tenfourfox/gfx/src/nsCoord.h

444 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef NSCOORD_H
#define NSCOORD_H
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsMathUtils.h"
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include "nsDebug.h"
#include <algorithm>
/*
* Basic type used for the geometry classes.
*
* Normally all coordinates are maintained in an app unit coordinate
* space. An app unit is 1/60th of a CSS device pixel, which is, in turn
* an integer number of device pixels, such at the CSS DPI is as close to
* 96dpi as possible.
*/
// This controls whether we're using integers or floats for coordinates. We
// want to eventually use floats.
//#define NS_COORD_IS_FLOAT
inline float NS_IEEEPositiveInfinity() {
union { uint32_t mPRUint32; float mFloat; } pun;
pun.mPRUint32 = 0x7F800000;
return pun.mFloat;
}
inline bool NS_IEEEIsNan(float aF) {
union { uint32_t mBits; float mFloat; } pun;
pun.mFloat = aF;
return (pun.mBits & 0x7F800000) == 0x7F800000 &&
(pun.mBits & 0x007FFFFF) != 0;
}
#ifdef NS_COORD_IS_FLOAT
typedef float nscoord;
#define nscoord_MAX NS_IEEEPositiveInfinity()
#else
typedef int32_t nscoord;
#define nscoord_MAX nscoord(1 << 30)
#endif
#define nscoord_MIN (-nscoord_MAX)
inline void VERIFY_COORD(nscoord aCoord) {
#ifdef NS_COORD_IS_FLOAT
NS_ASSERTION(floorf(aCoord) == aCoord,
"Coords cannot have fractions");
#endif
}
/**
* Divide aSpace by aN. Assign the resulting quotient to aQuotient and
* return the remainder.
*/
inline nscoord NSCoordDivRem(nscoord aSpace, size_t aN, nscoord* aQuotient)
{
#ifdef NS_COORD_IS_FLOAT
*aQuotient = aSpace / aN;
return 0.0f;
#else
div_t result = div(aSpace, aN);
*aQuotient = nscoord(result.quot);
return nscoord(result.rem);
#endif
}
inline nscoord NSCoordMulDiv(nscoord aMult1, nscoord aMult2, nscoord aDiv) {
#ifdef NS_COORD_IS_FLOAT
return (aMult1 * aMult2 / aDiv);
#else
return (int64_t(aMult1) * int64_t(aMult2) / int64_t(aDiv));
#endif
}
inline nscoord NSToCoordRound(float aValue)
{
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__)
return NS_lroundup30(aValue);
#else
return nscoord(floorf(aValue + 0.5f));
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
}
inline nscoord NSToCoordRound(double aValue)
{
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__)
return NS_lroundup30((float)aValue);
#else
return nscoord(floor(aValue + 0.5f));
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
}
inline nscoord NSToCoordRoundWithClamp(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordRound(aValue);
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the signs of aCoord and aScale. If requireNotNegative is
* true, this method will enforce that aScale is not negative; use that
* parametrization to get a check of that fact in debug builds.
*/
inline nscoord _nscoordSaturatingMultiply(nscoord aCoord, float aScale,
bool requireNotNegative) {
VERIFY_COORD(aCoord);
if (requireNotNegative) {
MOZ_ASSERT(aScale >= 0.0f,
"negative scaling factors must be handled manually");
}
#ifdef NS_COORD_IS_FLOAT
return floorf(aCoord * aScale);
#else
float product = aCoord * aScale;
if (requireNotNegative ? aCoord > 0 : (aCoord > 0) == (aScale > 0))
return NSToCoordRoundWithClamp(std::min<float>(nscoord_MAX, product));
return NSToCoordRoundWithClamp(std::max<float>(nscoord_MIN, product));
#endif
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the sign of aCoord. This method requires aScale to not be
* negative; use this method when you know that aScale should never be
* negative to get a sanity check of that invariant in debug builds.
*/
inline nscoord NSCoordSaturatingNonnegativeMultiply(nscoord aCoord, float aScale) {
return _nscoordSaturatingMultiply(aCoord, aScale, true);
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the signs of aCoord and aScale.
*/
inline nscoord NSCoordSaturatingMultiply(nscoord aCoord, float aScale) {
return _nscoordSaturatingMultiply(aCoord, aScale, false);
}
/**
* Returns a + b, capping the sum to nscoord_MAX.
*
* This function assumes that neither argument is nscoord_MIN.
*
* Note: If/when we start using floats for nscoords, this function won't be as
* necessary. Normal float addition correctly handles adding with infinity,
* assuming we aren't adding nscoord_MIN. (-infinity)
*/
inline nscoord
NSCoordSaturatingAdd(nscoord a, nscoord b)
{
VERIFY_COORD(a);
VERIFY_COORD(b);
#ifdef NS_COORD_IS_FLOAT
// Float math correctly handles a+b, given that neither is -infinity.
return a + b;
#else
if (a == nscoord_MAX || b == nscoord_MAX) {
// infinity + anything = anything + infinity = infinity
return nscoord_MAX;
} else {
// a + b = a + b
// Cap the result, just in case we're dealing with numbers near nscoord_MAX
return std::min(nscoord_MAX, a + b);
}
#endif
}
/**
* Returns a - b, gracefully handling cases involving nscoord_MAX.
* This function assumes that neither argument is nscoord_MIN.
*
* The behavior is as follows:
*
* a) infinity - infinity -> infMinusInfResult
* b) N - infinity -> 0 (unexpected -- triggers NOTREACHED)
* c) infinity - N -> infinity
* d) N1 - N2 -> N1 - N2
*
* Note: For float nscoords, cases (c) and (d) are handled by normal float
* math. We still need to explicitly specify the behavior for cases (a)
* and (b), though. (Under normal float math, those cases would return NaN
* and -infinity, respectively.)
*/
inline nscoord
NSCoordSaturatingSubtract(nscoord a, nscoord b,
nscoord infMinusInfResult)
{
VERIFY_COORD(a);
VERIFY_COORD(b);
if (b == nscoord_MAX) {
if (a == nscoord_MAX) {
// case (a)
return infMinusInfResult;
} else {
// case (b)
NS_NOTREACHED("Attempted to subtract [n - nscoord_MAX]");
return 0;
}
} else {
#ifdef NS_COORD_IS_FLOAT
// case (c) and (d) for floats. (float math handles both)
return a - b;
#else
if (a == nscoord_MAX) {
// case (c) for integers
return nscoord_MAX;
} else {
// case (d) for integers
// Cap the result, in case we're dealing with numbers near nscoord_MAX
return std::min(nscoord_MAX, a - b);
}
#endif
}
}
inline float NSCoordToFloat(nscoord aCoord) {
VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in float conversion");
#endif
return (float)aCoord;
}
/*
* Coord Rounding Functions
*/
inline nscoord NSToCoordFloor(float aValue)
{
return nscoord(floorf(aValue));
}
inline nscoord NSToCoordFloor(double aValue)
{
return nscoord(floor(aValue));
}
inline nscoord NSToCoordFloorClamped(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordFloor(aValue);
}
inline nscoord NSToCoordCeil(float aValue)
{
return nscoord(ceilf(aValue));
}
inline nscoord NSToCoordCeil(double aValue)
{
return nscoord(ceil(aValue));
}
inline nscoord NSToCoordCeilClamped(double aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of double, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordCeil(aValue);
}
// The NSToCoordTrunc* functions remove the fractional component of
// aValue, and are thus equivalent to NSToCoordFloor* for positive
// values and NSToCoordCeil* for negative values.
inline nscoord NSToCoordTrunc(float aValue)
{
// There's no need to use truncf() since it matches the default
// rules for float to integer conversion.
return nscoord(aValue);
}
inline nscoord NSToCoordTrunc(double aValue)
{
// There's no need to use trunc() since it matches the default
// rules for float to integer conversion.
return nscoord(aValue);
}
inline nscoord NSToCoordTruncClamped(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordTrunc(aValue);
}
inline nscoord NSToCoordTruncClamped(double aValue)
{
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of double, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordTrunc(aValue);
}
/*
* Int Rounding Functions
*/
inline int32_t NSToIntFloor(float aValue)
{
return int32_t(floorf(aValue));
}
inline int32_t NSToIntCeil(float aValue)
{
return int32_t(ceilf(aValue));
}
inline int32_t NSToIntRound(float aValue)
{
return NS_lroundf(aValue);
}
inline int32_t NSToIntRound(double aValue)
{
return NS_lround(aValue);
}
inline int32_t NSToIntRoundUp(double aValue)
{
return int32_t(floor(aValue + 0.5));
}
/*
* App Unit/Pixel conversions
*/
inline nscoord NSFloatPixelsToAppUnits(float aPixels, float aAppUnitsPerPixel)
{
return NSToCoordRoundWithClamp(aPixels * aAppUnitsPerPixel);
}
inline nscoord NSIntPixelsToAppUnits(int32_t aPixels, int32_t aAppUnitsPerPixel)
{
// The cast to nscoord makes sure we don't overflow if we ever change
// nscoord to float
nscoord r = aPixels * (nscoord)aAppUnitsPerPixel;
VERIFY_COORD(r);
return r;
}
inline float NSAppUnitsToFloatPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
{
return (float(aAppUnits) / aAppUnitsPerPixel);
}
inline double NSAppUnitsToDoublePixels(nscoord aAppUnits, double aAppUnitsPerPixel)
{
return (double(aAppUnits) / aAppUnitsPerPixel);
}
inline int32_t NSAppUnitsToIntPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
{
return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel);
}
inline float NSCoordScale(nscoord aCoord, int32_t aFromAPP, int32_t aToAPP)
{
return (NSCoordToFloat(aCoord) * aToAPP) / aFromAPP;
}
/// handy constants
#define TWIPS_PER_POINT_INT 20
#define TWIPS_PER_POINT_FLOAT 20.0f
#define POINTS_PER_INCH_INT 72
#define POINTS_PER_INCH_FLOAT 72.0f
#define CM_PER_INCH_FLOAT 2.54f
#define MM_PER_INCH_FLOAT 25.4f
/*
* Twips/unit conversions
*/
inline float NSUnitsToTwips(float aValue, float aPointsPerUnit)
{
return aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT;
}
inline float NSTwipsToUnits(float aTwips, float aUnitsPerPoint)
{
return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT));
}
/// Unit conversion macros
//@{
#define NS_POINTS_TO_TWIPS(x) NSUnitsToTwips((x), 1.0f)
#define NS_INCHES_TO_TWIPS(x) NSUnitsToTwips((x), POINTS_PER_INCH_FLOAT) // 72 points per inch
#define NS_MILLIMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.03937f))
#define NS_POINTS_TO_INT_TWIPS(x) NSToIntRound(NS_POINTS_TO_TWIPS(x))
#define NS_INCHES_TO_INT_TWIPS(x) NSToIntRound(NS_INCHES_TO_TWIPS(x))
#define NS_TWIPS_TO_INCHES(x) NSTwipsToUnits((x), 1.0f / POINTS_PER_INCH_FLOAT)
#define NS_TWIPS_TO_MILLIMETERS(x) NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.03937f))
//@}
#endif /* NSCOORD_H */