tenfourfox/hal/gonk/GonkHal.cpp

2068 lines
58 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=8 et ft=cpp : */
/* Copyright 2012 Mozilla Foundation and Mozilla contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/android_alarm.h>
#include <math.h>
#include <regex.h>
#include <sched.h>
#include <stdio.h>
#include <sys/klog.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/resource.h>
#include <time.h>
#include <unistd.h>
#include "mozilla/DebugOnly.h"
#include "android/log.h"
#include "cutils/properties.h"
#include "hardware/hardware.h"
#include "hardware/lights.h"
#include "hardware_legacy/uevent.h"
#include "hardware_legacy/vibrator.h"
#include "hardware_legacy/power.h"
#include "libdisplay/GonkDisplay.h"
#include "utils/threads.h"
#include "base/message_loop.h"
#include "Hal.h"
#include "HalImpl.h"
#include "HalLog.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/dom/battery/Constants.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/FileUtils.h"
#include "mozilla/Monitor.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/Preferences.h"
#include "nsAlgorithm.h"
#include "nsPrintfCString.h"
#include "nsIObserver.h"
#include "nsIObserverService.h"
#include "nsIRecoveryService.h"
#include "nsIRunnable.h"
#include "nsScreenManagerGonk.h"
#include "nsThreadUtils.h"
#include "nsThreadUtils.h"
#include "nsIThread.h"
#include "nsXULAppAPI.h"
#include "OrientationObserver.h"
#include "UeventPoller.h"
#include "nsIWritablePropertyBag2.h"
#include <algorithm>
#define NsecPerMsec 1000000LL
#define NsecPerSec 1000000000
// The header linux/oom.h is not available in bionic libc. We
// redefine some of its constants here.
#ifndef OOM_DISABLE
#define OOM_DISABLE (-17)
#endif
#ifndef OOM_ADJUST_MIN
#define OOM_ADJUST_MIN (-16)
#endif
#ifndef OOM_ADJUST_MAX
#define OOM_ADJUST_MAX 15
#endif
#ifndef OOM_SCORE_ADJ_MIN
#define OOM_SCORE_ADJ_MIN (-1000)
#endif
#ifndef OOM_SCORE_ADJ_MAX
#define OOM_SCORE_ADJ_MAX 1000
#endif
#ifndef BATTERY_CHARGING_ARGB
#define BATTERY_CHARGING_ARGB 0x00FF0000
#endif
#ifndef BATTERY_FULL_ARGB
#define BATTERY_FULL_ARGB 0x0000FF00
#endif
using namespace mozilla;
using namespace mozilla::hal;
using namespace mozilla::dom;
namespace mozilla {
namespace hal_impl {
/**
* These are defined by libhardware, specifically, hardware/libhardware/include/hardware/lights.h
* in the gonk subsystem.
* If these change and are exposed to JS, make sure nsIHal.idl is updated as well.
*/
enum LightType {
eHalLightID_Backlight = 0,
eHalLightID_Keyboard = 1,
eHalLightID_Buttons = 2,
eHalLightID_Battery = 3,
eHalLightID_Notifications = 4,
eHalLightID_Attention = 5,
eHalLightID_Bluetooth = 6,
eHalLightID_Wifi = 7,
eHalLightID_Count // This should stay at the end
};
enum LightMode {
eHalLightMode_User = 0, // brightness is managed by user setting
eHalLightMode_Sensor = 1, // brightness is managed by a light sensor
eHalLightMode_Count
};
enum FlashMode {
eHalLightFlash_None = 0,
eHalLightFlash_Timed = 1, // timed flashing. Use flashOnMS and flashOffMS for timing
eHalLightFlash_Hardware = 2, // hardware assisted flashing
eHalLightFlash_Count
};
struct LightConfiguration {
LightType light;
LightMode mode;
FlashMode flash;
uint32_t flashOnMS;
uint32_t flashOffMS;
uint32_t color;
};
static light_device_t* sLights[eHalLightID_Count]; // will be initialized to nullptr
static light_device_t*
GetDevice(hw_module_t* module, char const* name)
{
int err;
hw_device_t* device;
err = module->methods->open(module, name, &device);
if (err == 0) {
return (light_device_t*)device;
} else {
return nullptr;
}
}
static void
InitLights()
{
// assume that if backlight is nullptr, nothing has been set yet
// if this is not true, the initialization will occur everytime a light is read or set!
if (!sLights[eHalLightID_Backlight]) {
int err;
hw_module_t* module;
err = hw_get_module(LIGHTS_HARDWARE_MODULE_ID, (hw_module_t const**)&module);
if (err == 0) {
sLights[eHalLightID_Backlight]
= GetDevice(module, LIGHT_ID_BACKLIGHT);
sLights[eHalLightID_Keyboard]
= GetDevice(module, LIGHT_ID_KEYBOARD);
sLights[eHalLightID_Buttons]
= GetDevice(module, LIGHT_ID_BUTTONS);
sLights[eHalLightID_Battery]
= GetDevice(module, LIGHT_ID_BATTERY);
sLights[eHalLightID_Notifications]
= GetDevice(module, LIGHT_ID_NOTIFICATIONS);
sLights[eHalLightID_Attention]
= GetDevice(module, LIGHT_ID_ATTENTION);
sLights[eHalLightID_Bluetooth]
= GetDevice(module, LIGHT_ID_BLUETOOTH);
sLights[eHalLightID_Wifi]
= GetDevice(module, LIGHT_ID_WIFI);
}
}
}
/**
* The state last set for the lights until liblights supports
* getting the light state.
*/
static light_state_t sStoredLightState[eHalLightID_Count];
/**
* Set the value of a light to a particular color, with a specific flash pattern.
* light specifices which light. See Hal.idl for the list of constants
* mode specifies user set or based on ambient light sensor
* flash specifies whether or how to flash the light
* flashOnMS and flashOffMS specify the pattern for XXX flash mode
* color specifies the color. If the light doesn't support color, the given color is
* transformed into a brightness, or just an on/off if that is all the light is capable of.
* returns true if successful and false if failed.
*/
static bool
SetLight(LightType light, const LightConfiguration& aConfig)
{
light_state_t state;
InitLights();
if (light < 0 || light >= eHalLightID_Count ||
sLights[light] == nullptr) {
return false;
}
memset(&state, 0, sizeof(light_state_t));
state.color = aConfig.color;
state.flashMode = aConfig.flash;
state.flashOnMS = aConfig.flashOnMS;
state.flashOffMS = aConfig.flashOffMS;
state.brightnessMode = aConfig.mode;
sLights[light]->set_light(sLights[light], &state);
sStoredLightState[light] = state;
return true;
}
/**
* GET the value of a light returning a particular color, with a specific flash pattern.
* returns true if successful and false if failed.
*/
static bool
GetLight(LightType light, LightConfiguration* aConfig)
{
light_state_t state;
if (light < 0 || light >= eHalLightID_Count ||
sLights[light] == nullptr) {
return false;
}
memset(&state, 0, sizeof(light_state_t));
state = sStoredLightState[light];
aConfig->light = light;
aConfig->color = state.color;
aConfig->flash = FlashMode(state.flashMode);
aConfig->flashOnMS = state.flashOnMS;
aConfig->flashOffMS = state.flashOffMS;
aConfig->mode = LightMode(state.brightnessMode);
return true;
}
namespace {
/**
* This runnable runs for the lifetime of the program, once started. It's
* responsible for "playing" vibration patterns.
*/
class VibratorRunnable final
: public nsIRunnable
, public nsIObserver
{
public:
VibratorRunnable()
: mMonitor("VibratorRunnable")
, mIndex(0)
{
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (!os) {
NS_WARNING("Could not get observer service!");
return;
}
os->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
}
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIRUNNABLE
NS_DECL_NSIOBSERVER
// Run on the main thread, not the vibrator thread.
void Vibrate(const nsTArray<uint32_t> &pattern);
void CancelVibrate();
static bool ShuttingDown() { return sShuttingDown; }
protected:
~VibratorRunnable() {}
private:
Monitor mMonitor;
// The currently-playing pattern.
nsTArray<uint32_t> mPattern;
// The index we're at in the currently-playing pattern. If mIndex >=
// mPattern.Length(), then we're not currently playing anything.
uint32_t mIndex;
// Set to true in our shutdown observer. When this is true, we kill the
// vibrator thread.
static bool sShuttingDown;
};
NS_IMPL_ISUPPORTS(VibratorRunnable, nsIRunnable, nsIObserver);
bool VibratorRunnable::sShuttingDown = false;
static StaticRefPtr<VibratorRunnable> sVibratorRunnable;
NS_IMETHODIMP
VibratorRunnable::Run()
{
MonitorAutoLock lock(mMonitor);
// We currently assume that mMonitor.Wait(X) waits for X milliseconds. But in
// reality, the kernel might not switch to this thread for some time after the
// wait expires. So there's potential for some inaccuracy here.
//
// This doesn't worry me too much. Note that we don't even start vibrating
// immediately when VibratorRunnable::Vibrate is called -- we go through a
// condvar onto another thread. Better just to be chill about small errors in
// the timing here.
while (!sShuttingDown) {
if (mIndex < mPattern.Length()) {
uint32_t duration = mPattern[mIndex];
if (mIndex % 2 == 0) {
vibrator_on(duration);
}
mIndex++;
mMonitor.Wait(PR_MillisecondsToInterval(duration));
}
else {
mMonitor.Wait();
}
}
sVibratorRunnable = nullptr;
return NS_OK;
}
NS_IMETHODIMP
VibratorRunnable::Observe(nsISupports *subject, const char *topic,
const char16_t *data)
{
MOZ_ASSERT(strcmp(topic, NS_XPCOM_SHUTDOWN_OBSERVER_ID) == 0);
MonitorAutoLock lock(mMonitor);
sShuttingDown = true;
mMonitor.Notify();
return NS_OK;
}
void
VibratorRunnable::Vibrate(const nsTArray<uint32_t> &pattern)
{
MonitorAutoLock lock(mMonitor);
mPattern = pattern;
mIndex = 0;
mMonitor.Notify();
}
void
VibratorRunnable::CancelVibrate()
{
MonitorAutoLock lock(mMonitor);
mPattern.Clear();
mPattern.AppendElement(0);
mIndex = 0;
mMonitor.Notify();
}
void
EnsureVibratorThreadInitialized()
{
if (sVibratorRunnable) {
return;
}
sVibratorRunnable = new VibratorRunnable();
nsCOMPtr<nsIThread> thread;
NS_NewThread(getter_AddRefs(thread), sVibratorRunnable);
}
} // namespace
void
Vibrate(const nsTArray<uint32_t> &pattern, const hal::WindowIdentifier &)
{
MOZ_ASSERT(NS_IsMainThread());
if (VibratorRunnable::ShuttingDown()) {
return;
}
EnsureVibratorThreadInitialized();
sVibratorRunnable->Vibrate(pattern);
}
void
CancelVibrate(const hal::WindowIdentifier &)
{
MOZ_ASSERT(NS_IsMainThread());
if (VibratorRunnable::ShuttingDown()) {
return;
}
EnsureVibratorThreadInitialized();
sVibratorRunnable->CancelVibrate();
}
namespace {
class BatteryUpdater : public nsRunnable {
public:
NS_IMETHOD Run()
{
hal::BatteryInformation info;
hal_impl::GetCurrentBatteryInformation(&info);
// Control the battery indicator (led light) here using BatteryInformation
// we just retrieved.
uint32_t color = 0; // Format: 0x00rrggbb.
if (info.charging() && (info.level() == 1)) {
// Charging and battery full.
color = BATTERY_FULL_ARGB;
} else if (info.charging() && (info.level() < 1)) {
// Charging but not full.
color = BATTERY_CHARGING_ARGB;
} // else turn off battery indicator.
LightConfiguration aConfig;
aConfig.light = eHalLightID_Battery;
aConfig.mode = eHalLightMode_User;
aConfig.flash = eHalLightFlash_None;
aConfig.flashOnMS = aConfig.flashOffMS = 0;
aConfig.color = color;
SetLight(eHalLightID_Battery, aConfig);
hal::NotifyBatteryChange(info);
{
// bug 975667
// Gecko gonk hal is required to emit battery charging/level notification via nsIObserverService.
// This is useful for XPCOM components that are not statically linked to Gecko and cannot call
// hal::EnableBatteryNotifications
nsCOMPtr<nsIObserverService> obsService = mozilla::services::GetObserverService();
nsCOMPtr<nsIWritablePropertyBag2> propbag =
do_CreateInstance("@mozilla.org/hash-property-bag;1");
if (obsService && propbag) {
propbag->SetPropertyAsBool(NS_LITERAL_STRING("charging"),
info.charging());
propbag->SetPropertyAsDouble(NS_LITERAL_STRING("level"),
info.level());
obsService->NotifyObservers(propbag, "gonkhal-battery-notifier", nullptr);
}
}
return NS_OK;
}
};
} // namespace
class BatteryObserver final : public IUeventObserver
{
public:
NS_INLINE_DECL_REFCOUNTING(BatteryObserver)
BatteryObserver()
:mUpdater(new BatteryUpdater())
{
}
virtual void Notify(const NetlinkEvent &aEvent)
{
// this will run on IO thread
NetlinkEvent *event = const_cast<NetlinkEvent*>(&aEvent);
const char *subsystem = event->getSubsystem();
// e.g. DEVPATH=/devices/platform/sec-battery/power_supply/battery
const char *devpath = event->findParam("DEVPATH");
if (strcmp(subsystem, "power_supply") == 0 &&
strstr(devpath, "battery")) {
// aEvent will be valid only in this method.
NS_DispatchToMainThread(mUpdater);
}
}
protected:
~BatteryObserver() {}
private:
RefPtr<BatteryUpdater> mUpdater;
};
// sBatteryObserver is owned by the IO thread. Only the IO thread may
// create or destroy it.
static StaticRefPtr<BatteryObserver> sBatteryObserver;
static void
RegisterBatteryObserverIOThread()
{
MOZ_ASSERT(MessageLoop::current() == XRE_GetIOMessageLoop());
MOZ_ASSERT(!sBatteryObserver);
sBatteryObserver = new BatteryObserver();
RegisterUeventListener(sBatteryObserver);
}
void
EnableBatteryNotifications()
{
XRE_GetIOMessageLoop()->PostTask(
FROM_HERE,
NewRunnableFunction(RegisterBatteryObserverIOThread));
}
static void
UnregisterBatteryObserverIOThread()
{
MOZ_ASSERT(MessageLoop::current() == XRE_GetIOMessageLoop());
MOZ_ASSERT(sBatteryObserver);
UnregisterUeventListener(sBatteryObserver);
sBatteryObserver = nullptr;
}
void
DisableBatteryNotifications()
{
XRE_GetIOMessageLoop()->PostTask(
FROM_HERE,
NewRunnableFunction(UnregisterBatteryObserverIOThread));
}
static bool
GetCurrentBatteryCharge(int* aCharge)
{
bool success = ReadSysFile("/sys/class/power_supply/battery/capacity",
aCharge);
if (!success) {
return false;
}
#ifdef DEBUG
if ((*aCharge < 0) || (*aCharge > 100)) {
HAL_LOG("charge level contains unknown value: %d", *aCharge);
}
#endif
return (*aCharge >= 0) && (*aCharge <= 100);
}
static bool
GetCurrentBatteryCharging(int* aCharging)
{
static const DebugOnly<int> BATTERY_NOT_CHARGING = 0;
static const int BATTERY_CHARGING_USB = 1;
static const int BATTERY_CHARGING_AC = 2;
// Generic device support
int chargingSrc;
bool success =
ReadSysFile("/sys/class/power_supply/battery/charging_source", &chargingSrc);
if (success) {
#ifdef DEBUG
if (chargingSrc != BATTERY_NOT_CHARGING &&
chargingSrc != BATTERY_CHARGING_USB &&
chargingSrc != BATTERY_CHARGING_AC) {
HAL_LOG("charging_source contained unknown value: %d", chargingSrc);
}
#endif
*aCharging = (chargingSrc == BATTERY_CHARGING_USB ||
chargingSrc == BATTERY_CHARGING_AC);
return true;
}
// Otoro device support
char chargingSrcString[16];
success = ReadSysFile("/sys/class/power_supply/battery/status",
chargingSrcString, sizeof(chargingSrcString));
if (success) {
*aCharging = strcmp(chargingSrcString, "Charging") == 0 ||
strcmp(chargingSrcString, "Full") == 0;
return true;
}
return false;
}
void
GetCurrentBatteryInformation(hal::BatteryInformation* aBatteryInfo)
{
int charge;
static bool previousCharging = false;
static double previousLevel = 0.0, remainingTime = 0.0;
static struct timespec lastLevelChange;
struct timespec now;
double dtime, dlevel;
if (GetCurrentBatteryCharge(&charge)) {
aBatteryInfo->level() = (double)charge / 100.0;
} else {
aBatteryInfo->level() = dom::battery::kDefaultLevel;
}
int charging;
if (GetCurrentBatteryCharging(&charging)) {
aBatteryInfo->charging() = charging;
} else {
aBatteryInfo->charging() = true;
}
if (aBatteryInfo->charging() != previousCharging){
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
memset(&lastLevelChange, 0, sizeof(struct timespec));
remainingTime = 0.0;
}
if (aBatteryInfo->charging()) {
if (aBatteryInfo->level() == 1.0) {
aBatteryInfo->remainingTime() = dom::battery::kDefaultRemainingTime;
} else if (aBatteryInfo->level() != previousLevel){
if (lastLevelChange.tv_sec != 0) {
clock_gettime(CLOCK_MONOTONIC, &now);
dtime = now.tv_sec - lastLevelChange.tv_sec;
dlevel = aBatteryInfo->level() - previousLevel;
if (dlevel <= 0.0) {
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
} else {
remainingTime = (double) round(dtime / dlevel * (1.0 - aBatteryInfo->level()));
aBatteryInfo->remainingTime() = remainingTime;
}
lastLevelChange = now;
} else { // lastLevelChange.tv_sec == 0
clock_gettime(CLOCK_MONOTONIC, &lastLevelChange);
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
}
} else {
clock_gettime(CLOCK_MONOTONIC, &now);
dtime = now.tv_sec - lastLevelChange.tv_sec;
if (dtime < remainingTime) {
aBatteryInfo->remainingTime() = round(remainingTime - dtime);
} else {
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
}
}
} else {
if (aBatteryInfo->level() == 0.0) {
aBatteryInfo->remainingTime() = dom::battery::kDefaultRemainingTime;
} else if (aBatteryInfo->level() != previousLevel){
if (lastLevelChange.tv_sec != 0) {
clock_gettime(CLOCK_MONOTONIC, &now);
dtime = now.tv_sec - lastLevelChange.tv_sec;
dlevel = previousLevel - aBatteryInfo->level();
if (dlevel <= 0.0) {
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
} else {
remainingTime = (double) round(dtime / dlevel * aBatteryInfo->level());
aBatteryInfo->remainingTime() = remainingTime;
}
lastLevelChange = now;
} else { // lastLevelChange.tv_sec == 0
clock_gettime(CLOCK_MONOTONIC, &lastLevelChange);
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
}
} else {
clock_gettime(CLOCK_MONOTONIC, &now);
dtime = now.tv_sec - lastLevelChange.tv_sec;
if (dtime < remainingTime) {
aBatteryInfo->remainingTime() = round(remainingTime - dtime);
} else {
aBatteryInfo->remainingTime() = dom::battery::kUnknownRemainingTime;
}
}
}
previousCharging = aBatteryInfo->charging();
previousLevel = aBatteryInfo->level();
}
namespace {
/**
* RAII class to help us remember to close file descriptors.
*/
bool WriteToFile(const char *filename, const char *toWrite)
{
int fd = open(filename, O_WRONLY);
ScopedClose autoClose(fd);
if (fd < 0) {
HAL_LOG("Unable to open file %s.", filename);
return false;
}
if (write(fd, toWrite, strlen(toWrite)) < 0) {
HAL_LOG("Unable to write to file %s.", filename);
return false;
}
return true;
}
// We can write to screenEnabledFilename to enable/disable the screen, but when
// we read, we always get "mem"! So we have to keep track ourselves whether
// the screen is on or not.
bool sScreenEnabled = true;
// We can read wakeLockFilename to find out whether the cpu wake lock
// is already acquired, but reading and parsing it is a lot more work
// than tracking it ourselves, and it won't be accurate anyway (kernel
// internal wake locks aren't counted here.)
bool sCpuSleepAllowed = true;
// Some CPU wake locks may be acquired internally in HAL. We use a counter to
// keep track of these needs. Note we have to hold |sInternalLockCpuMonitor|
// when reading or writing this variable to ensure thread-safe.
int32_t sInternalLockCpuCount = 0;
} // namespace
bool
GetScreenEnabled()
{
return sScreenEnabled;
}
void
SetScreenEnabled(bool aEnabled)
{
GetGonkDisplay()->SetEnabled(aEnabled);
sScreenEnabled = aEnabled;
}
bool
GetKeyLightEnabled()
{
LightConfiguration config;
bool ok = GetLight(eHalLightID_Buttons, &config);
if (ok) {
return (config.color != 0x00000000);
}
return false;
}
void
SetKeyLightEnabled(bool aEnabled)
{
LightConfiguration config;
config.mode = eHalLightMode_User;
config.flash = eHalLightFlash_None;
config.flashOnMS = config.flashOffMS = 0;
config.color = 0x00000000;
if (aEnabled) {
// Convert the value in [0, 1] to an int between 0 and 255 and then convert
// it to a color. Note that the high byte is FF, corresponding to the alpha
// channel.
double brightness = GetScreenBrightness();
uint32_t val = static_cast<int>(round(brightness * 255.0));
uint32_t color = (0xff<<24) + (val<<16) + (val<<8) + val;
config.color = color;
}
SetLight(eHalLightID_Buttons, config);
SetLight(eHalLightID_Keyboard, config);
}
double
GetScreenBrightness()
{
LightConfiguration config;
LightType light = eHalLightID_Backlight;
bool ok = GetLight(light, &config);
if (ok) {
// backlight is brightness only, so using one of the RGB elements as value.
int brightness = config.color & 0xFF;
return brightness / 255.0;
}
// If GetLight fails, it's because the light doesn't exist. So return
// a value corresponding to "off".
return 0;
}
void
SetScreenBrightness(double brightness)
{
// Don't use De Morgan's law to push the ! into this expression; we want to
// catch NaN too.
if (!(0 <= brightness && brightness <= 1)) {
HAL_LOG("SetScreenBrightness: Dropping illegal brightness %f.", brightness);
return;
}
// Convert the value in [0, 1] to an int between 0 and 255 and convert to a color
// note that the high byte is FF, corresponding to the alpha channel.
uint32_t val = static_cast<int>(round(brightness * 255.0));
uint32_t color = (0xff<<24) + (val<<16) + (val<<8) + val;
LightConfiguration config;
config.mode = eHalLightMode_User;
config.flash = eHalLightFlash_None;
config.flashOnMS = config.flashOffMS = 0;
config.color = color;
SetLight(eHalLightID_Backlight, config);
if (GetKeyLightEnabled()) {
SetLight(eHalLightID_Buttons, config);
SetLight(eHalLightID_Keyboard, config);
}
}
static Monitor* sInternalLockCpuMonitor = nullptr;
static void
UpdateCpuSleepState()
{
const char *wakeLockFilename = "/sys/power/wake_lock";
const char *wakeUnlockFilename = "/sys/power/wake_unlock";
sInternalLockCpuMonitor->AssertCurrentThreadOwns();
bool allowed = sCpuSleepAllowed && !sInternalLockCpuCount;
WriteToFile(allowed ? wakeUnlockFilename : wakeLockFilename, "gecko");
}
static void
InternalLockCpu() {
MonitorAutoLock monitor(*sInternalLockCpuMonitor);
++sInternalLockCpuCount;
UpdateCpuSleepState();
}
static void
InternalUnlockCpu() {
MonitorAutoLock monitor(*sInternalLockCpuMonitor);
--sInternalLockCpuCount;
UpdateCpuSleepState();
}
bool
GetCpuSleepAllowed()
{
return sCpuSleepAllowed;
}
void
SetCpuSleepAllowed(bool aAllowed)
{
MonitorAutoLock monitor(*sInternalLockCpuMonitor);
sCpuSleepAllowed = aAllowed;
UpdateCpuSleepState();
}
void
AdjustSystemClock(int64_t aDeltaMilliseconds)
{
int fd;
struct timespec now;
if (aDeltaMilliseconds == 0) {
return;
}
// Preventing context switch before setting system clock
sched_yield();
clock_gettime(CLOCK_REALTIME, &now);
now.tv_sec += (time_t)(aDeltaMilliseconds / 1000LL);
now.tv_nsec += (long)((aDeltaMilliseconds % 1000LL) * NsecPerMsec);
if (now.tv_nsec >= NsecPerSec) {
now.tv_sec += 1;
now.tv_nsec -= NsecPerSec;
}
if (now.tv_nsec < 0) {
now.tv_nsec += NsecPerSec;
now.tv_sec -= 1;
}
do {
fd = open("/dev/alarm", O_RDWR);
} while (fd == -1 && errno == EINTR);
ScopedClose autoClose(fd);
if (fd < 0) {
HAL_LOG("Failed to open /dev/alarm: %s", strerror(errno));
return;
}
if (ioctl(fd, ANDROID_ALARM_SET_RTC, &now) < 0) {
HAL_LOG("ANDROID_ALARM_SET_RTC failed: %s", strerror(errno));
}
hal::NotifySystemClockChange(aDeltaMilliseconds);
}
int32_t
GetTimezoneOffset()
{
PRExplodedTime prTime;
PR_ExplodeTime(PR_Now(), PR_LocalTimeParameters, &prTime);
// Daylight saving time (DST) will be taken into account.
int32_t offset = prTime.tm_params.tp_gmt_offset;
offset += prTime.tm_params.tp_dst_offset;
// Returns the timezone offset relative to UTC in minutes.
return -(offset / 60);
}
static int32_t sKernelTimezoneOffset = 0;
static void
UpdateKernelTimezone(int32_t timezoneOffset)
{
if (sKernelTimezoneOffset == timezoneOffset) {
return;
}
// Tell the kernel about the new time zone as well, so that FAT filesystems
// will get local timestamps rather than UTC timestamps.
//
// We assume that /init.rc has a sysclktz entry so that settimeofday has
// already been called once before we call it (there is a side-effect in
// the kernel the very first time settimeofday is called where it does some
// special processing if you only set the timezone).
struct timezone tz;
memset(&tz, 0, sizeof(tz));
tz.tz_minuteswest = timezoneOffset;
settimeofday(nullptr, &tz);
sKernelTimezoneOffset = timezoneOffset;
}
void
SetTimezone(const nsCString& aTimezoneSpec)
{
if (aTimezoneSpec.Equals(GetTimezone())) {
// Even though the timezone hasn't changed, we still need to tell the
// kernel what the current timezone is. The timezone is persisted in
// a property and doesn't change across reboots, but the kernel still
// needs to be updated on every boot.
UpdateKernelTimezone(GetTimezoneOffset());
return;
}
int32_t oldTimezoneOffsetMinutes = GetTimezoneOffset();
property_set("persist.sys.timezone", aTimezoneSpec.get());
// This function is automatically called by the other time conversion
// functions that depend on the timezone. To be safe, we call it manually.
tzset();
int32_t newTimezoneOffsetMinutes = GetTimezoneOffset();
UpdateKernelTimezone(newTimezoneOffsetMinutes);
hal::NotifySystemTimezoneChange(
hal::SystemTimezoneChangeInformation(
oldTimezoneOffsetMinutes, newTimezoneOffsetMinutes));
}
nsCString
GetTimezone()
{
char timezone[32];
property_get("persist.sys.timezone", timezone, "");
return nsCString(timezone);
}
void
EnableSystemClockChangeNotifications()
{
}
void
DisableSystemClockChangeNotifications()
{
}
void
EnableSystemTimezoneChangeNotifications()
{
}
void
DisableSystemTimezoneChangeNotifications()
{
}
// Nothing to do here. Gonk widgetry always listens for screen
// orientation changes.
void
EnableScreenConfigurationNotifications()
{
}
void
DisableScreenConfigurationNotifications()
{
}
void
GetCurrentScreenConfiguration(hal::ScreenConfiguration* aScreenConfiguration)
{
RefPtr<nsScreenGonk> screen = nsScreenManagerGonk::GetPrimaryScreen();
*aScreenConfiguration = screen->GetConfiguration();
}
bool
LockScreenOrientation(const dom::ScreenOrientationInternal& aOrientation)
{
return OrientationObserver::GetInstance()->LockScreenOrientation(aOrientation);
}
void
UnlockScreenOrientation()
{
OrientationObserver::GetInstance()->UnlockScreenOrientation();
}
// This thread will wait for the alarm firing by a blocking IO.
static pthread_t sAlarmFireWatcherThread;
// If |sAlarmData| is non-null, it's owned by the alarm-watcher thread.
struct AlarmData {
public:
AlarmData(int aFd) : mFd(aFd),
mGeneration(sNextGeneration++),
mShuttingDown(false) {}
ScopedClose mFd;
int mGeneration;
bool mShuttingDown;
static int sNextGeneration;
};
int AlarmData::sNextGeneration = 0;
AlarmData* sAlarmData = nullptr;
class AlarmFiredEvent : public nsRunnable {
public:
AlarmFiredEvent(int aGeneration) : mGeneration(aGeneration) {}
NS_IMETHOD Run() {
// Guard against spurious notifications caused by an alarm firing
// concurrently with it being disabled.
if (sAlarmData && !sAlarmData->mShuttingDown &&
mGeneration == sAlarmData->mGeneration) {
hal::NotifyAlarmFired();
}
// The fired alarm event has been delivered to the observer (if needed);
// we can now release a CPU wake lock.
InternalUnlockCpu();
return NS_OK;
}
private:
int mGeneration;
};
// Runs on alarm-watcher thread.
static void
DestroyAlarmData(void* aData)
{
AlarmData* alarmData = static_cast<AlarmData*>(aData);
delete alarmData;
}
// Runs on alarm-watcher thread.
void ShutDownAlarm(int aSigno)
{
if (aSigno == SIGUSR1 && sAlarmData) {
sAlarmData->mShuttingDown = true;
}
return;
}
static void*
WaitForAlarm(void* aData)
{
pthread_cleanup_push(DestroyAlarmData, aData);
AlarmData* alarmData = static_cast<AlarmData*>(aData);
while (!alarmData->mShuttingDown) {
int alarmTypeFlags = 0;
// ALARM_WAIT apparently will block even if an alarm hasn't been
// programmed, although this behavior doesn't seem to be
// documented. We rely on that here to avoid spinning the CPU
// while awaiting an alarm to be programmed.
do {
alarmTypeFlags = ioctl(alarmData->mFd, ANDROID_ALARM_WAIT);
} while (alarmTypeFlags < 0 && errno == EINTR &&
!alarmData->mShuttingDown);
if (!alarmData->mShuttingDown && alarmTypeFlags >= 0 &&
(alarmTypeFlags & ANDROID_ALARM_RTC_WAKEUP_MASK)) {
// To make sure the observer can get the alarm firing notification
// *on time* (the system won't sleep during the process in any way),
// we need to acquire a CPU wake lock before firing the alarm event.
InternalLockCpu();
RefPtr<AlarmFiredEvent> event =
new AlarmFiredEvent(alarmData->mGeneration);
NS_DispatchToMainThread(event);
}
}
pthread_cleanup_pop(1);
return nullptr;
}
bool
EnableAlarm()
{
MOZ_ASSERT(!sAlarmData);
int alarmFd = open("/dev/alarm", O_RDWR);
if (alarmFd < 0) {
HAL_LOG("Failed to open alarm device: %s.", strerror(errno));
return false;
}
nsAutoPtr<AlarmData> alarmData(new AlarmData(alarmFd));
struct sigaction actions;
memset(&actions, 0, sizeof(actions));
sigemptyset(&actions.sa_mask);
actions.sa_flags = 0;
actions.sa_handler = ShutDownAlarm;
if (sigaction(SIGUSR1, &actions, nullptr)) {
HAL_LOG("Failed to set SIGUSR1 signal for alarm-watcher thread.");
return false;
}
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
// Initialize the monitor for internally locking CPU to ensure thread-safe
// before running the alarm-watcher thread.
sInternalLockCpuMonitor = new Monitor("sInternalLockCpuMonitor");
int status = pthread_create(&sAlarmFireWatcherThread, &attr, WaitForAlarm,
alarmData.get());
if (status) {
alarmData = nullptr;
delete sInternalLockCpuMonitor;
HAL_LOG("Failed to create alarm-watcher thread. Status: %d.", status);
return false;
}
pthread_attr_destroy(&attr);
// The thread owns this now. We only hold a pointer.
sAlarmData = alarmData.forget();
return true;
}
void
DisableAlarm()
{
MOZ_ASSERT(sAlarmData);
// NB: this must happen-before the thread cancellation.
sAlarmData = nullptr;
// The cancel will interrupt the thread and destroy it, freeing the
// data pointed at by sAlarmData.
DebugOnly<int> err = pthread_kill(sAlarmFireWatcherThread, SIGUSR1);
MOZ_ASSERT(!err);
delete sInternalLockCpuMonitor;
}
bool
SetAlarm(int32_t aSeconds, int32_t aNanoseconds)
{
if (!sAlarmData) {
HAL_LOG("We should have enabled the alarm.");
return false;
}
struct timespec ts;
ts.tv_sec = aSeconds;
ts.tv_nsec = aNanoseconds;
// Currently we only support RTC wakeup alarm type.
const int result = ioctl(sAlarmData->mFd,
ANDROID_ALARM_SET(ANDROID_ALARM_RTC_WAKEUP), &ts);
if (result < 0) {
HAL_LOG("Unable to set alarm: %s.", strerror(errno));
return false;
}
return true;
}
static int
OomAdjOfOomScoreAdj(int aOomScoreAdj)
{
// Convert OOM adjustment from the domain of /proc/<pid>/oom_score_adj
// to the domain of /proc/<pid>/oom_adj.
int adj;
if (aOomScoreAdj < 0) {
adj = (OOM_DISABLE * aOomScoreAdj) / OOM_SCORE_ADJ_MIN;
} else {
adj = (OOM_ADJUST_MAX * aOomScoreAdj) / OOM_SCORE_ADJ_MAX;
}
return adj;
}
static void
RoundOomScoreAdjUpWithLRU(int& aOomScoreAdj, uint32_t aLRU)
{
// We want to add minimum value to round OomScoreAdj up according to
// the steps by aLRU.
aOomScoreAdj +=
ceil(((float)OOM_SCORE_ADJ_MAX / OOM_ADJUST_MAX) * aLRU);
}
#define OOM_LOG(level, args...) __android_log_print(level, "OomLogger", ##args)
class OomVictimLogger final
: public nsIObserver
{
public:
OomVictimLogger()
: mLastLineChecked(-1.0),
mRegexes(nullptr)
{
// Enable timestamps in kernel's printk
WriteToFile("/sys/module/printk/parameters/time", "Y");
}
NS_DECL_ISUPPORTS
NS_DECL_NSIOBSERVER
protected:
~OomVictimLogger() {}
private:
double mLastLineChecked;
ScopedFreePtr<regex_t> mRegexes;
};
NS_IMPL_ISUPPORTS(OomVictimLogger, nsIObserver);
NS_IMETHODIMP
OomVictimLogger::Observe(
nsISupports* aSubject,
const char* aTopic,
const char16_t* aData)
{
nsDependentCString event_type(aTopic);
if (!event_type.EqualsLiteral("ipc:content-shutdown")) {
return NS_OK;
}
// OOM message finding regexes
const char* const regexes_raw[] = {
".*select.*to kill.*",
".*send sigkill to.*",
".*lowmem_shrink.*",
".*[Oo]ut of [Mm]emory.*",
".*[Kk]ill [Pp]rocess.*",
".*[Kk]illed [Pp]rocess.*",
".*oom-killer.*",
// The regexes below are for the output of dump_task from oom_kill.c
// 1st - title 2nd - body lines (8 ints and a string)
// oom_adj and oom_score_adj can be negative
"\\[ pid \\] uid tgid total_vm rss cpu oom_adj oom_score_adj name",
"\\[.*[0-9][0-9]*\\][ ]*[0-9][0-9]*[ ]*[0-9][0-9]*[ ]*[0-9][0-9]*[ ]*[0-9][0-9]*[ ]*[0-9][0-9]*[ ]*.[0-9][0-9]*[ ]*.[0-9][0-9]*.*"
};
const size_t regex_count = ArrayLength(regexes_raw);
// Compile our regex just in time
if (!mRegexes) {
mRegexes = static_cast<regex_t*>(malloc(sizeof(regex_t) * regex_count));
for (size_t i = 0; i < regex_count; i++) {
int compilation_err = regcomp(&(mRegexes[i]), regexes_raw[i], REG_NOSUB);
if (compilation_err) {
OOM_LOG(ANDROID_LOG_ERROR, "Cannot compile regex \"%s\"\n", regexes_raw[i]);
return NS_OK;
}
}
}
#ifndef KLOG_SIZE_BUFFER
// Upstream bionic in commit
// e249b059637b49a285ed9f58a2a18bfd054e5d95
// deprecated the old klog defs.
// Our current bionic does not hit this
// change yet so handle the future change.
// (ICS doesn't have KLOG_SIZE_BUFFER but
// JB and onwards does.)
#define KLOG_SIZE_BUFFER KLOG_WRITE
#endif
// Retreive kernel log
int msg_buf_size = klogctl(KLOG_SIZE_BUFFER, NULL, 0);
ScopedFreePtr<char> msg_buf(static_cast<char *>(malloc(msg_buf_size + 1)));
int read_size = klogctl(KLOG_READ_ALL, msg_buf.rwget(), msg_buf_size);
// Turn buffer into cstring
read_size = read_size > msg_buf_size ? msg_buf_size : read_size;
msg_buf.rwget()[read_size] = '\0';
// Foreach line
char* line_end;
char* line_begin = msg_buf.rwget();
for (; (line_end = strchr(line_begin, '\n')); line_begin = line_end + 1) {
// make line into cstring
*line_end = '\0';
// Note: Kernel messages look like:
// <5>[63648.286409] sd 35:0:0:0: Attached scsi generic sg1 type 0
// 5 is the loging level
// [*] is the time timestamp, seconds since boot
// last comes the logged message
// Since the logging level can be a string we must
// skip it since scanf lacks wildcard matching
char* timestamp_begin = strchr(line_begin, '[');
char after_float;
double lineTimestamp = -1;
bool lineTimestampFound = false;
if (timestamp_begin &&
// Note: scanf treats a ' ' as [ ]*
// Note: scanf treats [ %lf] as [ %lf thus we must check
// for the closing bracket outselves.
2 == sscanf(timestamp_begin, "[ %lf%c", &lineTimestamp, &after_float) &&
after_float == ']') {
if (lineTimestamp <= mLastLineChecked) {
continue;
}
lineTimestampFound = true;
mLastLineChecked = lineTimestamp;
}
// Log interesting lines
for (size_t i = 0; i < regex_count; i++) {
int matching = !regexec(&(mRegexes[i]), line_begin, 0, NULL, 0);
if (matching) {
// Log content of kernel message. We try to skip the ], but if for
// some reason (most likely due to buffer overflow/wraparound), we
// can't find the ] then we just log the entire line.
char* endOfTimestamp = strchr(line_begin, ']');
if (endOfTimestamp && endOfTimestamp[1] == ' ') {
// skip the ] and the space that follows it
line_begin = endOfTimestamp + 2;
}
if (!lineTimestampFound) {
OOM_LOG(ANDROID_LOG_WARN, "following kill message may be a duplicate");
}
OOM_LOG(ANDROID_LOG_ERROR, "[Kill]: %s\n", line_begin);
break;
}
}
}
return NS_OK;
}
/**
* Wraps a particular ProcessPriority, giving us easy access to the prefs that
* are relevant to it.
*
* Creating a PriorityClass also ensures that the control group is created.
*/
class PriorityClass
{
public:
/**
* Create a PriorityClass for the given ProcessPriority. This implicitly
* reads the relevant prefs and opens the cgroup.procs file of the relevant
* control group caching its file descriptor for later use.
*/
PriorityClass(ProcessPriority aPriority);
/**
* Closes the file descriptor for the cgroup.procs file of the associated
* control group.
*/
~PriorityClass();
PriorityClass(const PriorityClass& aOther);
PriorityClass& operator=(const PriorityClass& aOther);
ProcessPriority Priority()
{
return mPriority;
}
int32_t OomScoreAdj()
{
return clamped<int32_t>(mOomScoreAdj, OOM_SCORE_ADJ_MIN, OOM_SCORE_ADJ_MAX);
}
int32_t KillUnderKB()
{
return mKillUnderKB;
}
nsCString CGroup()
{
return mGroup;
}
/**
* Adds a process to this priority class, this moves the process' PID into
* the associated control group.
*
* @param aPid The PID of the process to be added.
*/
void AddProcess(int aPid);
private:
ProcessPriority mPriority;
int32_t mOomScoreAdj;
int32_t mKillUnderKB;
int mCpuCGroupProcsFd;
int mMemCGroupProcsFd;
nsCString mGroup;
/**
* Return a string that identifies where we can find the value of aPref
* that's specific to mPriority. For example, we might return
* "hal.processPriorityManager.gonk.FOREGROUND_HIGH.oomScoreAdjust".
*/
nsCString PriorityPrefName(const char* aPref)
{
return nsPrintfCString("hal.processPriorityManager.gonk.%s.%s",
ProcessPriorityToString(mPriority), aPref);
}
/**
* Get the full path of the cgroup.procs file associated with the group.
*/
nsCString CpuCGroupProcsFilename()
{
nsCString cgroupName = mGroup;
/* If mGroup is empty, our cgroup.procs file is the root procs file,
* located at /dev/cpuctl/cgroup.procs. Otherwise our procs file is
* /dev/cpuctl/NAME/cgroup.procs. */
if (!mGroup.IsEmpty()) {
cgroupName.AppendLiteral("/");
}
return NS_LITERAL_CSTRING("/dev/cpuctl/") + cgroupName +
NS_LITERAL_CSTRING("cgroup.procs");
}
nsCString MemCGroupProcsFilename()
{
nsCString cgroupName = mGroup;
/* If mGroup is empty, our cgroup.procs file is the root procs file,
* located at /sys/fs/cgroup/memory/cgroup.procs. Otherwise our procs
* file is /sys/fs/cgroup/memory/NAME/cgroup.procs. */
if (!mGroup.IsEmpty()) {
cgroupName.AppendLiteral("/");
}
return NS_LITERAL_CSTRING("/sys/fs/cgroup/memory/") + cgroupName +
NS_LITERAL_CSTRING("cgroup.procs");
}
int OpenCpuCGroupProcs()
{
return open(CpuCGroupProcsFilename().get(), O_WRONLY);
}
int OpenMemCGroupProcs()
{
return open(MemCGroupProcsFilename().get(), O_WRONLY);
}
};
/**
* Try to create the cgroup for the given PriorityClass, if it doesn't already
* exist. This essentially implements mkdir -p; that is, we create parent
* cgroups as necessary. The group parameters are also set according to
* the corresponding preferences.
*
* @param aGroup The name of the group.
* @return true if we successfully created the cgroup, or if it already
* exists. Otherwise, return false.
*/
static bool
EnsureCpuCGroupExists(const nsACString &aGroup)
{
NS_NAMED_LITERAL_CSTRING(kDevCpuCtl, "/dev/cpuctl/");
NS_NAMED_LITERAL_CSTRING(kSlash, "/");
nsAutoCString groupName(aGroup);
HAL_LOG("EnsureCpuCGroupExists for group '%s'", groupName.get());
nsAutoCString prefPrefix("hal.processPriorityManager.gonk.cgroups.");
/* If cgroup is not empty, append the cgroup name and a dot to obtain the
* group specific preferences. */
if (!aGroup.IsEmpty()) {
prefPrefix += aGroup + NS_LITERAL_CSTRING(".");
}
nsAutoCString cpuSharesPref(prefPrefix + NS_LITERAL_CSTRING("cpu_shares"));
int cpuShares = Preferences::GetInt(cpuSharesPref.get());
nsAutoCString cpuNotifyOnMigratePref(prefPrefix
+ NS_LITERAL_CSTRING("cpu_notify_on_migrate"));
int cpuNotifyOnMigrate = Preferences::GetInt(cpuNotifyOnMigratePref.get());
// Create mCGroup and its parent directories, as necessary.
nsCString cgroupIter = aGroup + kSlash;
int32_t offset = 0;
while ((offset = cgroupIter.FindChar('/', offset)) != -1) {
nsAutoCString path = kDevCpuCtl + Substring(cgroupIter, 0, offset);
int rv = mkdir(path.get(), 0744);
if (rv == -1 && errno != EEXIST) {
HAL_LOG("Could not create the %s control group.", path.get());
return false;
}
offset++;
}
HAL_LOG("EnsureCpuCGroupExists created group '%s'", groupName.get());
nsAutoCString pathPrefix(kDevCpuCtl + aGroup + kSlash);
nsAutoCString cpuSharesPath(pathPrefix + NS_LITERAL_CSTRING("cpu.shares"));
if (cpuShares && !WriteToFile(cpuSharesPath.get(),
nsPrintfCString("%d", cpuShares).get())) {
HAL_LOG("Could not set the cpu share for group %s", cpuSharesPath.get());
return false;
}
nsAutoCString notifyOnMigratePath(pathPrefix
+ NS_LITERAL_CSTRING("cpu.notify_on_migrate"));
if (!WriteToFile(notifyOnMigratePath.get(),
nsPrintfCString("%d", cpuNotifyOnMigrate).get())) {
HAL_LOG("Could not set the cpu migration notification flag for group %s",
notifyOnMigratePath.get());
return false;
}
return true;
}
static bool
EnsureMemCGroupExists(const nsACString &aGroup)
{
NS_NAMED_LITERAL_CSTRING(kMemCtl, "/sys/fs/cgroup/memory/");
NS_NAMED_LITERAL_CSTRING(kSlash, "/");
nsAutoCString groupName(aGroup);
HAL_LOG("EnsureMemCGroupExists for group '%s'", groupName.get());
nsAutoCString prefPrefix("hal.processPriorityManager.gonk.cgroups.");
/* If cgroup is not empty, append the cgroup name and a dot to obtain the
* group specific preferences. */
if (!aGroup.IsEmpty()) {
prefPrefix += aGroup + NS_LITERAL_CSTRING(".");
}
nsAutoCString memSwappinessPref(prefPrefix + NS_LITERAL_CSTRING("memory_swappiness"));
int memSwappiness = Preferences::GetInt(memSwappinessPref.get());
// Create mCGroup and its parent directories, as necessary.
nsCString cgroupIter = aGroup + kSlash;
int32_t offset = 0;
while ((offset = cgroupIter.FindChar('/', offset)) != -1) {
nsAutoCString path = kMemCtl + Substring(cgroupIter, 0, offset);
int rv = mkdir(path.get(), 0744);
if (rv == -1 && errno != EEXIST) {
HAL_LOG("Could not create the %s control group.", path.get());
return false;
}
offset++;
}
HAL_LOG("EnsureMemCGroupExists created group '%s'", groupName.get());
nsAutoCString pathPrefix(kMemCtl + aGroup + kSlash);
nsAutoCString memSwappinessPath(pathPrefix + NS_LITERAL_CSTRING("memory.swappiness"));
if (!WriteToFile(memSwappinessPath.get(),
nsPrintfCString("%d", memSwappiness).get())) {
HAL_LOG("Could not set the memory.swappiness for group %s", memSwappinessPath.get());
return false;
}
HAL_LOG("Set memory.swappiness for group %s to %d", memSwappinessPath.get(), memSwappiness);
return true;
}
PriorityClass::PriorityClass(ProcessPriority aPriority)
: mPriority(aPriority)
, mOomScoreAdj(0)
, mKillUnderKB(0)
, mCpuCGroupProcsFd(-1)
, mMemCGroupProcsFd(-1)
{
DebugOnly<nsresult> rv;
rv = Preferences::GetInt(PriorityPrefName("OomScoreAdjust").get(),
&mOomScoreAdj);
MOZ_ASSERT(NS_SUCCEEDED(rv), "Missing oom_score_adj preference");
rv = Preferences::GetInt(PriorityPrefName("KillUnderKB").get(),
&mKillUnderKB);
rv = Preferences::GetCString(PriorityPrefName("cgroup").get(), &mGroup);
MOZ_ASSERT(NS_SUCCEEDED(rv), "Missing control group preference");
if (EnsureCpuCGroupExists(mGroup)) {
mCpuCGroupProcsFd = OpenCpuCGroupProcs();
}
if (EnsureMemCGroupExists(mGroup)) {
mMemCGroupProcsFd = OpenMemCGroupProcs();
}
}
PriorityClass::~PriorityClass()
{
if (mCpuCGroupProcsFd != -1) {
close(mCpuCGroupProcsFd);
}
if (mMemCGroupProcsFd != -1) {
close(mMemCGroupProcsFd);
}
}
PriorityClass::PriorityClass(const PriorityClass& aOther)
: mPriority(aOther.mPriority)
, mOomScoreAdj(aOther.mOomScoreAdj)
, mKillUnderKB(aOther.mKillUnderKB)
, mGroup(aOther.mGroup)
{
mCpuCGroupProcsFd = OpenCpuCGroupProcs();
mMemCGroupProcsFd = OpenMemCGroupProcs();
}
PriorityClass& PriorityClass::operator=(const PriorityClass& aOther)
{
mPriority = aOther.mPriority;
mOomScoreAdj = aOther.mOomScoreAdj;
mKillUnderKB = aOther.mKillUnderKB;
mGroup = aOther.mGroup;
mCpuCGroupProcsFd = OpenCpuCGroupProcs();
mMemCGroupProcsFd = OpenMemCGroupProcs();
return *this;
}
void PriorityClass::AddProcess(int aPid)
{
if (mCpuCGroupProcsFd >= 0) {
nsPrintfCString str("%d", aPid);
if (write(mCpuCGroupProcsFd, str.get(), strlen(str.get())) < 0) {
HAL_ERR("Couldn't add PID %d to the %s cpu control group", aPid, mGroup.get());
}
}
if (mMemCGroupProcsFd >= 0) {
nsPrintfCString str("%d", aPid);
if (write(mMemCGroupProcsFd, str.get(), strlen(str.get())) < 0) {
HAL_ERR("Couldn't add PID %d to the %s memory control group", aPid, mGroup.get());
}
}
}
/**
* Get the PriorityClass associated with the given ProcessPriority.
*
* If you pass an invalid ProcessPriority value, we return null.
*
* The pointers returned here are owned by GetPriorityClass (don't free them
* yourself). They are guaranteed to stick around until shutdown.
*/
PriorityClass*
GetPriorityClass(ProcessPriority aPriority)
{
static StaticAutoPtr<nsTArray<PriorityClass>> priorityClasses;
// Initialize priorityClasses if this is the first time we're running this
// method.
if (!priorityClasses) {
priorityClasses = new nsTArray<PriorityClass>();
ClearOnShutdown(&priorityClasses);
for (int32_t i = 0; i < NUM_PROCESS_PRIORITY; i++) {
priorityClasses->AppendElement(PriorityClass(ProcessPriority(i)));
}
}
if (aPriority < 0 ||
static_cast<uint32_t>(aPriority) >= priorityClasses->Length()) {
return nullptr;
}
return &(*priorityClasses)[aPriority];
}
static void
EnsureKernelLowMemKillerParamsSet()
{
static bool kernelLowMemKillerParamsSet;
if (kernelLowMemKillerParamsSet) {
return;
}
kernelLowMemKillerParamsSet = true;
HAL_LOG("Setting kernel's low-mem killer parameters.");
// Set /sys/module/lowmemorykiller/parameters/{adj,minfree,notify_trigger}
// according to our prefs. These files let us tune when the kernel kills
// processes when we're low on memory, and when it notifies us that we're
// running low on available memory.
//
// adj and minfree are both comma-separated lists of integers. If adj="A,B"
// and minfree="X,Y", then the kernel will kill processes with oom_adj
// A or higher once we have fewer than X pages of memory free, and will kill
// processes with oom_adj B or higher once we have fewer than Y pages of
// memory free.
//
// notify_trigger is a single integer. If we set notify_trigger=Z, then
// we'll get notified when there are fewer than Z pages of memory free. (See
// GonkMemoryPressureMonitoring.cpp.)
// Build the adj and minfree strings.
nsAutoCString adjParams;
nsAutoCString minfreeParams;
DebugOnly<int32_t> lowerBoundOfNextOomScoreAdj = OOM_SCORE_ADJ_MIN - 1;
DebugOnly<int32_t> lowerBoundOfNextKillUnderKB = 0;
int32_t countOfLowmemorykillerParametersSets = 0;
long page_size = sysconf(_SC_PAGESIZE);
for (int i = NUM_PROCESS_PRIORITY - 1; i >= 0; i--) {
// The system doesn't function correctly if we're missing these prefs, so
// crash loudly.
PriorityClass* pc = GetPriorityClass(static_cast<ProcessPriority>(i));
int32_t oomScoreAdj = pc->OomScoreAdj();
int32_t killUnderKB = pc->KillUnderKB();
if (killUnderKB == 0) {
// ProcessPriority values like PROCESS_PRIORITY_FOREGROUND_KEYBOARD,
// which has only OomScoreAdjust but lacks KillUnderMB value, will not
// create new LMK parameters.
continue;
}
// The LMK in kernel silently malfunctions if we assign the parameters
// in non-increasing order, so we add this assertion here. See bug 887192.
MOZ_ASSERT(oomScoreAdj > lowerBoundOfNextOomScoreAdj);
MOZ_ASSERT(killUnderKB > lowerBoundOfNextKillUnderKB);
// The LMK in kernel only accept 6 sets of LMK parameters. See bug 914728.
MOZ_ASSERT(countOfLowmemorykillerParametersSets < 6);
// adj is in oom_adj units.
adjParams.AppendPrintf("%d,", OomAdjOfOomScoreAdj(oomScoreAdj));
// minfree is in pages.
minfreeParams.AppendPrintf("%ld,", killUnderKB * 1024 / page_size);
lowerBoundOfNextOomScoreAdj = oomScoreAdj;
lowerBoundOfNextKillUnderKB = killUnderKB;
countOfLowmemorykillerParametersSets++;
}
// Strip off trailing commas.
adjParams.Cut(adjParams.Length() - 1, 1);
minfreeParams.Cut(minfreeParams.Length() - 1, 1);
if (!adjParams.IsEmpty() && !minfreeParams.IsEmpty()) {
WriteToFile("/sys/module/lowmemorykiller/parameters/adj", adjParams.get());
WriteToFile("/sys/module/lowmemorykiller/parameters/minfree",
minfreeParams.get());
}
// Set the low-memory-notification threshold.
int32_t lowMemNotifyThresholdKB;
if (NS_SUCCEEDED(Preferences::GetInt(
"hal.processPriorityManager.gonk.notifyLowMemUnderKB",
&lowMemNotifyThresholdKB))) {
// notify_trigger is in pages.
WriteToFile("/sys/module/lowmemorykiller/parameters/notify_trigger",
nsPrintfCString("%ld", lowMemNotifyThresholdKB * 1024 / page_size).get());
}
// Ensure OOM events appear in logcat
RefPtr<OomVictimLogger> oomLogger = new OomVictimLogger();
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
os->AddObserver(oomLogger, "ipc:content-shutdown", false);
}
}
void
SetProcessPriority(int aPid, ProcessPriority aPriority, uint32_t aLRU)
{
HAL_LOG("SetProcessPriority(pid=%d, priority=%d, LRU=%u)",
aPid, aPriority, aLRU);
// If this is the first time SetProcessPriority was called, set the kernel's
// OOM parameters according to our prefs.
//
// We could/should do this on startup instead of waiting for the first
// SetProcessPriorityCall. But in practice, the master process needs to set
// its priority early in the game, so we can reasonably rely on
// SetProcessPriority being called early in startup.
EnsureKernelLowMemKillerParamsSet();
PriorityClass* pc = GetPriorityClass(aPriority);
int oomScoreAdj = pc->OomScoreAdj();
RoundOomScoreAdjUpWithLRU(oomScoreAdj, aLRU);
// We try the newer interface first, and fall back to the older interface
// on failure.
if (!WriteToFile(nsPrintfCString("/proc/%d/oom_score_adj", aPid).get(),
nsPrintfCString("%d", oomScoreAdj).get()))
{
WriteToFile(nsPrintfCString("/proc/%d/oom_adj", aPid).get(),
nsPrintfCString("%d", OomAdjOfOomScoreAdj(oomScoreAdj)).get());
}
HAL_LOG("Assigning pid %d to cgroup %s", aPid, pc->CGroup().get());
pc->AddProcess(aPid);
}
static bool
IsValidRealTimePriority(int aValue, int aSchedulePolicy)
{
return (aValue >= sched_get_priority_min(aSchedulePolicy)) &&
(aValue <= sched_get_priority_max(aSchedulePolicy));
}
static void
SetThreadNiceValue(pid_t aTid, ThreadPriority aThreadPriority, int aValue)
{
MOZ_ASSERT(aThreadPriority < NUM_THREAD_PRIORITY);
MOZ_ASSERT(aThreadPriority >= 0);
HAL_LOG("Setting thread %d to priority level %s; nice level %d",
aTid, ThreadPriorityToString(aThreadPriority), aValue);
int rv = setpriority(PRIO_PROCESS, aTid, aValue);
if (rv) {
HAL_LOG("Failed to set thread %d to priority level %s; error %s", aTid,
ThreadPriorityToString(aThreadPriority), strerror(errno));
}
}
static void
SetRealTimeThreadPriority(pid_t aTid,
ThreadPriority aThreadPriority,
int aValue)
{
int policy = SCHED_FIFO;
MOZ_ASSERT(aThreadPriority < NUM_THREAD_PRIORITY);
MOZ_ASSERT(aThreadPriority >= 0);
MOZ_ASSERT(IsValidRealTimePriority(aValue, policy), "Invalid real time priority");
// Setting real time priorities requires using sched_setscheduler
HAL_LOG("Setting thread %d to priority level %s; Real Time priority %d, "
"Schedule FIFO", aTid, ThreadPriorityToString(aThreadPriority),
aValue);
sched_param schedParam;
schedParam.sched_priority = aValue;
int rv = sched_setscheduler(aTid, policy, &schedParam);
if (rv) {
HAL_LOG("Failed to set thread %d to real time priority level %s; error %s",
aTid, ThreadPriorityToString(aThreadPriority), strerror(errno));
}
}
/*
* Used to store the nice value adjustments and real time priorities for the
* various thread priority levels.
*/
struct ThreadPriorityPrefs {
bool initialized;
struct {
int nice;
int realTime;
} priorities[NUM_THREAD_PRIORITY];
};
/*
* Reads the preferences for the various process priority levels and sets up
* watchers so that if they're dynamically changed the change is reflected on
* the appropriate variables.
*/
void
EnsureThreadPriorityPrefs(ThreadPriorityPrefs* prefs)
{
if (prefs->initialized) {
return;
}
for (int i = THREAD_PRIORITY_COMPOSITOR; i < NUM_THREAD_PRIORITY; i++) {
ThreadPriority priority = static_cast<ThreadPriority>(i);
// Read the nice values
const char* threadPriorityStr = ThreadPriorityToString(priority);
nsPrintfCString niceStr("hal.gonk.%s.nice", threadPriorityStr);
Preferences::AddIntVarCache(&prefs->priorities[i].nice, niceStr.get());
// Read the real-time priorities
nsPrintfCString realTimeStr("hal.gonk.%s.rt_priority", threadPriorityStr);
Preferences::AddIntVarCache(&prefs->priorities[i].realTime,
realTimeStr.get());
}
prefs->initialized = true;
}
static void
DoSetThreadPriority(pid_t aTid, hal::ThreadPriority aThreadPriority)
{
// See bug 999115, we can only read preferences on the main thread otherwise
// we create a race condition in HAL
MOZ_ASSERT(NS_IsMainThread(), "Can only set thread priorities on main thread");
MOZ_ASSERT(aThreadPriority >= 0);
static ThreadPriorityPrefs prefs = { 0 };
EnsureThreadPriorityPrefs(&prefs);
switch (aThreadPriority) {
case THREAD_PRIORITY_COMPOSITOR:
break;
default:
HAL_ERR("Unrecognized thread priority %d; Doing nothing",
aThreadPriority);
return;
}
int realTimePriority = prefs.priorities[aThreadPriority].realTime;
if (IsValidRealTimePriority(realTimePriority, SCHED_FIFO)) {
SetRealTimeThreadPriority(aTid, aThreadPriority, realTimePriority);
return;
}
SetThreadNiceValue(aTid, aThreadPriority,
prefs.priorities[aThreadPriority].nice);
}
namespace {
/**
* This class sets the priority of threads given the kernel thread's id and a
* value taken from hal::ThreadPriority.
*
* This runnable must always be dispatched to the main thread otherwise it will fail.
* We have to run this from the main thread since preferences can only be read on
* main thread.
*/
class SetThreadPriorityRunnable : public nsRunnable
{
public:
SetThreadPriorityRunnable(pid_t aThreadId, hal::ThreadPriority aThreadPriority)
: mThreadId(aThreadId)
, mThreadPriority(aThreadPriority)
{ }
NS_IMETHOD Run()
{
NS_ASSERTION(NS_IsMainThread(), "Can only set thread priorities on main thread");
hal_impl::DoSetThreadPriority(mThreadId, mThreadPriority);
return NS_OK;
}
private:
pid_t mThreadId;
hal::ThreadPriority mThreadPriority;
};
} // namespace
void
SetCurrentThreadPriority(ThreadPriority aThreadPriority)
{
pid_t threadId = gettid();
hal_impl::SetThreadPriority(threadId, aThreadPriority);
}
void
SetThreadPriority(PlatformThreadId aThreadId,
ThreadPriority aThreadPriority)
{
switch (aThreadPriority) {
case THREAD_PRIORITY_COMPOSITOR: {
nsCOMPtr<nsIRunnable> runnable =
new SetThreadPriorityRunnable(aThreadId, aThreadPriority);
NS_DispatchToMainThread(runnable);
break;
}
default:
HAL_LOG("Unrecognized thread priority %d; Doing nothing",
aThreadPriority);
return;
}
}
void
FactoryReset(FactoryResetReason& aReason)
{
nsCOMPtr<nsIRecoveryService> recoveryService =
do_GetService("@mozilla.org/recovery-service;1");
if (!recoveryService) {
NS_WARNING("Could not get recovery service!");
return;
}
if (aReason == FactoryResetReason::Wipe) {
recoveryService->FactoryReset("wipe");
} else if (aReason == FactoryResetReason::Root) {
recoveryService->FactoryReset("root");
} else {
recoveryService->FactoryReset("normal");
}
}
} // hal_impl
} // mozilla