT_DIRECTIONAL_BLUR_STD_DEVIATION, stdY);
filterH->SetInput(IN_DIRECTIONAL_BLUR_IN, aInputFilter);
filterV->SetInput(IN_DIRECTIONAL_BLUR_IN, filterH);
return filterV.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
Clear(DrawTarget* aDT)
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::FLOOD);
if (filter) {
filter->SetAttribute(ATT_FLOOD_COLOR, Color(0, 0, 0, 0));
return filter.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
ForSurface(DrawTarget* aDT, SourceSurface* aSurface,
const IntPoint& aSurfacePosition)
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::TRANSFORM);
if (filter) {
filter->SetAttribute(ATT_TRANSFORM_MATRIX,
Matrix::Translation(aSurfacePosition.x, aSurfacePosition.y));
filter->SetInput(IN_TRANSFORM_IN, aSurface);
return filter.forget();
}
return nullptr;
}
static already_AddRefed<FilterNode>
ToAlpha(DrawTarget* aDT, FilterNode* aInput)
{
float zero = 0.0f;
RefPtr<FilterNode> transfer = aDT->CreateFilter(FilterType::DISCRETE_TRANSFER);
if (transfer) {
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_R, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_R, &zero, 1);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_G, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_G, &zero, 1);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_B, false);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_TABLE_B, &zero, 1);
transfer->SetAttribute(ATT_DISCRETE_TRANSFER_DISABLE_A, true);
transfer->SetInput(IN_DISCRETE_TRANSFER_IN, aInput);
return transfer.forget();
}
return nullptr;
}
} // namespace FilterWrappers
// A class that wraps a FilterNode and handles conversion between different
// color models. Create FilterCachedColorModels with your original filter and
// the color model that this filter outputs in natively, and then call
// ->ForColorModel(colorModel) in order to get a FilterNode which outputs to
// the specified colorModel.
// Internally, this is achieved by wrapping the original FilterNode with
// conversion FilterNodes. These filter nodes are cached in such a way that no
// repeated or back-and-forth conversions happen.
class FilterCachedColorModels
{
public:
NS_INLINE_DECL_REFCOUNTING(FilterCachedColorModels)
// aFilter can be null. In that case, ForColorModel will return a non-null
// completely transparent filter for all color models.
FilterCachedColorModels(DrawTarget* aDT,
FilterNode* aFilter,
ColorModel aOriginalColorModel);
// Get a FilterNode for the specified color model, guaranteed to be non-null.
already_AddRefed<FilterNode> ForColorModel(ColorModel aColorModel);
AlphaModel OriginalAlphaModel() const { return mOriginalColorModel.mAlphaModel; }
private:
// Create the required FilterNode that will be cached by ForColorModel.
already_AddRefed<FilterNode> WrapForColorModel(ColorModel aColorModel);
RefPtr<DrawTarget> mDT;
ColorModel mOriginalColorModel;
// This array is indexed by ColorModel::ToIndex.
RefPtr<FilterNode> mFilterForColorModel[4];
~FilterCachedColorModels() {}
};
FilterCachedColorModels::FilterCachedColorModels(DrawTarget* aDT,
FilterNode* aFilter,
ColorModel aOriginalColorModel)
: mDT(aDT)
, mOriginalColorModel(aOriginalColorModel)
{
if (aFilter) {
mFilterForColorModel[aOriginalColorModel.ToIndex()] = aFilter;
} else {
RefPtr<FilterNode> clear = FilterWrappers::Clear(aDT);
mFilterForColorModel[0] = clear;
mFilterForColorModel[1] = clear;
mFilterForColorModel[2] = clear;
mFilterForColorModel[3] = clear;
}
}
already_AddRefed<FilterNode>
FilterCachedColorModels::ForColorModel(ColorModel aColorModel)
{
if (!mFilterForColorModel[aColorModel.ToIndex()]) {
mFilterForColorModel[aColorModel.ToIndex()] = WrapForColorModel(aColorModel);
}
RefPtr<FilterNode> filter(mFilterForColorModel[aColorModel.ToIndex()]);
return filter.forget();
}
already_AddRefed<FilterNode>
FilterCachedColorModels::WrapForColorModel(ColorModel aColorModel)
{
// Convert one aspect at a time and recurse.
// Conversions between premultiplied / unpremultiplied color channels for the
// same color space can happen directly.
// Conversions between different color spaces can only happen on
// unpremultiplied color channels.
if (aColorModel.mAlphaModel == AlphaModel::Premultiplied) {
RefPtr<FilterNode> unpre =
ForColorModel(ColorModel(aColorModel.mColorSpace, AlphaModel::Unpremultiplied));
return FilterWrappers::Premultiply(mDT, unpre);
}
MOZ_ASSERT(aColorModel.mAlphaModel == AlphaModel::Unpremultiplied);
if (aColorModel.mColorSpace == mOriginalColorModel.mColorSpace) {
RefPtr<FilterNode> premultiplied =
ForColorModel(ColorModel(aColorModel.mColorSpace, AlphaModel::Premultiplied));
return FilterWrappers::Unpremultiply(mDT, premultiplied);
}
RefPtr<FilterNode> unpremultipliedOriginal =
ForColorModel(ColorModel(mOriginalColorModel.mColorSpace, AlphaModel::Unpremultiplied));
if (aColorModel.mColorSpace == ColorSpace::LinearRGB) {
return FilterWrappers::SRGBToLinearRGB(mDT, unpremultipliedOriginal);
}
return FilterWrappers::LinearRGBToSRGB(mDT, unpremultipliedOriginal);
}
static const float identityMatrix[] =
{ 1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0 };
// When aAmount == 0, the identity matrix is returned.
// When aAmount == 1, aToMatrix is returned.
// When aAmount > 1, an exaggerated version of aToMatrix is returned. This can
// be useful in certain cases, such as producing a color matrix to oversaturate
// an image.
//
// This function is a shortcut of a full matrix addition and a scalar multiply,
// and it assumes that the following elements in aToMatrix are 0 and 1:
// x x x 0 0
// x x x 0 0
// x x x 0 0
// 0 0 0 1 0
static void
InterpolateFromIdentityMatrix(const float aToMatrix[20], float aAmount,
float aOutMatrix[20])
{
PodCopy(aOutMatrix, identityMatrix, 20);
float oneMinusAmount = 1 - aAmount;
aOutMatrix[0] = aAmount * aToMatrix[0] + oneMinusAmount;
aOutMatrix[1] = aAmount * aToMatrix[1];
aOutMatrix[2] = aAmount * aToMatrix[2];
aOutMatrix[5] = aAmount * aToMatrix[5];
aOutMatrix[6] = aAmount * aToMatrix[6] + oneMinusAmount;
aOutMatrix[7] = aAmount * aToMatrix[7];
aOutMatrix[10] = aAmount * aToMatrix[10];
aOutMatrix[11] = aAmount * aToMatrix[11];
aOutMatrix[12] = aAmount * aToMatrix[12] + oneMinusAmount;
}
// Create a 4x5 color matrix for the different ways to specify color matrices
// in SVG.
static nsresult
ComputeColorMatrix(uint32_t aColorMatrixType, const nsTArray<float>& aValues,
float aOutMatrix[20])
{
// Luminance coefficients.
static const float lumR = 0.2126f;
static const float lumG = 0.7152f;
static const float lumB = 0.0722f;
static const float oneMinusLumR = 1 - lumR;
static const float oneMinusLumG = 1 - lumG;
static const float oneMinusLumB = 1 - lumB;
static const float luminanceToAlphaMatrix[] =
{ 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
lumR, lumG, lumB, 0, 0 };
static const float saturateMatrix[] =
{ lumR, lumG, lumB, 0, 0,
lumR, lumG, lumB, 0, 0,
lumR, lumG, lumB, 0, 0,
0, 0, 0, 1, 0 };
static const float sepiaMatrix[] =
{ 0.393f, 0.769f, 0.189f, 0, 0,
0.349f, 0.686f, 0.168f, 0, 0,
0.272f, 0.534f, 0.131f, 0, 0,
0, 0, 0, 1, 0 };
// Hue rotate specific coefficients.
static const float hueRotateR = 0.143f;
static const float hueRotateG = 0.140f;
static const float hueRotateB = 0.283f;
switch (aColorMatrixType) {
case SVG_FECOLORMATRIX_TYPE_MATRIX:
{
if (aValues.Length() != 20) {
return NS_ERROR_FAILURE;
}
PodCopy(aOutMatrix, aValues.Elements(), 20);
break;
}
case SVG_FECOLORMATRIX_TYPE_SATURATE:
{
if (aValues.Length() != 1)
return NS_ERROR_FAILURE;
float s = aValues[0];
if (s < 0)
return NS_ERROR_FAILURE;
InterpolateFromIdentityMatrix(saturateMatrix, 1 - s, aOutMatrix);
break;
}
case SVG_FECOLORMATRIX_TYPE_HUE_ROTATE:
{
if (aValues.Length() != 1)
return NS_ERROR_FAILURE;
PodCopy(aOutMatrix, identityMatrix, 20);
float hueRotateValue = aValues[0];
float c = static_cast<float>(cos(hueRotateValue * M_PI / 180));
float s = static_cast<float>(sin(hueRotateValue * M_PI / 180));
aOutMatrix[0] = lumR + oneMinusLumR * c - lumR * s;
aOutMatrix[1] = lumG - lumG * c - lumG * s;
aOutMatrix[2] = lumB - lumB * c + oneMinusLumB * s;
aOutMatrix[5] = lumR - lumR * c + hueRotateR * s;
aOutMatrix[6] = lumG + oneMinusLumG * c + hueRotateG * s;
aOutMatrix[7] = lumB - lumB * c - hueRotateB * s;
aOutMatrix[10] = lumR - lumR * c - oneMinusLumR * s;
aOutMatrix[11] = lumG - lumG * c + lumG * s;
aOutMatrix[12] = lumB + oneMinusLumB * c + lumB * s;
break;
}
case SVG_FECOLORMATRIX_TYPE_LUMINANCE_TO_ALPHA:
{
PodCopy(aOutMatrix, luminanceToAlphaMatrix, 20);
break;
}
case SVG_FECOLORMATRIX_TYPE_SEPIA:
{
if (aValues.Length() != 1)
return NS_ERROR_FAILURE;
float amount = aValues[0];
if (amount < 0 || amount > 1)
return NS_ERROR_FAILURE;
InterpolateFromIdentityMatrix(sepiaMatrix, amount, aOutMatrix);
break;
}
default:
return NS_ERROR_FAILURE;
}
return NS_OK;
}
static void
DisableAllTransfers(FilterNode* aTransferFilterNode)
{
aTransferFilterNode->SetAttribute(ATT_TRANSFER_DISABLE_R, true);
aTransferFilterNode->SetAttribute(ATT_TRANSFER_DISABLE_G, true);
aTransferFilterNode->SetAttribute(ATT_TRANSFER_DISABLE_B, true);
aTransferFilterNode->SetAttribute(ATT_TRANSFER_DISABLE_A, true);
}
// Called for one channel at a time.
// This function creates the required FilterNodes on demand and tries to
// merge conversions of different channels into the same FilterNode if
// possible.
// There's a mismatch between the way SVG and the Moz2D API handle transfer
// functions: In SVG, it's possible to specify a different transfer function
// type for each color channel, but in Moz2D, a given transfer function type
// applies to all color channels.
//
// @param aFunctionAttributes The attributes of the transfer function for this
// channel.
// @param aChannel The color channel that this function applies to, where
// 0 = red, 1 = green, 2 = blue, 3 = alpha
// @param aDT The DrawTarget that the FilterNodes should be created for.
// @param aTableTransfer Existing FilterNode holders (which may still be
// null) that the resulting FilterNodes from this
// function will be stored in.
//
static void
ConvertComponentTransferFunctionToFilter(const AttributeMap& aFunctionAttributes,
int32_t aChannel,
DrawTarget* aDT,
RefPtr<FilterNode>& aTableTransfer,
RefPtr<FilterNode>& aDiscreteTransfer,
RefPtr<FilterNode>& aLinearTransfer,
RefPtr<FilterNode>& aGammaTransfer)
{
static const TransferAtts disableAtt[4] = {
ATT_TRANSFER_DISABLE_R,
ATT_TRANSFER_DISABLE_G,
ATT_TRANSFER_DISABLE_B,
ATT_TRANSFER_DISABLE_A
};
RefPtr<FilterNode> filter;
uint32_t type = aFunctionAttributes.GetUint(eComponentTransferFunctionType);
switch (type) {
case SVG_FECOMPONENTTRANSFER_TYPE_TABLE:
{
const nsTArray<float>& tableValues =
aFunctionAttributes.GetFloats(eComponentTransferFunctionTableValues);
if (tableValues.Length() < 2)
return;
if (!aTableTransfer) {
aTableTransfer = aDT->CreateFilter(FilterType::TABLE_TRANSFER);
if (!aTableTransfer) {
return;
}
DisableAllTransfers(aTableTransfer);
}
filter = aTableTransfer;
static const TableTransferAtts tableAtt[4] = {
ATT_TABLE_TRANSFER_TABLE_R,
ATT_TABLE_TRANSFER_TABLE_G,
ATT_TABLE_TRANSFER_TABLE_B,
ATT_TABLE_TRANSFER_TABLE_A
};
filter->SetAttribute(disableAtt[aChannel], false);
filter->SetAttribute(tableAtt[aChannel], &tableValues[0], tableValues.Length());
break;
}
case SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE:
{
const nsTArray<float>& tableValues =
aFunctionAttributes.GetFloats(eComponentTransferFunctionTableValues);
if (tableValues.Length() < 1)
return;
if (!aDiscreteTransfer) {
aDiscreteTransfer = aDT->CreateFilter(FilterType::DISCRETE_TRANSFER);
if (!aDiscreteTransfer) {
return;
}
DisableAllTransfers(aDiscreteTransfer);
}
filter = aDiscreteTransfer;
static const DiscreteTransferAtts tableAtt[4] = {
ATT_DISCRETE_TRANSFER_TABLE_R,
ATT_DISCRETE_TRANSFER_TABLE_G,
ATT_DISCRETE_TRANSFER_TABLE_B,
ATT_DISCRETE_TRANSFER_TABLE_A
};
filter->SetAttribute(disableAtt[aChannel], false);
filter->SetAttribute(tableAtt[aChannel], &tableValues[0], tableValues.Length());
break;
}
case SVG_FECOMPONENTTRANSFER_TYPE_LINEAR:
{
static const LinearTransferAtts slopeAtt[4] = {
ATT_LINEAR_TRANSFER_SLOPE_R,
ATT_LINEAR_TRANSFER_SLOPE_G,
ATT_LINEAR_TRANSFER_SLOPE_B,
ATT_LINEAR_TRANSFER_SLOPE_A
};
static const LinearTransferAtts interceptAtt[4] = {
ATT_LINEAR_TRANSFER_INTERCEPT_R,
ATT_LINEAR_TRANSFER_INTERCEPT_G,
ATT_LINEAR_TRANSFER_INTERCEPT_B,
ATT_LINEAR_TRANSFER_INTERCEPT_A
};
if (!aLinearTransfer) {
aLinearTransfer = aDT->CreateFilter(FilterType::LINEAR_TRANSFER);
if (!aLinearTransfer) {
return;
}
DisableAllTransfers(aLinearTransfer);
}
filter = aLinearTransfer;
filter->SetAttribute(disableAtt[aChannel], false);
float slope = aFunctionAttributes.GetFloat(eComponentTransferFunctionSlope);
float intercept = aFunctionAttributes.GetFloat(eComponentTransferFunctionIntercept);
filter->SetAttribute(slopeAtt[aChannel], slope);
filter->SetAttribute(interceptAtt[aChannel], intercept);
break;
}
case SVG_FECOMPONENTTRANSFER_TYPE_GAMMA:
{
static const GammaTransferAtts amplitudeAtt[4] = {
ATT_GAMMA_TRANSFER_AMPLITUDE_R,
ATT_GAMMA_TRANSFER_AMPLITUDE_G,
ATT_GAMMA_TRANSFER_AMPLITUDE_B,
ATT_GAMMA_TRANSFER_AMPLITUDE_A
};
static const GammaTransferAtts exponentAtt[4] = {
ATT_GAMMA_TRANSFER_EXPONENT_R,
ATT_GAMMA_TRANSFER_EXPONENT_G,
ATT_GAMMA_TRANSFER_EXPONENT_B,
ATT_GAMMA_TRANSFER_EXPONENT_A
};
static const GammaTransferAtts offsetAtt[4] = {
ATT_GAMMA_TRANSFER_OFFSET_R,
ATT_GAMMA_TRANSFER_OFFSET_G,
ATT_GAMMA_TRANSFER_OFFSET_B,
ATT_GAMMA_TRANSFER_OFFSET_A
};
if (!aGammaTransfer) {
aGammaTransfer = aDT->CreateFilter(FilterType::GAMMA_TRANSFER);
if (!aGammaTransfer) {
return;
}
DisableAllTransfers(aGammaTransfer);
}
filter = aGammaTransfer;
filter->SetAttribute(disableAtt[aChannel], false);
float amplitude = aFunctionAttributes.GetFloat(eComponentTransferFunctionAmplitude);
float exponent = aFunctionAttributes.GetFloat(eComponentTransferFunctionExponent);
float offset = aFunctionAttributes.GetFloat(eComponentTransferFunctionOffset);
filter->SetAttribute(amplitudeAtt[aChannel], amplitude);
filter->SetAttribute(exponentAtt[aChannel], exponent);
filter->SetAttribute(offsetAtt[aChannel], offset);
break;
}
case SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY:
default:
break;
}
}
const int32_t kMorphologyMaxRadius = 100000;
// Handle the different primitive description types and create the necessary
// FilterNode(s) for each.
// Returns nullptr for invalid filter primitives. This should be interpreted as
// transparent black by the caller.
// aSourceRegions contains the filter primitive subregions of the source
// primitives; only needed for eTile primitives.
// aInputImages carries additional surfaces that are used by eImage primitives.
static already_AddRefed<FilterNode>
FilterNodeFromPrimitiveDescription(const FilterPrimitiveDescription& aDescription,
DrawTarget* aDT,
nsTArray<RefPtr<FilterNode> >& aSources,
nsTArray<IntRect>& aSourceRegions,
nsTArray<RefPtr<SourceSurface>>& aInputImages)
{
const AttributeMap& atts = aDescription.Attributes();
switch (aDescription.Type()) {
case PrimitiveType::Empty:
return nullptr;
case PrimitiveType::Blend:
{
uint32_t mode = atts.GetUint(eBlendBlendmode);
RefPtr<FilterNode> filter;
if (mode == SVG_FEBLEND_MODE_UNKNOWN) {
return nullptr;
}
if (mode == SVG_FEBLEND_MODE_NORMAL) {
filter = aDT->CreateFilter(FilterType::COMPOSITE);
if (!filter) {
return nullptr;
}
filter->SetInput(IN_COMPOSITE_IN_START, aSources[1]);
filter->SetInput(IN_COMPOSITE_IN_START + 1, aSources[0]);
} else {
filter = aDT->CreateFilter(FilterType::BLEND);
if (!filter) {
return nullptr;
}
static const uint8_t blendModes[SVG_FEBLEND_MODE_LUMINOSITY + 1] = {
0,
0,
BLEND_MODE_MULTIPLY,
BLEND_MODE_SCREEN,
BLEND_MODE_DARKEN,
BLEND_MODE_LIGHTEN,
BLEND_MODE_OVERLAY,
BLEND_MODE_COLOR_DODGE,
BLEND_MODE_COLOR_BURN,
BLEND_MODE_HARD_LIGHT,
BLEND_MODE_SOFT_LIGHT,
BLEND_MODE_DIFFERENCE,
BLEND_MODE_EXCLUSION,
BLEND_MODE_HUE,
BLEND_MODE_SATURATION,
BLEND_MODE_COLOR,
BLEND_MODE_LUMINOSITY
};
filter->SetAttribute(ATT_BLEND_BLENDMODE, (uint32_t)blendModes[mode]);
// The correct input order for both software and D2D filters is flipped
// from our source order, so flip here.
filter->SetInput(IN_BLEND_IN, aSources[1]);
filter->SetInput(IN_BLEND_IN2, aSources[0]);
}
return filter.forget();
}
case PrimitiveType::ColorMatrix:
{
float colorMatrix[20];
uint32_t type = atts.GetUint(eColorMatrixType);
const nsTArray<float>& values = atts.GetFloats(eColorMatrixValues);
if (NS_FAILED(ComputeColorMatrix(type, values, colorMatrix)) ||
PodEqual(colorMatrix, identityMatrix)) {
RefPtr<FilterNode> filter(aSources[0]);
return filter.forget();
}
Matrix5x4 matrix(colorMatrix[0], colorMatrix[5], colorMatrix[10], colorMatrix[15],
colorMatrix[1], colorMatrix[6], colorMatrix[11], colorMatrix[16],
colorMatrix[2], colorMatrix[7], colorMatrix[12], colorMatrix[17],
colorMatrix[3], colorMatrix[8], colorMatrix[13], colorMatrix[18],
colorMatrix[4], colorMatrix[9], colorMatrix[14], colorMatrix[19]);
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::COLOR_MATRIX);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_COLOR_MATRIX_MATRIX, matrix);
filter->SetAttribute(ATT_COLOR_MATRIX_ALPHA_MODE, (uint32_t)ALPHA_MODE_STRAIGHT);
filter->SetInput(IN_COLOR_MATRIX_IN, aSources[0]);
return filter.forget();
}
case PrimitiveType::Morphology:
{
Size radii = atts.GetSize(eMorphologyRadii);
int32_t rx = radii.width;
int32_t ry = radii.height;
if (rx < 0 || ry < 0) {
// XXX SVGContentUtils::ReportToConsole()
return nullptr;
}
if (rx == 0 && ry == 0) {
return nullptr;
}
// Clamp radii to prevent completely insane values:
rx = std::min(rx, kMorphologyMaxRadius);
ry = std::min(ry, kMorphologyMaxRadius);
MorphologyOperator op = atts.GetUint(eMorphologyOperator) == SVG_OPERATOR_ERODE ?
MORPHOLOGY_OPERATOR_ERODE : MORPHOLOGY_OPERATOR_DILATE;
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::MORPHOLOGY);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_MORPHOLOGY_RADII, IntSize(rx, ry));
filter->SetAttribute(ATT_MORPHOLOGY_OPERATOR, (uint32_t)op);
filter->SetInput(IN_MORPHOLOGY_IN, aSources[0]);
return filter.forget();
}
case PrimitiveType::Flood:
{
Color color = atts.GetColor(eFloodColor);
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::FLOOD);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_FLOOD_COLOR, color);
return filter.forget();
}
case PrimitiveType::Tile:
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::TILE);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_TILE_SOURCE_RECT, aSourceRegions[0]);
filter->SetInput(IN_TILE_IN, aSources[0]);
return filter.forget();
}
case PrimitiveType::ComponentTransfer:
{
RefPtr<FilterNode> filters[4]; // one for each FILTER_*_TRANSFER type
static const AttributeName componentFunctionNames[4] = {
eComponentTransferFunctionR,
eComponentTransferFunctionG,
eComponentTransferFunctionB,
eComponentTransferFunctionA
};
for (int32_t i = 0; i < 4; i++) {
AttributeMap functionAttributes =
atts.GetAttributeMap(componentFunctionNames[i]);
ConvertComponentTransferFunctionToFilter(functionAttributes, i, aDT,
filters[0], filters[1], filters[2], filters[3]);
}
// Connect all used filters nodes.
RefPtr<FilterNode> lastFilter = aSources[0];
for (int32_t i = 0; i < 4; i++) {
if (filters[i]) {
filters[i]->SetInput(0, lastFilter);
lastFilter = filters[i];
}
}
return lastFilter.forget();
}
case PrimitiveType::ConvolveMatrix:
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::CONVOLVE_MATRIX);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_CONVOLVE_MATRIX_KERNEL_SIZE, atts.GetIntSize(eConvolveMatrixKernelSize));
const nsTArray<float>& matrix = atts.GetFloats(eConvolveMatrixKernelMatrix);
filter->SetAttribute(ATT_CONVOLVE_MATRIX_KERNEL_MATRIX,
matrix.Elements(), matrix.Length());
filter->SetAttribute(ATT_CONVOLVE_MATRIX_DIVISOR,
atts.GetFloat(eConvolveMatrixDivisor));
filter->SetAttribute(ATT_CONVOLVE_MATRIX_BIAS,
atts.GetFloat(eConvolveMatrixBias));
filter->SetAttribute(ATT_CONVOLVE_MATRIX_TARGET,
atts.GetIntPoint(eConvolveMatrixTarget));
filter->SetAttribute(ATT_CONVOLVE_MATRIX_SOURCE_RECT,
aSourceRegions[0]);
uint32_t edgeMode = atts.GetUint(eConvolveMatrixEdgeMode);
static const uint8_t edgeModes[SVG_EDGEMODE_NONE+1] = {
EDGE_MODE_NONE, // SVG_EDGEMODE_UNKNOWN
EDGE_MODE_DUPLICATE, // SVG_EDGEMODE_DUPLICATE
EDGE_MODE_WRAP, // SVG_EDGEMODE_WRAP
EDGE_MODE_NONE // SVG_EDGEMODE_NONE
};
filter->SetAttribute(ATT_CONVOLVE_MATRIX_EDGE_MODE, (uint32_t)edgeModes[edgeMode]);
filter->SetAttribute(ATT_CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH,
atts.GetSize(eConvolveMatrixKernelUnitLength));
filter->SetAttribute(ATT_CONVOLVE_MATRIX_PRESERVE_ALPHA,
atts.GetBool(eConvolveMatrixPreserveAlpha));
filter->SetInput(IN_CONVOLVE_MATRIX_IN, aSources[0]);
return filter.forget();
}
case PrimitiveType::Offset:
{
return FilterWrappers::Offset(aDT, aSources[0],
atts.GetIntPoint(eOffsetOffset));
}
case PrimitiveType::DisplacementMap:
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::DISPLACEMENT_MAP);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_DISPLACEMENT_MAP_SCALE,
atts.GetFloat(eDisplacementMapScale));
static const uint8_t channel[SVG_CHANNEL_A+1] = {
COLOR_CHANNEL_R, // SVG_CHANNEL_UNKNOWN
COLOR_CHANNEL_R, // SVG_CHANNEL_R
COLOR_CHANNEL_G, // SVG_CHANNEL_G
COLOR_CHANNEL_B, // SVG_CHANNEL_B
COLOR_CHANNEL_A // SVG_CHANNEL_A
};
filter->SetAttribute(ATT_DISPLACEMENT_MAP_X_CHANNEL,
(uint32_t)channel[atts.GetUint(eDisplacementMapXChannel)]);
filter->SetAttribute(ATT_DISPLACEMENT_MAP_Y_CHANNEL,
(uint32_t)channel[atts.GetUint(eDisplacementMapYChannel)]);
filter->SetInput(IN_DISPLACEMENT_MAP_IN, aSources[0]);
filter->SetInput(IN_DISPLACEMENT_MAP_IN2, aSources[1]);
return filter.forget();
}
case PrimitiveType::Turbulence:
{
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::TURBULENCE);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_TURBULENCE_BASE_FREQUENCY,
atts.GetSize(eTurbulenceBaseFrequency));
filter->SetAttribute(ATT_TURBULENCE_NUM_OCTAVES,
atts.GetUint(eTurbulenceNumOctaves));
filter->SetAttribute(ATT_TURBULENCE_STITCHABLE,
atts.GetBool(eTurbulenceStitchable));
filter->SetAttribute(ATT_TURBULENCE_SEED,
(uint32_t)atts.GetFloat(eTurbulenceSeed));
static const uint8_t type[SVG_TURBULENCE_TYPE_TURBULENCE+1] = {
TURBULENCE_TYPE_FRACTAL_NOISE, // SVG_TURBULENCE_TYPE_UNKNOWN
TURBULENCE_TYPE_FRACTAL_NOISE, // SVG_TURBULENCE_TYPE_FRACTALNOISE
TURBULENCE_TYPE_TURBULENCE // SVG_TURBULENCE_TYPE_TURBULENCE
};
filter->SetAttribute(ATT_TURBULENCE_TYPE,
(uint32_t)type[atts.GetUint(eTurbulenceType)]);
filter->SetAttribute(ATT_TURBULENCE_RECT,
aDescription.PrimitiveSubregion() - atts.GetIntPoint(eTurbulenceOffset));
return FilterWrappers::Offset(aDT, filter, atts.GetIntPoint(eTurbulenceOffset));
}
case PrimitiveType::Composite:
{
RefPtr<FilterNode> filter;
uint32_t op = atts.GetUint(eCompositeOperator);
if (op == SVG_FECOMPOSITE_OPERATOR_ARITHMETIC) {
const nsTArray<float>& coefficients = atts.GetFloats(eCompositeCoefficients);
static const float allZero[4] = { 0, 0, 0, 0 };
filter = aDT->CreateFilter(FilterType::ARITHMETIC_COMBINE);
// All-zero coefficients sometimes occur in junk filters.
if (!filter ||
(coefficients.Length() == ArrayLength(allZero) &&
PodEqual(coefficients.Elements(), allZero, ArrayLength(allZero)))) {
return nullptr;
}
filter->SetAttribute(ATT_ARITHMETIC_COMBINE_COEFFICIENTS,
coefficients.Elements(), coefficients.Length());
filter->SetInput(IN_ARITHMETIC_COMBINE_IN, aSources[0]);
filter->SetInput(IN_ARITHMETIC_COMBINE_IN2, aSources[1]);
} else {
filter = aDT->CreateFilter(FilterType::COMPOSITE);
if (!filter) {
return nullptr;
}
static const uint8_t operators[SVG_FECOMPOSITE_OPERATOR_ARITHMETIC] = {
COMPOSITE_OPERATOR_OVER, // SVG_FECOMPOSITE_OPERATOR_UNKNOWN
COMPOSITE_OPERATOR_OVER, // SVG_FECOMPOSITE_OPERATOR_OVER
COMPOSITE_OPERATOR_IN, // SVG_FECOMPOSITE_OPERATOR_IN
COMPOSITE_OPERATOR_OUT, // SVG_FECOMPOSITE_OPERATOR_OUT
COMPOSITE_OPERATOR_ATOP, // SVG_FECOMPOSITE_OPERATOR_ATOP
COMPOSITE_OPERATOR_XOR // SVG_FECOMPOSITE_OPERATOR_XOR
};
filter->SetAttribute(ATT_COMPOSITE_OPERATOR, (uint32_t)operators[op]);
filter->SetInput(IN_COMPOSITE_IN_START, aSources[1]);
filter->SetInput(IN_COMPOSITE_IN_START + 1, aSources[0]);
}
return filter.forget();
}
case PrimitiveType::Merge:
{
if (aSources.Length() == 0) {
return nullptr;
}
if (aSources.Length() == 1) {
RefPtr<FilterNode> filter(aSources[0]);
return filter.forget();
}
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::COMPOSITE);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_COMPOSITE_OPERATOR, (uint32_t)COMPOSITE_OPERATOR_OVER);
for (size_t i = 0; i < aSources.Length(); i++) {
filter->SetInput(IN_COMPOSITE_IN_START + i, aSources[i]);
}
return filter.forget();
}
case PrimitiveType::GaussianBlur:
{
return FilterWrappers::GaussianBlur(aDT, aSources[0],
atts.GetSize(eGaussianBlurStdDeviation));
}
case PrimitiveType::DropShadow:
{
RefPtr<FilterNode> alpha = FilterWrappers::ToAlpha(aDT, aSources[0]);
RefPtr<FilterNode> blur = FilterWrappers::GaussianBlur(aDT, alpha,
atts.GetSize(eDropShadowStdDeviation));
RefPtr<FilterNode> offsetBlur = FilterWrappers::Offset(aDT, blur,
atts.GetIntPoint(eDropShadowOffset));
RefPtr<FilterNode> flood = aDT->CreateFilter(FilterType::FLOOD);
if (!flood) {
return nullptr;
}
Color color = atts.GetColor(eDropShadowColor);
if (aDescription.InputColorSpace(0) == ColorSpace::LinearRGB) {
color = Color(gsRGBToLinearRGBMap[uint8_t(color.r * 255)],
gsRGBToLinearRGBMap[uint8_t(color.g * 255)],
gsRGBToLinearRGBMap[uint8_t(color.b * 255)],
color.a);
}
flood->SetAttribute(ATT_FLOOD_COLOR, color);
RefPtr<FilterNode> composite = aDT->CreateFilter(FilterType::COMPOSITE);
if (!composite) {
return nullptr;
}
composite->SetAttribute(ATT_COMPOSITE_OPERATOR, (uint32_t)COMPOSITE_OPERATOR_IN);
composite->SetInput(IN_COMPOSITE_IN_START, offsetBlur);
composite->SetInput(IN_COMPOSITE_IN_START + 1, flood);
RefPtr<FilterNode> filter = aDT->CreateFilter(FilterType::COMPOSITE);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_COMPOSITE_OPERATOR, (uint32_t)COMPOSITE_OPERATOR_OVER);
filter->SetInput(IN_COMPOSITE_IN_START, composite);
filter->SetInput(IN_COMPOSITE_IN_START + 1, aSources[0]);
return filter.forget();
}
case PrimitiveType::DiffuseLighting:
case PrimitiveType::SpecularLighting:
{
bool isSpecular =
aDescription.Type() == PrimitiveType::SpecularLighting;
AttributeMap lightAttributes = atts.GetAttributeMap(eLightingLight);
if (lightAttributes.GetUint(eLightType) == eLightTypeNone) {
return nullptr;
}
enum { POINT = 0, SPOT, DISTANT } lightType = POINT;
switch (lightAttributes.GetUint(eLightType)) {
case eLightTypePoint: lightType = POINT; break;
case eLightTypeSpot: lightType = SPOT; break;
case eLightTypeDistant: lightType = DISTANT; break;
}
static const FilterType filterType[2][DISTANT+1] = {
{ FilterType::POINT_DIFFUSE, FilterType::SPOT_DIFFUSE, FilterType::DISTANT_DIFFUSE },
{ FilterType::POINT_SPECULAR, FilterType::SPOT_SPECULAR, FilterType::DISTANT_SPECULAR }
};
RefPtr<FilterNode> filter =
aDT->CreateFilter(filterType[isSpecular][lightType]);
if (!filter) {
return nullptr;
}
filter->SetAttribute(ATT_LIGHTING_COLOR,
atts.GetColor(eLightingColor));
filter->SetAttribute(ATT_LIGHTING_SURFACE_SCALE,
atts.GetFloat(eLightingSurfaceScale));
filter->SetAttribute(ATT_LIGHTING_KERNEL_UNIT_LENGTH,
atts.GetSize(eLightingKernelUnitLength));
if (isSpecular) {
filter->SetAttribute(ATT_SPECULAR_LIGHTING_SPECULAR_CONSTANT,
atts.GetFloat(eSpecularLightingSpecularConstant));
filter->SetAttribute(ATT_SPECULAR_LIGHTING_SPECULAR_EXPONENT,
atts.GetFloat(eSpecularLightingSpecularExponent));
} else {
filter->SetAttribute(ATT_DIFFUSE_LIGHTING_DIFFUSE_CONSTANT,
atts.GetFloat(eDiffuseLightingDiffuseConstant));
}
switch (lightType) {
case POINT:
filter->SetAttribute(ATT_POINT_LIGHT_POSITION,
lightAttributes.GetPoint3D(ePointLightPosition));
break;
case SPOT:
filter->SetAttribute(ATT_SPOT_LIGHT_POSITION,
lightAttributes.GetPoint3D(eSpotLightPosition));
filter->SetAttribute(ATT_SPOT_LIGHT_POINTS_AT,
lightAttributes.GetPoint3D(eSpotLightPointsAt));
filter->SetAttribute(ATT_SPOT_LIGHT_FOCUS,
lightAttributes.GetFloat(eSpotLightFocus));
filter->SetAttribute(ATT_SPOT_LIGHT_LIMITING_CONE_ANGLE,
lightAttributes.GetFloat(eSpotLightLimitingConeAngle));
break;
case DISTANT:
filter->SetAttribute(ATT_DISTANT_LIGHT_AZIMUTH,
lightAttributes.GetFloat(eDistantLightAzimuth));
filter->SetAttribute(ATT_DISTANT_LIGHT_ELEVATION,
lightAttributes.GetFloat(eDistantLightElevation));
break;
}
filter->SetInput(IN_LIGHTING_IN, aSources[0]);
return filter.forget();
}
case PrimitiveType::Image:
{
Matrix TM = atts.GetMatrix(eImageTransform);
if (!TM.Determinant()) {
return nullptr;
}
// Pull the image from the additional image list using the index that's
// stored in the primitive description.
RefPtr<SourceSurface> inputImage =
aInputImages[atts.GetUint(eImageInputIndex)];
RefPtr<FilterNode> transform = aDT->CreateFilter(FilterType::TRANSFORM);
if (!transform) {
return nullptr;
}
transform->SetInput(IN_TRANSFORM_IN, inputImage);
transform->SetAttribute(ATT_TRANSFORM_MATRIX, TM);
transform->SetAttribute(ATT_TRANSFORM_FILTER, atts.GetUint(eImageFilter));
return transform.forget();
}
case PrimitiveType::ToAlpha:
{
return FilterWrappers::ToAlpha(aDT, aSources[0]);
}
default:
return nullptr;
}
}
template<typename T>
static const T&
ElementForIndex(int32_t aIndex,
const nsTArray<T>& aPrimitiveElements,
const T& aSourceGraphicElement,
const T& aFillPaintElement,
const T& aStrokePaintElement)
{
switch (aIndex) {
case FilterPrimitiveDescription::kPrimitiveIndexSourceGraphic:
case FilterPrimitiveDescription::kPrimitiveIndexSourceAlpha:
return aSourceGraphicElement;
case FilterPrimitiveDescription::kPrimitiveIndexFillPaint:
return aFillPaintElement;
case FilterPrimitiveDescription::kPrimitiveIndexStrokePaint:
return aStrokePaintElement;
default:
MOZ_ASSERT(aIndex >= 0, "bad index");
return aPrimitiveElements[aIndex];
}
}
static AlphaModel
InputAlphaModelForPrimitive(const FilterPrimitiveDescription& aDescr,
int32_t aInputIndex,
AlphaModel aOriginalAlphaModel)
{
switch (aDescr.Type()) {
case PrimitiveType::Tile:
case PrimitiveType::Offset:
case PrimitiveType::ToAlpha:
return aOriginalAlphaModel;
case PrimitiveType::ColorMatrix:
case PrimitiveType::ComponentTransfer:
return AlphaModel::Unpremultiplied;
case PrimitiveType::DisplacementMap:
return aInputIndex == 0 ?
AlphaModel::Premultiplied : AlphaModel::Unpremultiplied;
case PrimitiveType::ConvolveMatrix:
return aDescr.Attributes().GetBool(eConvolveMatrixPreserveAlpha) ?
AlphaModel::Unpremultiplied : AlphaModel::Premultiplied;
default:
return AlphaModel::Premultiplied;
}
}
static AlphaModel
OutputAlphaModelForPrimitive(const FilterPrimitiveDescription& aDescr,
const nsTArray<AlphaModel>& aInputAlphaModels)
{
if (aInputAlphaModels.Length()) {
// For filters with inputs, the output is premultiplied if and only if the
// first input is premultiplied.
return InputAlphaModelForPrimitive(aDescr, 0, aInputAlphaModels[0]);
}
// All filters without inputs produce premultiplied alpha.
return AlphaModel::Premultiplied;
}
// Returns the output FilterNode, in premultiplied sRGB space.
static already_AddRefed<FilterNode>
FilterNodeGraphFromDescription(DrawTarget* aDT,
const FilterDescription& aFilter,
const Rect& aResultNeededRect,
SourceSurface* aSourceGraphic,
const IntRect& aSourceGraphicRect,
SourceSurface* aFillPaint,
const IntRect& aFillPaintRect,
SourceSurface* aStrokePaint,
const IntRect& aStrokePaintRect,
nsTArray<RefPtr<SourceSurface>>& aAdditionalImages)
{
const nsTArray<FilterPrimitiveDescription>& primitives = aFilter.mPrimitives;
RefPtr<FilterCachedColorModels> sourceFilters[4];
nsTArray<RefPtr<FilterCachedColorModels> > primitiveFilters;
for (size_t i = 0; i < primitives.Length(); ++i) {
const FilterPrimitiveDescription& descr = primitives[i];
nsTArray<RefPtr<FilterNode> > inputFilterNodes;
nsTArray<IntRect> inputSourceRects;
nsTArray<AlphaModel> inputAlphaModels;
for (size_t j = 0; j < descr.NumberOfInputs(); j++) {
int32_t inputIndex = descr.InputPrimitiveIndex(j);
if (inputIndex < 0) {
inputSourceRects.AppendElement(descr.FilterSpaceBounds());
} else {
inputSourceRects.AppendElement(primitives[inputIndex].PrimitiveSubregion());
}
RefPtr<FilterCachedColorModels> inputFilter;
if (inputIndex >= 0) {
MOZ_ASSERT(inputIndex < (int64_t)primitiveFilters.Length(), "out-of-bounds input index!");
inputFilter = primitiveFilters[inputIndex];
MOZ_ASSERT(inputFilter, "Referred to input filter that comes after the current one?");
} else {
int32_t sourceIndex = -inputIndex - 1;
MOZ_ASSERT(sourceIndex >= 0, "invalid source index");
MOZ_ASSERT(sourceIndex < 4, "invalid source index");
inputFilter = sourceFilters[sourceIndex];
if (!inputFilter) {
RefPtr<FilterNode> sourceFilterNode;
nsTArray<SourceSurface*> primitiveSurfaces;
nsTArray<IntRect> primitiveSurfaceRects;
RefPtr<SourceSurface> surf =
ElementForIndex(inputIndex, primitiveSurfaces,
aSourceGraphic, aFillPaint, aStrokePaint);
IntRect surfaceRect =
ElementForIndex(inputIndex, primitiveSurfaceRects,
aSourceGraphicRect, aFillPaintRect, aStrokePaintRect);
if (surf) {
IntPoint offset = surfaceRect.TopLeft();
sourceFilterNode = FilterWrappers::ForSurface(aDT, surf, offset);
// Clip the original SourceGraphic to the first filter region if the
// surface isn't already sized appropriately.
if ((inputIndex == FilterPrimitiveDescription::kPrimitiveIndexSourceGraphic ||
inputIndex == FilterPrimitiveDescription::kPrimitiveIndexSourceAlpha) &&
!descr.FilterSpaceBounds().Contains(aSourceGraphicRect)) {
sourceFilterNode =
FilterWrappers::Crop(aDT, sourceFilterNode, descr.FilterSpaceBounds());
}
if (inputIndex == FilterPrimitiveDescription::kPrimitiveIndexSourceAlpha) {
sourceFilterNode = FilterWrappers::ToAlpha(aDT, sourceFilterNode);
}
}
inputFilter = new FilterCachedColorModels(aDT, sourceFilterNode,
ColorModel::PremulSRGB());
sourceFilters[sourceIndex] = inputFilter;
}
}
MOZ_ASSERT(inputFilter);
AlphaModel inputAlphaModel =
InputAlphaModelForPrimitive(descr, j, inputFilter->OriginalAlphaModel());
inputAlphaModels.AppendElement(inputAlphaModel);
ColorModel inputColorModel(descr.InputColorSpace(j), inputAlphaModel);
inputFilterNodes.AppendElement(inputFilter->ForColorModel(inputColorModel));
}
RefPtr<FilterNode> primitiveFilterNode =
FilterNodeFromPrimitiveDescription(descr, aDT, inputFilterNodes,
inputSourceRects, aAdditionalImages);
if (primitiveFilterNode) {
primitiveFilterNode =
FilterWrappers::Crop(aDT, primitiveFilterNode, descr.PrimitiveSubregion());
}
ColorModel outputColorModel(descr.OutputColorSpace(),
OutputAlphaModelForPrimitive(descr, inputAlphaModels));
RefPtr<FilterCachedColorModels> primitiveFilter =
new FilterCachedColorModels(aDT, primitiveFilterNode, outputColorModel);
primitiveFilters.AppendElement(primitiveFilter);
}
return primitiveFilters.LastElement()->ForColorModel(ColorModel::PremulSRGB());
}
// FilterSupport
void
FilterSupport::RenderFilterDescription(DrawTarget* aDT,
const FilterDescription& aFilter,
const Rect& aRenderRect,
SourceSurface* aSourceGraphic,
const IntRect& aSourceGraphicRect,
SourceSurface* aFillPaint,
const IntRect& aFillPaintRect,
SourceSurface* aStrokePaint,
const IntRect& aStrokePaintRect,
nsTArray<RefPtr<SourceSurface>>& aAdditionalImages,
const Point& aDestPoint,
const DrawOptions& aOptions)
{
RefPtr<FilterNode> resultFilter =
FilterNodeGraphFromDescription(aDT, aFilter, aRenderRect,
aSourceGraphic, aSourceGraphicRect, aFillPaint, aFillPaintRect,
aStrokePaint, aStrokePaintRect, aAdditionalImages);
if (!resultFilter) {
gfxWarning() << "Filter is NULL.";
return;
}
aDT->DrawFilter(resultFilter, aRenderRect, aDestPoint, aOptions);
}
static nsIntRegion
UnionOfRegions(const nsTArray<nsIntRegion>& aRegions)
{
nsIntRegion result;
for (size_t i = 0; i < aRegions.Length(); i++) {
result.Or(result, aRegions[i]);
}
return result;
}
static int32_t
InflateSizeForBlurStdDev(float aStdDev)
{
double size = std::min(aStdDev, kMaxStdDeviation) * (3 * sqrt(2 * M_PI) / 4) * 1.5;
return uint32_t(floor(size + 0.5));
}
static nsIntRegion
ResultChangeRegionForPrimitive(const FilterPrimitiveDescription& aDescription,
const nsTArray<nsIntRegion>& aInputChangeRegions)
{
const AttributeMap& atts = aDescription.Attributes();
switch (aDescription.Type()) {
case PrimitiveType::Empty:
case PrimitiveType::Flood:
case PrimitiveType::Turbulence:
case PrimitiveType::Image:
return nsIntRegion();
case PrimitiveType::Blend:
case PrimitiveType::Composite:
case PrimitiveType::Merge:
return UnionOfRegions(aInputChangeRegions);
case PrimitiveType::ColorMatrix:
case PrimitiveType::ComponentTransfer:
case PrimitiveType::ToAlpha:
return aInputChangeRegions[0];
case PrimitiveType::Morphology:
{
Size radii = atts.GetSize(eMorphologyRadii);
int32_t rx = clamped(int32_t(ceil(radii.width)), 0, kMorphologyMaxRadius);
int32_t ry = clamped(int32_t(ceil(radii.height)), 0, kMorphologyMaxRadius);
return aInputChangeRegions[0].Inflated(nsIntMargin(ry, rx, ry, rx));
}
case PrimitiveType::Tile:
return aDescription.PrimitiveSubregion();
case PrimitiveType::ConvolveMatrix:
{
if (atts.GetUint(eConvolveMatrixEdgeMode) != EDGE_MODE_NONE) {
return aDescription.PrimitiveSubregion();
}
Size kernelUnitLength = atts.GetSize(eConvolveMatrixKernelUnitLength);
IntSize kernelSize = atts.GetIntSize(eConvolveMatrixKernelSize);
IntPoint target = atts.GetIntPoint(eConvolveMatrixTarget);
nsIntMargin m(ceil(kernelUnitLength.width * (target.x)),
ceil(kernelUnitLength.height * (target.y)),
ceil(kernelUnitLength.width * (kernelSize.width - target.x - 1)),
ceil(kernelUnitLength.height * (kernelSize.height - target.y - 1)));
return aInputChangeRegions[0].Inflated(m);
}
case PrimitiveType::Offset:
{
IntPoint offset = atts.GetIntPoint(eOffsetOffset);
return aInputChangeRegions[0].MovedBy(offset.x, offset.y);
}
case PrimitiveType::DisplacementMap:
{
int32_t scale = ceil(std::abs(atts.GetFloat(eDisplacementMapScale)));
return aInputChangeRegions[0].Inflated(nsIntMargin(scale, scale, scale, scale));
}
case PrimitiveType::GaussianBlur:
{
Size stdDeviation = atts.GetSize(eGaussianBlurStdDeviation);
int32_t dx = InflateSizeForBlurStdDev(stdDeviation.width);
int32_t dy = InflateSizeForBlurStdDev(stdDeviation.height);
return aInputChangeRegions[0].Inflated(nsIntMargin(dy, dx, dy, dx));
}
case PrimitiveType::DropShadow:
{
IntPoint offset = atts.GetIntPoint(eDropShadowOffset);
nsIntRegion offsetRegion = aInputChangeRegions[0].MovedBy(offset.x, offset.y);
Size stdDeviation = atts.GetSize(eDropShadowStdDeviation);
int32_t dx = InflateSizeForBlurStdDev(stdDeviation.width);
int32_t dy = InflateSizeForBlurStdDev(stdDeviation.height);
nsIntRegion blurRegion = offsetRegion.Inflated(nsIntMargin(dy, dx, dy, dx));
blurRegion.Or(blurRegion, aInputChangeRegions[0]);
return blurRegion;
}
case PrimitiveType::DiffuseLighting:
case PrimitiveType::SpecularLighting:
{
Size kernelUnitLength = atts.GetSize(eLightingKernelUnitLength);
int32_t dx = ceil(kernelUnitLength.width);
int32_t dy = ceil(kernelUnitLength.height);
return aInputChangeRegions[0].Inflated(nsIntMargin(dy, dx, dy, dx));
}
default:
return nsIntRegion();
}
}
/* static */ nsIntRegion
FilterSupport::ComputeResultChangeRegion(const FilterDescription& aFilter,
const nsIntRegion& aSourceGraphicChange,
const nsIntRegion& aFillPaintChange,
const nsIntRegion& aStrokePaintChange)
{
const nsTArray<FilterPrimitiveDescription>& primitives = aFilter.mPrimitives;
nsTArray<nsIntRegion> resultChangeRegions;
for (int32_t i = 0; i < int32_t(primitives.Length()); ++i) {
const FilterPrimitiveDescription& descr = primitives[i];
nsTArray<nsIntRegion> inputChangeRegions;
for (size_t j = 0; j < descr.NumberOfInputs(); j++) {
int32_t inputIndex = descr.InputPrimitiveIndex(j);
MOZ_ASSERT(inputIndex < i, "bad input index");
nsIntRegion inputChangeRegion =
ElementForIndex(inputIndex, resultChangeRegions,
aSourceGraphicChange, aFillPaintChange,
aStrokePaintChange);
inputChangeRegions.AppendElement(inputChangeRegion);
}
nsIntRegion changeRegion =
ResultChangeRegionForPrimitive(descr, inputChangeRegions);
changeRegion.And(changeRegion, descr.PrimitiveSubregion());
resultChangeRegions.AppendElement(changeRegion);
}
return resultChangeRegions[resultChangeRegions.Length() - 1];
}
static float
ResultOfZeroUnderTransferFunction(const AttributeMap& aFunctionAttributes)
{
switch (aFunctionAttributes.GetUint(eComponentTransferFunctionType)) {
case SVG_FECOMPONENTTRANSFER_TYPE_TABLE:
{
const nsTArray<float>& tableValues =
aFunctionAttributes.GetFloats(eComponentTransferFunctionTableValues);
if (tableValues.Length() < 2) {
return 0.0f;
}
return tableValues[0];
}
case SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE:
{
const nsTArray<float>& tableValues =
aFunctionAttributes.GetFloats(eComponentTransferFunctionTableValues);
if (tableValues.Length() < 1) {
return 0.0f;
}
return tableValues[0];
}
case SVG_FECOMPONENTTRANSFER_TYPE_LINEAR:
return aFunctionAttributes.GetFloat(eComponentTransferFunctionIntercept);
case SVG_FECOMPONENTTRANSFER_TYPE_GAMMA:
return aFunctionAttributes.GetFloat(eComponentTransferFunctionOffset);
case SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY:
default:
return 0.0f;
}
}
nsIntRegion
FilterSupport::PostFilterExtentsForPrimitive(const FilterPrimitiveDescription& aDescription,
const nsTArray<nsIntRegion>& aInputExtents)
{
const AttributeMap& atts = aDescription.Attributes();
switch (aDescription.Type()) {
case PrimitiveType::Empty:
return IntRect();
case PrimitiveType::Composite:
{
uint32_t op = atts.GetUint(eCompositeOperator);
if (op == SVG_FECOMPOSITE_OPERATOR_ARITHMETIC) {
// The arithmetic composite primitive can draw outside the bounding
// box of its source images.
const nsTArray<float>& coefficients = atts.GetFloats(eCompositeCoefficients);
MOZ_ASSERT(coefficients.Length() == 4);
// The calculation is:
// r = c[0] * in[0] * in[1] + c[1] * in[0] + c[2] * in[1] + c[3]
nsIntRegion region;
if (coefficients[0] > 0.0f) {
region = aInputExtents[0].Intersect(aInputExtents[1]);
}
if (coefficients[1] > 0.0f) {
region.Or(region, aInputExtents[0]);
}
if (coefficients[2] > 0.0f) {
region.Or(region, aInputExtents[1]);
}
if (coefficients[3] > 0.0f) {
region = aDescription.PrimitiveSubregion();
}
return region;
}
if (op == SVG_FECOMPOSITE_OPERATOR_IN) {
return aInputExtents[0].Intersect(aInputExtents[1]);
}
return ResultChangeRegionForPrimitive(aDescription, aInputExtents);
}
case PrimitiveType::Flood:
{
if (atts.GetColor(eFloodColor).a == 0.0f) {
return IntRect();
}
return aDescription.PrimitiveSubregion();
}
case PrimitiveType::ColorMatrix:
{
if (atts.GetUint(eColorMatrixType) == (uint32_t)SVG_FECOLORMATRIX_TYPE_MATRIX) {
const nsTArray<float>& values = atts.GetFloats(eColorMatrixValues);
if (values.Length() == 20 && values[19] > 0.0f) {
return aDescription.PrimitiveSubregion();
}
}
return aInputExtents[0];
}
case PrimitiveType::ComponentTransfer:
{
AttributeMap functionAttributes =
atts.GetAttributeMap(eComponentTransferFunctionA);
if (ResultOfZeroUnderTransferFunction(functionAttributes) > 0.0f) {
return aDescription.PrimitiveSubregion();
}
return aInputExtents[0];
}
case PrimitiveType::Turbulence:
case PrimitiveType::Image:
case PrimitiveType::DiffuseLighting:
case PrimitiveType::SpecularLighting:
{
return aDescription.PrimitiveSubregion();
}
case PrimitiveType::Morphology:
{
uint32_t op = atts.GetUint(eMorphologyOperator);
if (op == SVG_OPERATOR_ERODE) {
return aInputExtents[0];
}
Size radii = atts.GetSize(eMorphologyRadii);
int32_t rx = clamped(int32_t(ceil(radii.width)), 0, kMorphologyMaxRadius);
int32_t ry = clamped(int32_t(ceil(radii.height)), 0, kMorphologyMaxRadius);
return aInputExtents[0].Inflated(nsIntMargin(ry, rx, ry, rx));
}
default:
return ResultChangeRegionForPrimitive(aDescription, aInputExtents);
}
}
/* static */ nsIntRegion
FilterSupport::ComputePostFilterExtents(const FilterDescription& aFilter,
const nsIntRegion& aSourceGraphicExtents)
{
const nsTArray<FilterPrimitiveDescription>& primitives = aFilter.mPrimitives;
nsTArray<nsIntRegion> postFilterExtents;
for (int32_t i = 0; i < int32_t(primitives.Length()); ++i) {
const FilterPrimitiveDescription& descr = primitives[i];
nsIntRegion filterSpace = descr.FilterSpaceBounds();
nsTArray<nsIntRegion> inputExtents;
for (size_t j = 0; j < descr.NumberOfInputs(); j++) {
int32_t inputIndex = descr.InputPrimitiveIndex(j);
MOZ_ASSERT(inputIndex < i, "bad input index");
nsIntRegion inputExtent =
ElementForIndex(inputIndex, postFilterExtents,
aSourceGraphicExtents, filterSpace, filterSpace);
inputExtents.AppendElement(inputExtent);
}
nsIntRegion extent = PostFilterExtentsForPrimitive(descr, inputExtents);
extent.And(extent, descr.PrimitiveSubregion());
postFilterExtents.AppendElement(extent);
}
return postFilterExtents[postFilterExtents.Length() - 1];
}
static nsIntRegion
SourceNeededRegionForPrimitive(const FilterPrimitiveDescription& aDescription,
const nsIntRegion& aResultNeededRegion,
int32_t aInputIndex)
{
const AttributeMap& atts = aDescription.Attributes();
switch (aDescription.Type()) {
case PrimitiveType::Flood:
case PrimitiveType::Turbulence:
case PrimitiveType::Image:
MOZ_CRASH("GFX: this shouldn't be called for filters without inputs");
return nsIntRegion();
case PrimitiveType::Empty:
return nsIntRegion();
case PrimitiveType::Blend:
case PrimitiveType::Composite:
case PrimitiveType::Merge:
case PrimitiveType::ColorMatrix:
case PrimitiveType::ComponentTransfer:
case PrimitiveType::ToAlpha:
return aResultNeededRegion;
case PrimitiveType::Morphology:
{
Size radii = atts.GetSize(eMorphologyRadii);
int32_t rx = clamped(int32_t(ceil(radii.width)), 0, kMorphologyMaxRadius);
int32_t ry = clamped(int32_t(ceil(radii.height)), 0, kMorphologyMaxRadius);
return aResultNeededRegion.Inflated(nsIntMargin(ry, rx, ry, rx));
}
case PrimitiveType::Tile:
return IntRect(INT32_MIN/2, INT32_MIN/2, INT32_MAX, INT32_MAX);
case PrimitiveType::ConvolveMatrix:
{
Size kernelUnitLength = atts.GetSize(eConvolveMatrixKernelUnitLength);
IntSize kernelSize = atts.GetIntSize(eConvolveMatrixKernelSize);
IntPoint target = atts.GetIntPoint(eConvolveMatrixTarget);
nsIntMargin m(ceil(kernelUnitLength.width * (kernelSize.width - target.x - 1)),
ceil(kernelUnitLength.height * (kernelSize.height - target.y - 1)),
ceil(kernelUnitLength.width * (target.x)),
ceil(kernelUnitLength.height * (target.y)));
return aResultNeededRegion.Inflated(m);
}
case PrimitiveType::Offset:
{
IntPoint offset = atts.GetIntPoint(eOffsetOffset);
return aResultNeededRegion.MovedBy(-nsIntPoint(offset.x, offset.y));
}
case PrimitiveType::DisplacementMap:
{
if (aInputIndex == 1) {
return aResultNeededRegion;
}
int32_t scale = ceil(std::abs(atts.GetFloat(eDisplacementMapScale)));
return aResultNeededRegion.Inflated(nsIntMargin(scale, scale, scale, scale));
}
case PrimitiveType::GaussianBlur:
{
Size stdDeviation = atts.GetSize(eGaussianBlurStdDeviation);
int32_t dx = InflateSizeForBlurStdDev(stdDeviation.width);
int32_t dy = InflateSizeForBlurStdDev(stdDeviation.height);
return aResultNeededRegion.Inflated(nsIntMargin(dy, dx, dy, dx));
}
case PrimitiveType::DropShadow:
{
IntPoint offset = atts.GetIntPoint(eDropShadowOffset);
nsIntRegion offsetRegion =
aResultNeededRegion.MovedBy(-nsIntPoint(offset.x, offset.y));
Size stdDeviation = atts.GetSize(eDropShadowStdDeviation);
int32_t dx = InflateSizeForBlurStdDev(stdDeviation.width);
int32_t dy = InflateSizeForBlurStdDev(stdDeviation.height);
nsIntRegion blurRegion = offsetRegion.Inflated(nsIntMargin(dy, dx, dy, dx));
blurRegion.Or(blurRegion, aResultNeededRegion);
return blurRegion;
}
case PrimitiveType::DiffuseLighting:
case PrimitiveType::SpecularLighting:
{
Size kernelUnitLength = atts.GetSize(eLightingKernelUnitLength);
int32_t dx = ceil(kernelUnitLength.width);
int32_t dy = ceil(kernelUnitLength.height);
return aResultNeededRegion.Inflated(nsIntMargin(dy, dx, dy, dx));
}
default:
return nsIntRegion();
}
}
/* static */ void
FilterSupport::ComputeSourceNeededRegions(const FilterDescription& aFilter,
const nsIntRegion& aResultNeededRegion,
nsIntRegion& aSourceGraphicNeededRegion,
nsIntRegion& aFillPaintNeededRegion,
nsIntRegion& aStrokePaintNeededRegion)
{
const nsTArray<FilterPrimitiveDescription>& primitives = aFilter.mPrimitives;
nsTArray<nsIntRegion> primitiveNeededRegions;
primitiveNeededRegions.AppendElements(primitives.Length());
primitiveNeededRegions[primitives.Length() - 1] = aResultNeededRegion;
for (int32_t i = primitives.Length() - 1; i >= 0; --i) {
const FilterPrimitiveDescription& descr = primitives[i];
nsIntRegion neededRegion = primitiveNeededRegions[i];
neededRegion.And(neededRegion, descr.PrimitiveSubregion());
for (size_t j = 0; j < descr.NumberOfInputs(); j++) {
int32_t inputIndex = descr.InputPrimitiveIndex(j);
MOZ_ASSERT(inputIndex < i, "bad input index");
nsIntRegion* inputNeededRegion = const_cast<nsIntRegion*>(
&ElementForIndex(inputIndex, primitiveNeededRegions,
aSourceGraphicNeededRegion,
aFillPaintNeededRegion, aStrokePaintNeededRegion));
inputNeededRegion->Or(*inputNeededRegion,
SourceNeededRegionForPrimitive(descr, neededRegion, j));
}
}
// Clip original SourceGraphic to first filter region.
if (primitives.Length() > 0) {
const FilterPrimitiveDescription& firstDescr = primitives[0];
aSourceGraphicNeededRegion.And(aSourceGraphicNeededRegion,
firstDescr.FilterSpaceBounds());
}
}
// FilterPrimitiveDescription
FilterPrimitiveDescription::FilterPrimitiveDescription()
: mType(PrimitiveType::Empty)
, mOutputColorSpace(ColorSpace::SRGB)
, mIsTainted(false)
{
}
FilterPrimitiveDescription::FilterPrimitiveDescription(PrimitiveType aType)
: mType(aType)
, mOutputColorSpace(ColorSpace::SRGB)
, mIsTainted(false)
{
}
FilterPrimitiveDescription::FilterPrimitiveDescription(const FilterPrimitiveDescription& aOther)
: mType(aOther.mType)
, mAttributes(aOther.mAttributes)
, mInputPrimitives(aOther.mInputPrimitives)
, mFilterPrimitiveSubregion(aOther.mFilterPrimitiveSubregion)
, mFilterSpaceBounds(aOther.mFilterSpaceBounds)
, mInputColorSpaces(aOther.mInputColorSpaces)
, mOutputColorSpace(aOther.mOutputColorSpace)
, mIsTainted(aOther.mIsTainted)
{
}
FilterPrimitiveDescription&
FilterPrimitiveDescription::operator=(const FilterPrimitiveDescription& aOther)
{
if (this != &aOther) {
mType = aOther.mType;
mAttributes = aOther.mAttributes;
mInputPrimitives = aOther.mInputPrimitives;
mFilterPrimitiveSubregion = aOther.mFilterPrimitiveSubregion;
mFilterSpaceBounds = aOther.mFilterSpaceBounds;
mInputColorSpaces = aOther.mInputColorSpaces;
mOutputColorSpace = aOther.mOutputColorSpace;
mIsTainted = aOther.mIsTainted;
}
return *this;
}
bool
FilterPrimitiveDescription::operator==(const FilterPrimitiveDescription& aOther) const
{
return mType == aOther.mType &&
mFilterPrimitiveSubregion.IsEqualInterior(aOther.mFilterPrimitiveSubregion) &&
mFilterSpaceBounds.IsEqualInterior(aOther.mFilterSpaceBounds) &&
mOutputColorSpace == aOther.mOutputColorSpace &&
mIsTainted == aOther.mIsTainted &&
mInputPrimitives == aOther.mInputPrimitives &&
mInputColorSpaces == aOther.mInputColorSpaces &&
mAttributes == aOther.mAttributes;
}
// FilterDescription
bool
FilterDescription::operator==(const FilterDescription& aOther) const
{
return mPrimitives == aOther.mPrimitives;
}
// AttributeMap
// A class that wraps different types for easy storage in a hashtable. Only
// used by AttributeMap.
struct FilterAttribute {
FilterAttribute(const FilterAttribute& aOther);
~FilterAttribute();
bool operator==(const FilterAttribute& aOther) const;
bool operator!=(const FilterAttribute& aOther) const
{
return !(*this == aOther);
}
AttributeType Type() const { return mType; }
#define MAKE_CONSTRUCTOR_AND_ACCESSOR_BASIC(type, typeLabel) \
explicit FilterAttribute(type aValue) \
: mType(AttributeType::e##typeLabel), m##typeLabel(aValue) \
{} \
type As##typeLabel() { \
MOZ_ASSERT(mType == AttributeType::e##typeLabel); \
return m##typeLabel; \
}
#define MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(className) \
explicit FilterAttribute(const className& aValue) \
: mType(AttributeType::e##className), m##className(new className(aValue)) \
{} \
className As##className() { \
MOZ_ASSERT(mType == AttributeType::e##className); \
return *m##className; \
}
MAKE_CONSTRUCTOR_AND_ACCESSOR_BASIC(bool, Bool)
MAKE_CONSTRUCTOR_AND_ACCESSOR_BASIC(uint32_t, Uint)
MAKE_CONSTRUCTOR_AND_ACCESSOR_BASIC(float, Float)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(Size)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(IntSize)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(IntPoint)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(Matrix)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(Matrix5x4)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(Point3D)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(Color)
MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS(AttributeMap)
#undef MAKE_CONSTRUCTOR_AND_ACCESSOR_BASIC
#undef MAKE_CONSTRUCTOR_AND_ACCESSOR_CLASS
FilterAttribute(const float* aValue, uint32_t aLength)
: mType(AttributeType::eFloats)
{
mFloats = new nsTArray<float>();
mFloats->AppendElements(aValue, aLength);
}
const nsTArray<float>& AsFloats() const {
MOZ_ASSERT(mType == AttributeType::eFloats);
return *mFloats;
}
private:
const AttributeType mType;
union {
bool mBool;
uint32_t mUint;
float mFloat;
Size* mSize;
IntSize* mIntSize;
IntPoint* mIntPoint;
Matrix* mMatrix;
Matrix5x4* mMatrix5x4;
Point3D* mPoint3D;
Color* mColor;
AttributeMap* mAttributeMap;
nsTArray<float>* mFloats;
};
};
FilterAttribute::FilterAttribute(const FilterAttribute& aOther)
: mType(aOther.mType)
{
switch (mType) {
case AttributeType::eBool:
mBool = aOther.mBool;
break;
case AttributeType::eUint:
mUint = aOther.mUint;
break;
case AttributeType::eFloat:
mFloat = aOther.mFloat;
break;
#define HANDLE_CLASS(className) \
case AttributeType::e##className: \
m##className = new className(*aOther.m##className); \
break;
HANDLE_CLASS(Size)
HANDLE_CLASS(IntSize)
HANDLE_CLASS(IntPoint)
HANDLE_CLASS(Matrix)
HANDLE_CLASS(Matrix5x4)
HANDLE_CLASS(Point3D)
HANDLE_CLASS(Color)
HANDLE_CLASS(AttributeMap)
#undef HANDLE_CLASS
case AttributeType::eFloats:
mFloats = new nsTArray<float>(*aOther.mFloats);
break;
case AttributeType::Max:
break;
}
}
FilterAttribute::~FilterAttribute() {
switch (mType) {
case AttributeType::Max:
case AttributeType::eBool:
case AttributeType::eUint:
case AttributeType::eFloat:
break;
#define HANDLE_CLASS(className) \
case AttributeType::e##className: \
delete m##className; \
break;
HANDLE_CLASS(Size)
HANDLE_CLASS(IntSize)
HANDLE_CLASS(IntPoint)
HANDLE_CLASS(Matrix)
HANDLE_CLASS(Matrix5x4)
HANDLE_CLASS(Point3D)
HANDLE_CLASS(Color)
HANDLE_CLASS(AttributeMap)
#undef HANDLE_CLASS
case AttributeType::eFloats:
delete mFloats;
break;
}
}
bool
FilterAttribute::operator==(const FilterAttribute& aOther) const
{
if (mType != aOther.mType) {
return false;
}
switch (mType) {
#define HANDLE_TYPE(typeName) \
case AttributeType::e##typeName: \
return m##typeName == aOther.m##typeName;
HANDLE_TYPE(Bool)
HANDLE_TYPE(Uint)
HANDLE_TYPE(Float)
HANDLE_TYPE(Size)
HANDLE_TYPE(IntSize)
HANDLE_TYPE(IntPoint)
HANDLE_TYPE(Matrix)
HANDLE_TYPE(Matrix5x4)
HANDLE_TYPE(Point3D)
HANDLE_TYPE(Color)
HANDLE_TYPE(AttributeMap)
HANDLE_TYPE(Floats)
#undef HANDLE_TYPE
default:
return false;
}
}
typedef FilterAttribute Attribute;
AttributeMap::AttributeMap()
{
}
AttributeMap::~AttributeMap()
{
}
AttributeMap::AttributeMap(const AttributeMap& aOther)
{
for (auto iter = aOther.mMap.Iter(); !iter.Done(); iter.Next()) {
const uint32_t& attributeName = iter.Key();
Attribute* attribute = iter.UserData();
mMap.Put(attributeName, new Attribute(*attribute));
}
}
AttributeMap&
AttributeMap::operator=(const AttributeMap& aOther)
{
if (this != &aOther) {
mMap.Clear();
for (auto iter = aOther.mMap.Iter(); !iter.Done(); iter.Next()) {
const uint32_t& attributeName = iter.Key();
Attribute* attribute = iter.UserData();
mMap.Put(attributeName, new Attribute(*attribute));
}
}
return *this;
}
bool
AttributeMap::operator==(const AttributeMap& aOther) const
{
if (mMap.Count() != aOther.mMap.Count()) {
return false;
}
for (auto iter = aOther.mMap.Iter(); !iter.Done(); iter.Next()) {
const uint32_t& attributeName = iter.Key();
Attribute* attribute = iter.UserData();
Attribute* matchingAttribute = mMap.Get(attributeName);
if (!matchingAttribute || *matchingAttribute != *attribute) {
return false;
}
}
return true;
}
uint32_t
AttributeMap::Count() const
{
return mMap.Count();
}
nsClassHashtable<nsUint32HashKey, FilterAttribute>::Iterator
AttributeMap::ConstIter() const
{
return mMap.ConstIter();
}
/* static */ AttributeType
AttributeMap::GetType(FilterAttribute* aAttribute)
{
return aAttribute->Type();
}
#define MAKE_ATTRIBUTE_HANDLERS_BASIC(type, typeLabel, defaultValue) \
type \
AttributeMap::Get##typeLabel(AttributeName aName) const { \
Attribute* value = mMap.Get(aName); \
return value ? value->As##typeLabel() : defaultValue; \
} \
void \
AttributeMap::Set(AttributeName aName, type aValue) { \
mMap.Remove(aName); \
mMap.Put(aName, new Attribute(aValue)); \
}
#define MAKE_ATTRIBUTE_HANDLERS_CLASS(className) \
className \
AttributeMap::Get##className(AttributeName aName) const { \
Attribute* value = mMap.Get(aName); \
return value ? value->As##className() : className(); \
} \
void \
AttributeMap::Set(AttributeName aName, const className& aValue) { \
mMap.Remove(aName); \
mMap.Put(aName, new Attribute(aValue)); \
}
MAKE_ATTRIBUTE_HANDLERS_BASIC(bool, Bool, false)
MAKE_ATTRIBUTE_HANDLERS_BASIC(uint32_t, Uint, 0)
MAKE_ATTRIBUTE_HANDLERS_BASIC(float, Float, 0)
MAKE_ATTRIBUTE_HANDLERS_CLASS(Size)
MAKE_ATTRIBUTE_HANDLERS_CLASS(IntSize)
MAKE_ATTRIBUTE_HANDLERS_CLASS(IntPoint)
MAKE_ATTRIBUTE_HANDLERS_CLASS(Matrix)
MAKE_ATTRIBUTE_HANDLERS_CLASS(Matrix5x4)
MAKE_ATTRIBUTE_HANDLERS_CLASS(Point3D)
MAKE_ATTRIBUTE_HANDLERS_CLASS(Color)
MAKE_ATTRIBUTE_HANDLERS_CLASS(AttributeMap)
#undef MAKE_ATTRIBUTE_HANDLERS_BASIC
#undef MAKE_ATTRIBUTE_HANDLERS_CLASS
const nsTArray<float>&
AttributeMap::GetFloats(AttributeName aName) const
{
Attribute* value = mMap.Get(aName);
if (!value) {
value = new Attribute(nullptr, 0);
mMap.Put(aName, value);
}
return value->AsFloats();
}
void
AttributeMap::Set(AttributeName aName, const float* aValues, int32_t aLength)
{
mMap.Remove(aName);
mMap.Put(aName, new Attribute(aValues, aLength));
}
} // namespace gfx
} // namespace mozilla