tenfourfox/ipc/chromium/src/base/pickle.cc
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

673 lines
18 KiB
C++

// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/pickle.h"
#include "mozilla/Alignment.h"
#include "mozilla/Endian.h"
#include "mozilla/TypeTraits.h"
#include <stdlib.h>
#include <limits>
#include <string>
#include <algorithm>
#include "nsDebug.h"
//------------------------------------------------------------------------------
static_assert(MOZ_ALIGNOF(Pickle::memberAlignmentType) >= MOZ_ALIGNOF(uint32_t),
"Insufficient alignment");
// static
const int Pickle::kPayloadUnit = 64;
// We mark a read only pickle with a special capacity_.
static const uint32_t kCapacityReadOnly = (uint32_t) -1;
static const char kBytePaddingMarker = char(0xbf);
namespace {
// We want to copy data to our payload as efficiently as possible.
// memcpy fits the bill for copying, but not all compilers or
// architectures support inlining memcpy from void*, which has unknown
// static alignment. However, we know that all the members of our
// payload will be aligned on memberAlignmentType boundaries. We
// therefore use that knowledge to construct a copier that will copy
// efficiently (via standard C++ assignment mechanisms) if the datatype
// needs that alignment or less, and memcpy otherwise. (The compiler
// may still inline memcpy, of course.)
template<typename T, size_t size, bool hasSufficientAlignment>
struct Copier
{
static void Copy(T* dest, void** iter) {
memcpy(dest, *iter, sizeof(T));
}
};
// Copying 64-bit quantities happens often enough and can easily be made
// worthwhile on 32-bit platforms, so handle it specially. Only do it
// if 64-bit types aren't sufficiently aligned; the alignment
// requirements for them vary between 32-bit platforms.
#ifndef HAVE_64BIT_BUILD
template<typename T>
struct Copier<T, sizeof(uint64_t), false>
{
static void Copy(T* dest, void** iter) {
#if MOZ_LITTLE_ENDIAN
static const int loIndex = 0, hiIndex = 1;
#else
static const int loIndex = 1, hiIndex = 0;
#endif
static_assert(MOZ_ALIGNOF(uint32_t*) == MOZ_ALIGNOF(void*),
"Pointers have different alignments");
uint32_t* src = *reinterpret_cast<uint32_t**>(iter);
uint32_t* uint32dest = reinterpret_cast<uint32_t*>(dest);
uint32dest[loIndex] = src[loIndex];
uint32dest[hiIndex] = src[hiIndex];
}
};
#endif
template<typename T, size_t size>
struct Copier<T, size, true>
{
static void Copy(T* dest, void** iter) {
// The reinterpret_cast is only safe if two conditions hold:
// (1) If the alignment of T* is the same as void*;
// (2) The alignment of the data in *iter is at least as
// big as MOZ_ALIGNOF(T).
// Check the first condition, as the second condition is already
// known to be true, or we wouldn't be here.
static_assert(MOZ_ALIGNOF(T*) == MOZ_ALIGNOF(void*),
"Pointers have different alignments");
*dest = *(*reinterpret_cast<T**>(iter));
}
};
template<typename T>
void CopyFromIter(T* dest, void** iter) {
static_assert(mozilla::IsPod<T>::value, "Copied type must be a POD type");
Copier<T, sizeof(T), (MOZ_ALIGNOF(T) <= sizeof(Pickle::memberAlignmentType))>::Copy(dest, iter);
}
} // anonymous namespace
// Payload is sizeof(Pickle::memberAlignmentType) aligned.
Pickle::Pickle()
: header_(NULL),
header_size_(sizeof(Header)),
capacity_(0),
variable_buffer_offset_(0) {
Resize(kPayloadUnit);
header_->payload_size = 0;
}
Pickle::Pickle(int header_size)
: header_(NULL),
header_size_(AlignInt(header_size)),
capacity_(0),
variable_buffer_offset_(0) {
DCHECK(static_cast<memberAlignmentType>(header_size) >= sizeof(Header));
DCHECK(header_size <= kPayloadUnit);
Resize(kPayloadUnit);
if (!header_) {
NS_ABORT_OOM(kPayloadUnit);
}
header_->payload_size = 0;
}
Pickle::Pickle(const char* data, int data_len)
: header_(reinterpret_cast<Header*>(const_cast<char*>(data))),
header_size_(0),
capacity_(kCapacityReadOnly),
variable_buffer_offset_(0) {
if (data_len >= static_cast<int>(sizeof(Header)))
header_size_ = data_len - header_->payload_size;
if (header_size_ > static_cast<unsigned int>(data_len))
header_size_ = 0;
if (header_size_ != AlignInt(header_size_))
header_size_ = 0;
// If there is anything wrong with the data, we're not going to use it.
if (!header_size_)
header_ = nullptr;
}
Pickle::Pickle(const Pickle& other)
: header_(NULL),
header_size_(other.header_size_),
capacity_(0),
variable_buffer_offset_(other.variable_buffer_offset_) {
uint32_t payload_size = header_size_ + other.header_->payload_size;
bool resized = Resize(payload_size);
if (!resized) {
NS_ABORT_OOM(payload_size);
}
memcpy(header_, other.header_, payload_size);
}
Pickle::Pickle(Pickle&& other)
: header_(other.header_),
header_size_(other.header_size_),
capacity_(other.capacity_),
variable_buffer_offset_(other.variable_buffer_offset_) {
other.header_ = NULL;
other.capacity_ = 0;
other.variable_buffer_offset_ = 0;
}
Pickle::~Pickle() {
if (capacity_ != kCapacityReadOnly)
free(header_);
}
Pickle& Pickle::operator=(const Pickle& other) {
if (header_size_ != other.header_size_ && capacity_ != kCapacityReadOnly) {
free(header_);
header_ = NULL;
header_size_ = other.header_size_;
}
bool resized = Resize(other.header_size_ + other.header_->payload_size);
if (!resized) {
NS_ABORT_OOM(other.header_size_ + other.header_->payload_size);
}
memcpy(header_, other.header_, header_size_ + other.header_->payload_size);
variable_buffer_offset_ = other.variable_buffer_offset_;
return *this;
}
Pickle& Pickle::operator=(Pickle&& other) {
std::swap(header_, other.header_);
std::swap(header_size_, other.header_size_);
std::swap(capacity_, other.capacity_);
std::swap(variable_buffer_offset_, other.variable_buffer_offset_);
return *this;
}
bool Pickle::ReadBool(void** iter, bool* result) const {
DCHECK(iter);
int tmp;
if (!ReadInt(iter, &tmp))
return false;
DCHECK(0 == tmp || 1 == tmp);
*result = tmp ? true : false;
return true;
}
bool Pickle::ReadInt16(void** iter, int16_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadUInt16(void** iter, uint16_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadInt(void** iter, int* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadLong(void** iter, long* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
int64_t bigResult = 0;
if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
return false;
CopyFromIter(&bigResult, iter);
DCHECK(bigResult <= LONG_MAX && bigResult >= LONG_MIN);
*result = static_cast<long>(bigResult);
UpdateIter(iter, sizeof(bigResult));
return true;
}
// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadULong(void** iter, unsigned long* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
uint64_t bigResult = 0;
if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
return false;
CopyFromIter(&bigResult, iter);
DCHECK(bigResult <= ULONG_MAX);
*result = static_cast<unsigned long>(bigResult);
UpdateIter(iter, sizeof(bigResult));
return true;
}
bool Pickle::ReadLength(void** iter, int* result) const {
if (!ReadInt(iter, result))
return false;
return ((*result) >= 0);
}
// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadSize(void** iter, size_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
uint64_t bigResult = 0;
if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
return false;
CopyFromIter(&bigResult, iter);
DCHECK(bigResult <= std::numeric_limits<size_t>::max());
*result = static_cast<size_t>(bigResult);
UpdateIter(iter, sizeof(bigResult));
return true;
}
bool Pickle::ReadInt32(void** iter, int32_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadUInt32(void** iter, uint32_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadInt64(void** iter, int64_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadUInt64(void** iter, uint64_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadDouble(void** iter, double* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
// Always written as a 64-bit value since the size for this type can
// differ between architectures.
bool Pickle::ReadIntPtr(void** iter, intptr_t* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
int64_t bigResult = 0;
if (!IteratorHasRoomFor(*iter, sizeof(bigResult)))
return false;
CopyFromIter(&bigResult, iter);
DCHECK(bigResult <= std::numeric_limits<intptr_t>::max() && bigResult >= std::numeric_limits<intptr_t>::min());
*result = static_cast<intptr_t>(bigResult);
UpdateIter(iter, sizeof(bigResult));
return true;
}
bool Pickle::ReadUnsignedChar(void** iter, unsigned char* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!IteratorHasRoomFor(*iter, sizeof(*result)))
return false;
CopyFromIter(result, iter);
UpdateIter(iter, sizeof(*result));
return true;
}
bool Pickle::ReadString(void** iter, std::string* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
int len;
if (!ReadLength(iter, &len))
return false;
if (!IteratorHasRoomFor(*iter, len))
return false;
char* chars = reinterpret_cast<char*>(*iter);
result->assign(chars, len);
UpdateIter(iter, len);
return true;
}
bool Pickle::ReadWString(void** iter, std::wstring* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
int len;
if (!ReadLength(iter, &len))
return false;
if (!IteratorHasRoomFor(*iter, len * sizeof(wchar_t)))
return false;
wchar_t* chars = reinterpret_cast<wchar_t*>(*iter);
result->assign(chars, len);
UpdateIter(iter, len * sizeof(wchar_t));
return true;
}
bool Pickle::ReadString16(void** iter, string16* result) const {
DCHECK(iter);
if (!*iter)
*iter = const_cast<char*>(payload());
int len;
if (!ReadLength(iter, &len))
return false;
if (!IteratorHasRoomFor(*iter, len))
return false;
char16* chars = reinterpret_cast<char16*>(*iter);
result->assign(chars, len);
UpdateIter(iter, len * sizeof(char16));
return true;
}
bool Pickle::ReadBytes(void** iter, const char** data, int length,
uint32_t alignment) const {
DCHECK(iter);
DCHECK(data);
DCHECK(alignment == 4 || alignment == 8);
DCHECK(intptr_t(header_) % alignment == 0);
if (!*iter)
*iter = const_cast<char*>(payload());
uint32_t paddingLen = intptr_t(*iter) % alignment;
if (paddingLen) {
#ifdef DEBUG
{
const char* padding = static_cast<const char*>(*iter);
for (uint32_t i = 0; i < paddingLen; i++) {
DCHECK(*(padding + i) == kBytePaddingMarker);
}
}
#endif
length += paddingLen;
}
if (!IteratorHasRoomFor(*iter, length))
return false;
*data = static_cast<const char*>(*iter) + paddingLen;
DCHECK(intptr_t(*data) % alignment == 0);
UpdateIter(iter, length);
return true;
}
bool Pickle::ReadData(void** iter, const char** data, int* length) const {
DCHECK(iter);
DCHECK(data);
DCHECK(length);
if (!*iter)
*iter = const_cast<char*>(payload());
if (!ReadLength(iter, length))
return false;
return ReadBytes(iter, data, *length);
}
char* Pickle::BeginWrite(uint32_t length, uint32_t alignment) {
DCHECK(alignment % 4 == 0) << "Must be at least 32-bit aligned!";
// write at an alignment-aligned offset from the beginning of the header
uint32_t offset = AlignInt(header_->payload_size);
uint32_t padding = (header_size_ + offset) % alignment;
uint32_t new_size = offset + padding + AlignInt(length);
uint32_t needed_size = header_size_ + new_size;
if (needed_size > capacity_ && !Resize(std::max(capacity_ * 2, needed_size)))
return NULL;
DCHECK(intptr_t(header_) % alignment == 0);
#ifdef ARCH_CPU_64_BITS
DCHECK_LE(length, std::numeric_limits<uint32_t>::max());
#endif
char* buffer = payload() + offset;
if (padding) {
memset(buffer, kBytePaddingMarker, padding);
buffer += padding;
}
DCHECK(intptr_t(buffer) % alignment == 0);
header_->payload_size = new_size;
#ifdef MOZ_VALGRIND
// pad the trailing end as well, so that valgrind
// doesn't complain when we write the buffer
padding = AlignInt(length) - length;
if (padding) {
memset(buffer + length, kBytePaddingMarker, padding);
}
#endif
return buffer;
}
void Pickle::EndWrite(char* dest, int length) {
// Zero-pad to keep tools like purify from complaining about uninitialized
// memory.
if (length % sizeof(memberAlignmentType))
memset(dest + length, 0,
sizeof(memberAlignmentType) - (length % sizeof(memberAlignmentType)));
}
bool Pickle::WriteBytes(const void* data, int data_len, uint32_t alignment) {
DCHECK(capacity_ != kCapacityReadOnly) << "oops: pickle is readonly";
DCHECK(alignment == 4 || alignment == 8);
DCHECK(intptr_t(header_) % alignment == 0);
char* dest = BeginWrite(data_len, alignment);
if (!dest)
return false;
memcpy(dest, data, data_len);
EndWrite(dest, data_len);
return true;
}
bool Pickle::WriteString(const std::string& value) {
if (!WriteInt(static_cast<int>(value.size())))
return false;
return WriteBytes(value.data(), static_cast<int>(value.size()));
}
bool Pickle::WriteWString(const std::wstring& value) {
if (!WriteInt(static_cast<int>(value.size())))
return false;
return WriteBytes(value.data(),
static_cast<int>(value.size() * sizeof(wchar_t)));
}
bool Pickle::WriteString16(const string16& value) {
if (!WriteInt(static_cast<int>(value.size())))
return false;
return WriteBytes(value.data(),
static_cast<int>(value.size()) * sizeof(char16));
}
bool Pickle::WriteData(const char* data, int length) {
return WriteInt(length) && WriteBytes(data, length);
}
char* Pickle::BeginWriteData(int length) {
DCHECK_EQ(variable_buffer_offset_, 0U) <<
"There can only be one variable buffer in a Pickle";
if (!WriteInt(length))
return NULL;
char *data_ptr = BeginWrite(length, sizeof(memberAlignmentType));
if (!data_ptr)
return NULL;
variable_buffer_offset_ =
data_ptr - reinterpret_cast<char*>(header_) - sizeof(int);
// EndWrite doesn't necessarily have to be called after the write operation,
// so we call it here to pad out what the caller will eventually write.
EndWrite(data_ptr, length);
return data_ptr;
}
void Pickle::TrimWriteData(int new_length) {
DCHECK(variable_buffer_offset_ != 0);
// Fetch the the variable buffer size
int* cur_length = reinterpret_cast<int*>(
reinterpret_cast<char*>(header_) + variable_buffer_offset_);
if (new_length < 0 || new_length > *cur_length) {
NOTREACHED() << "Invalid length in TrimWriteData.";
return;
}
// Update the payload size and variable buffer size
header_->payload_size -= (*cur_length - new_length);
*cur_length = new_length;
}
bool Pickle::Resize(uint32_t new_capacity) {
new_capacity = ConstantAligner<kPayloadUnit>::align(new_capacity);
void* p = realloc(header_, new_capacity);
if (!p)
return false;
header_ = reinterpret_cast<Header*>(p);
capacity_ = new_capacity;
return true;
}
// static
const char* Pickle::FindNext(uint32_t header_size,
const char* start,
const char* end) {
DCHECK(header_size == AlignInt(header_size));
DCHECK(header_size <= static_cast<memberAlignmentType>(kPayloadUnit));
if (end < start)
return nullptr;
size_t length = static_cast<size_t>(end - start);
if (length < sizeof(Header))
return nullptr;
const Header* hdr = reinterpret_cast<const Header*>(start);
if (length < header_size || length - header_size < hdr->payload_size)
return nullptr;
return start + header_size + hdr->payload_size;
}