tenfourfox/layout/generic/nsGridContainerFrame.cpp

3302 lines
122 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code is subject to the terms of the Mozilla Public License
* version 2.0 (the "License"). You can obtain a copy of the License at
* http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: grid | inline-grid" */
#include "nsGridContainerFrame.h"
#include <algorithm> // for std::stable_sort
#include <limits>
#include "mozilla/Maybe.h"
#include "mozilla/PodOperations.h" // for PodZero
#include "nsAbsoluteContainingBlock.h"
#include "nsAlgorithm.h" // for clamped()
#include "nsAutoPtr.h"
#include "nsCSSAnonBoxes.h"
#include "nsDataHashtable.h"
#include "nsDisplayList.h"
#include "nsHashKeys.h"
#include "nsIFrameInlines.h"
#include "nsPresContext.h"
#include "nsRenderingContext.h"
#include "nsReadableUtils.h"
#include "nsRuleNode.h"
#include "nsStyleContext.h"
using namespace mozilla;
typedef nsGridContainerFrame::TrackSize TrackSize;
const uint32_t nsGridContainerFrame::kTranslatedMaxLine =
uint32_t(nsStyleGridLine::kMaxLine - nsStyleGridLine::kMinLine);
const uint32_t nsGridContainerFrame::kAutoLine = kTranslatedMaxLine + 3457U;
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)
class nsGridContainerFrame::GridItemCSSOrderIterator
{
public:
enum OrderState { eUnknownOrder, eKnownOrdered, eKnownUnordered };
enum ChildFilter { eSkipPlaceholders, eIncludeAll };
GridItemCSSOrderIterator(nsIFrame* aGridContainer,
nsIFrame::ChildListID aListID,
ChildFilter aFilter = eSkipPlaceholders,
OrderState aState = eUnknownOrder)
: mChildren(aGridContainer->GetChildList(aListID))
, mArrayIndex(0)
, mGridItemIndex(0)
, mSkipPlaceholders(aFilter == eSkipPlaceholders)
#ifdef DEBUG
, mGridContainer(aGridContainer)
, mListID(aListID)
#endif
{
size_t count = 0;
bool isOrdered = aState != eKnownUnordered;
if (aState == eUnknownOrder) {
auto maxOrder = std::numeric_limits<int32_t>::min();
for (nsFrameList::Enumerator e(mChildren); !e.AtEnd(); e.Next()) {
++count;
int32_t order = e.get()->StylePosition()->mOrder;
if (order < maxOrder) {
isOrdered = false;
break;
}
maxOrder = order;
}
}
if (isOrdered) {
mEnumerator.emplace(mChildren);
} else {
count *= 2; // XXX somewhat arbitrary estimate for now...
mArray.emplace(count);
for (nsFrameList::Enumerator e(mChildren); !e.AtEnd(); e.Next()) {
mArray->AppendElement(e.get());
}
// XXX replace this with nsTArray::StableSort when bug 1147091 is fixed.
std::stable_sort(mArray->begin(), mArray->end(), IsCSSOrderLessThan);
}
if (mSkipPlaceholders) {
SkipPlaceholders();
}
}
nsIFrame* operator*() const
{
MOZ_ASSERT(!AtEnd());
if (mEnumerator) {
return mEnumerator->get();
}
return (*mArray)[mArrayIndex];
}
/**
* Return the child index of the current item, placeholders not counted.
* It's forbidden to call this method when the current frame is placeholder.
*/
size_t GridItemIndex() const
{
MOZ_ASSERT(!AtEnd());
MOZ_ASSERT((**this)->GetType() != nsGkAtoms::placeholderFrame,
"MUST not call this when at a placeholder");
return mGridItemIndex;
}
/**
* Skip over placeholder children.
*/
void SkipPlaceholders()
{
if (mEnumerator) {
for (; !mEnumerator->AtEnd(); mEnumerator->Next()) {
nsIFrame* child = mEnumerator->get();
if (child->GetType() != nsGkAtoms::placeholderFrame) {
return;
}
}
} else {
for (; mArrayIndex < mArray->Length(); ++mArrayIndex) {
nsIFrame* child = (*mArray)[mArrayIndex];
if (child->GetType() != nsGkAtoms::placeholderFrame) {
return;
}
}
}
}
bool AtEnd() const
{
MOZ_ASSERT(mEnumerator || mArrayIndex <= mArray->Length());
return mEnumerator ? mEnumerator->AtEnd() : mArrayIndex >= mArray->Length();
}
void Next()
{
#ifdef DEBUG
MOZ_ASSERT(!AtEnd());
nsFrameList list = mGridContainer->GetChildList(mListID);
MOZ_ASSERT(list.FirstChild() == mChildren.FirstChild() &&
list.LastChild() == mChildren.LastChild(),
"the list of child frames must not change while iterating!");
#endif
if (mSkipPlaceholders ||
(**this)->GetType() != nsGkAtoms::placeholderFrame) {
++mGridItemIndex;
}
if (mEnumerator) {
mEnumerator->Next();
} else {
++mArrayIndex;
}
if (mSkipPlaceholders) {
SkipPlaceholders();
}
}
void Reset(ChildFilter aFilter = eSkipPlaceholders)
{
if (mEnumerator) {
mEnumerator.reset();
mEnumerator.emplace(mChildren);
} else {
mArrayIndex = 0;
}
mGridItemIndex = 0;
mSkipPlaceholders = aFilter == eSkipPlaceholders;
if (mSkipPlaceholders) {
SkipPlaceholders();
}
}
bool ItemsAreAlreadyInOrder() const { return mEnumerator.isSome(); }
private:
static bool IsCSSOrderLessThan(nsIFrame* const& a, nsIFrame* const& b)
{ return a->StylePosition()->mOrder < b->StylePosition()->mOrder; }
nsFrameList mChildren;
// Used if child list is already in ascending 'order'.
Maybe<nsFrameList::Enumerator> mEnumerator;
// Used if child list is *not* in ascending 'order'.
Maybe<nsTArray<nsIFrame*>> mArray;
size_t mArrayIndex;
// The index of the current grid item (placeholders excluded).
size_t mGridItemIndex;
// Skip placeholder children in the iteration?
bool mSkipPlaceholders;
#ifdef DEBUG
nsIFrame* mGridContainer;
nsIFrame::ChildListID mListID;
#endif
};
/**
* Encapsulates CSS track-sizing functions.
*/
struct MOZ_STACK_CLASS nsGridContainerFrame::TrackSizingFunctions
{
const nsStyleCoord& MinSizingFor(uint32_t aTrackIndex) const
{
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
return mAutoMinSizing;
}
uint32_t index = aTrackIndex - mExplicitGridOffset;
return index < mMinSizingFunctions.Length() ?
mMinSizingFunctions[index] : mAutoMinSizing;
}
const nsStyleCoord& MaxSizingFor(uint32_t aTrackIndex) const
{
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
return mAutoMaxSizing;
}
uint32_t index = aTrackIndex - mExplicitGridOffset;
return index < mMaxSizingFunctions.Length() ?
mMaxSizingFunctions[index] : mAutoMaxSizing;
}
const nsTArray<nsStyleCoord>& mMinSizingFunctions;
const nsTArray<nsStyleCoord>& mMaxSizingFunctions;
const nsStyleCoord& mAutoMinSizing;
const nsStyleCoord& mAutoMaxSizing;
uint32_t mExplicitGridOffset;
};
/**
* State for the tracks in one dimension.
*/
struct MOZ_STACK_CLASS nsGridContainerFrame::Tracks
{
explicit Tracks(LogicalAxis aAxis) : mAxis(aAxis) {}
void Initialize(const TrackSizingFunctions& aFunctions,
nscoord aGridGap,
uint32_t aNumTracks,
nscoord aContentBoxSize);
/**
* Return true if aRange spans at least one track with an intrinsic sizing
* function and does not span any tracks with a <flex> max-sizing function.
* @param aRange the span of tracks to check
* @param aConstraint if MIN_ISIZE, treat a <flex> min-sizing as 'min-content'
* @param aState will be set to the union of the state bits of all the spanned
* tracks, unless a flex track is found - then it only contains
* the union of the tracks up to and including the flex track.
*/
bool HasIntrinsicButNoFlexSizingInRange(const LineRange& aRange,
IntrinsicISizeType aConstraint,
TrackSize::StateBits* aState) const;
/**
* Resolve Intrinsic Track Sizes.
* http://dev.w3.org/csswg/css-grid/#algo-content
*/
void ResolveIntrinsicSize(GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
LineRange GridArea::* aRange,
nscoord aPercentageBasis,
IntrinsicISizeType aConstraint);
/**
* Helper for ResolveIntrinsicSize. It implements step 1 "size tracks to fit
* non-spanning items" in the spec. Return true if the track has a <flex>
* max-sizing function, false otherwise.
*/
bool ResolveIntrinsicSizeStep1(GridReflowState& aState,
const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis,
IntrinsicISizeType aConstraint,
const LineRange& aRange,
nsIFrame* aGridItem);
/**
* Collect the tracks which are growable (matching aSelector) into
* aGrowableTracks, and return the amount of space that can be used
* to grow those tracks. Specifically, we return aAvailableSpace minus
* the sum of mBase's in aPlan (clamped to 0) for the tracks in aRange,
* or zero when there are no growable tracks.
* @note aPlan[*].mBase represents a planned new base or limit.
*/
static nscoord CollectGrowable(nscoord aAvailableSpace,
const nsTArray<TrackSize>& aPlan,
const LineRange& aRange,
TrackSize::StateBits aSelector,
nsTArray<uint32_t>& aGrowableTracks)
{
MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
nscoord space = aAvailableSpace;
const uint32_t start = aRange.mStart;
const uint32_t end = aRange.mEnd;
for (uint32_t i = start; i < end; ++i) {
const TrackSize& sz = aPlan[i];
space -= sz.mBase;
if (space <= 0) {
return 0;
}
if ((sz.mState & aSelector) && !sz.IsFrozen()) {
aGrowableTracks.AppendElement(i);
}
}
return aGrowableTracks.IsEmpty() ? 0 : space;
}
void SetupGrowthPlan(nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aTracks) const
{
for (uint32_t track : aTracks) {
aPlan[track] = mSizes[track];
}
}
void CopyPlanToBase(const nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aTracks)
{
for (uint32_t track : aTracks) {
MOZ_ASSERT(mSizes[track].mBase <= aPlan[track].mBase);
mSizes[track].mBase = aPlan[track].mBase;
}
}
void CopyPlanToLimit(const nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aTracks)
{
for (uint32_t track : aTracks) {
MOZ_ASSERT(mSizes[track].mLimit == NS_UNCONSTRAINEDSIZE ||
mSizes[track].mLimit <= aPlan[track].mBase);
mSizes[track].mLimit = aPlan[track].mBase;
}
}
/**
* Grow the planned size for tracks in aGrowableTracks up to their limit
* and then freeze them (all aGrowableTracks must be unfrozen on entry).
* Subtract the space added from aAvailableSpace and return that.
*/
nscoord GrowTracksToLimit(nscoord aAvailableSpace,
nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks) const
{
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
nscoord space = aAvailableSpace;
uint32_t numGrowable = aGrowableTracks.Length();
while (true) {
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.IsFrozen()) {
continue;
}
nscoord newBase = sz.mBase + spacePerTrack;
if (newBase > sz.mLimit) {
nscoord consumed = sz.mLimit - sz.mBase;
if (consumed > 0) {
space -= consumed;
sz.mBase = sz.mLimit;
}
sz.mState |= TrackSize::eFrozen;
if (--numGrowable == 0) {
return space;
}
} else {
sz.mBase = newBase;
space -= spacePerTrack;
}
MOZ_ASSERT(space >= 0);
if (space == 0) {
return 0;
}
}
}
MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
return 0;
}
/**
* Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that
* match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
* then mark it with aSkipFlag. If all tracks in S were marked then unmark
* them. Return aNumGrowable minus the number of tracks marked. It is
* assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
* on entry to this method.
*/
uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
uint32_t aNumGrowable,
const nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aMinSizingSelector,
TrackSize::StateBits aMaxSizingSelector,
TrackSize::StateBits aSkipFlag) const
{
bool foundOneSelected = false;
bool foundOneGrowable = false;
uint32_t numGrowable = aNumGrowable;
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
const auto state = sz.mState;
if (state & aMinSizingSelector) {
foundOneSelected = true;
if (state & aMaxSizingSelector) {
foundOneGrowable = true;
continue;
}
sz.mState |= aSkipFlag;
MOZ_ASSERT(numGrowable != 0);
--numGrowable;
}
}
// 12.5 "if there are no such tracks, then all affected tracks"
if (foundOneSelected && !foundOneGrowable) {
for (uint32_t track : aGrowableTracks) {
aPlan[track].mState &= ~aSkipFlag;
}
numGrowable = aNumGrowable;
}
return numGrowable;
}
/**
* Increase the planned size for tracks in aGrowableTracks that match
* aSelector (or all tracks if aSelector is zero) beyond their limit.
* This implements the "Distribute space beyond growth limits" step in
* https://drafts.csswg.org/css-grid/#distribute-extra-space
*/
void GrowSelectedTracksUnlimited(nscoord aAvailableSpace,
nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aSelector) const
{
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
uint32_t numGrowable = aGrowableTracks.Length();
if (aSelector) {
DebugOnly<TrackSize::StateBits> withoutFlexMin =
TrackSize::StateBits(aSelector & ~TrackSize::eFlexMinSizing);
MOZ_ASSERT(withoutFlexMin == TrackSize::eIntrinsicMinSizing ||
withoutFlexMin == TrackSize::eMinOrMaxContentMinSizing ||
withoutFlexMin == TrackSize::eMaxContentMinSizing);
// Note that eMaxContentMinSizing is always included. We do those first:
numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
TrackSize::eMaxContentMinSizing,
TrackSize::eMaxContentMaxSizing,
TrackSize::eSkipGrowUnlimited1);
// Now mark min-content/auto/<flex> min-sizing tracks if requested.
auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing;
if (minOrAutoSelector) {
numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
minOrAutoSelector,
TrackSize::eIntrinsicMaxSizing,
TrackSize::eSkipGrowUnlimited2);
}
}
nscoord space = aAvailableSpace;
while (true) {
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.mState & TrackSize::eSkipGrowUnlimited) {
continue; // an excluded track
}
sz.mBase += spacePerTrack;
space -= spacePerTrack;
MOZ_ASSERT(space >= 0);
if (space == 0) {
return;
}
}
}
MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
}
/**
* Distribute aAvailableSpace to the planned base size for aGrowableTracks
* up to their limits, then distribute the remaining space beyond the limits.
*/
void DistributeToTrackBases(nscoord aAvailableSpace,
nsTArray<TrackSize>& aPlan,
nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aSelector)
{
SetupGrowthPlan(aPlan, aGrowableTracks);
nscoord space = GrowTracksToLimit(aAvailableSpace, aPlan, aGrowableTracks);
if (space > 0) {
GrowSelectedTracksUnlimited(space, aPlan, aGrowableTracks, aSelector);
}
CopyPlanToBase(aPlan, aGrowableTracks);
}
/**
* Distribute aAvailableSpace to the planned limits for aGrowableTracks.
*/
void DistributeToTrackLimits(nscoord aAvailableSpace,
nsTArray<TrackSize>& aPlan,
nsTArray<uint32_t>& aGrowableTracks)
{
nscoord space = GrowTracksToLimit(aAvailableSpace, aPlan, aGrowableTracks);
if (space > 0) {
GrowSelectedTracksUnlimited(aAvailableSpace, aPlan, aGrowableTracks,
TrackSize::StateBits(0));
}
CopyPlanToLimit(aPlan, aGrowableTracks);
}
/**
* Distribute aAvailableSize to the tracks. This implements 12.6 at:
* http://dev.w3.org/csswg/css-grid/#algo-grow-tracks
*/
void DistributeFreeSpace(nscoord aAvailableSize)
{
const uint32_t numTracks = mSizes.Length();
if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
return;
}
if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
for (TrackSize& sz : mSizes) {
sz.mBase = sz.mLimit;
}
} else {
// Compute free space and count growable tracks.
nscoord space = aAvailableSize;
uint32_t numGrowable = numTracks;
for (const TrackSize& sz : mSizes) {
space -= sz.mBase;
MOZ_ASSERT(sz.mBase <= sz.mLimit);
if (sz.mBase == sz.mLimit) {
--numGrowable;
}
}
// Distribute the free space evenly to the growable tracks. If not exactly
// divisable the remainder is added to the leading tracks.
while (space > 0 && numGrowable) {
nscoord spacePerTrack =
std::max<nscoord>(space / numGrowable, 1);
for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
TrackSize& sz = mSizes[i];
if (sz.mBase == sz.mLimit) {
continue;
}
nscoord newBase = sz.mBase + spacePerTrack;
if (newBase >= sz.mLimit) {
space -= sz.mLimit - sz.mBase;
sz.mBase = sz.mLimit;
--numGrowable;
} else {
space -= spacePerTrack;
sz.mBase = newBase;
}
}
}
}
}
/**
* Implements "12.7.1. Find the Size of an 'fr'".
* http://dev.w3.org/csswg/css-grid/#algo-find-fr-size
* (The returned value is a 'nscoord' divided by a factor - a floating type
* is used to avoid intermediary rounding errors.)
*/
float FindFrUnitSize(const LineRange& aRange,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aSpaceToFill) const;
/**
* Implements the "find the used flex fraction" part of StretchFlexibleTracks.
* (The returned value is a 'nscoord' divided by a factor - a floating type
* is used to avoid intermediary rounding errors.)
*/
float FindUsedFlexFraction(GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize) const;
/**
* Implements "12.7. Stretch Flexible Tracks"
* http://dev.w3.org/csswg/css-grid/#algo-flex-tracks
*/
void StretchFlexibleTracks(GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize);
/**
* Implements "12.3. Track Sizing Algorithm"
* http://dev.w3.org/csswg/css-grid/#algo-track-sizing
*/
void CalculateSizes(GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aContentSize,
LineRange GridArea::* aRange,
IntrinsicISizeType aConstraint);
/**
* Apply 'align/justify-content', whichever is relevant for this axis.
* https://drafts.csswg.org/css-align-3/#propdef-align-content
*/
void AlignJustifyContent(const nsHTMLReflowState& aReflowState,
const LogicalSize& aContainerSize);
nscoord SumOfGridGaps() const {
auto len = mSizes.Length();
return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
}
#ifdef DEBUG
void Dump() const
{
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
printf(" %d: ", i);
mSizes[i].Dump();
printf("\n");
}
}
#endif
nsAutoTArray<TrackSize, 32> mSizes;
nscoord mGridGap;
LogicalAxis mAxis;
};
struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowState
{
GridReflowState(nsGridContainerFrame* aFrame,
const nsHTMLReflowState& aRS)
: GridReflowState(aFrame, *aRS.rendContext, &aRS, aRS.mStylePosition,
aRS.GetWritingMode())
{}
GridReflowState(nsGridContainerFrame* aFrame,
nsRenderingContext& aRC)
: GridReflowState(aFrame, aRC, nullptr, aFrame->StylePosition(),
aFrame->GetWritingMode())
{}
GridItemCSSOrderIterator mIter;
const nsStylePosition* const mGridStyle;
Tracks mCols;
Tracks mRows;
TrackSizingFunctions mColFunctions;
TrackSizingFunctions mRowFunctions;
/**
* @note mReflowState may be null when using the 2nd ctor above. In this case
* we'll construct a dummy parent reflow state if we need it to calculate
* min/max-content contributions when sizing tracks.
*/
const nsHTMLReflowState* mReflowState;
nsRenderingContext& mRenderingContext;
const WritingMode mWM;
private:
GridReflowState(nsGridContainerFrame* aFrame,
nsRenderingContext& aRenderingContext,
const nsHTMLReflowState* aReflowState,
const nsStylePosition* aGridStyle,
const WritingMode& aWM)
: mIter(aFrame, kPrincipalList)
, mGridStyle(aGridStyle)
, mCols(eLogicalAxisInline)
, mRows(eLogicalAxisBlock)
, mColFunctions({
mGridStyle->mGridTemplateColumns.mMinTrackSizingFunctions,
mGridStyle->mGridTemplateColumns.mMaxTrackSizingFunctions,
mGridStyle->mGridAutoColumnsMin,
mGridStyle->mGridAutoColumnsMax,
})
, mRowFunctions({
mGridStyle->mGridTemplateRows.mMinTrackSizingFunctions,
mGridStyle->mGridTemplateRows.mMaxTrackSizingFunctions,
mGridStyle->mGridAutoRowsMin,
mGridStyle->mGridAutoRowsMax,
})
, mReflowState(aReflowState)
, mRenderingContext(aRenderingContext)
, mWM(aWM)
{}
};
static
bool IsMinContent(const nsStyleCoord& aCoord)
{
return aCoord.GetUnit() == eStyleUnit_Enumerated &&
aCoord.GetIntValue() == NS_STYLE_GRID_TRACK_BREADTH_MIN_CONTENT;
}
/**
* Search for the aNth occurrence of aName in aNameList (forward), starting at
* the zero-based aFromIndex, and return the 1-based index (line number).
* Also take into account there is an unconditional match at aImplicitLine
* unless it's zero.
* Return zero if aNth occurrences can't be found. In that case, aNth has
* been decremented with the number of occurrences that were found (if any).
*/
static uint32_t
FindLine(const nsString& aName, int32_t* aNth,
uint32_t aFromIndex, uint32_t aImplicitLine,
const nsTArray<nsTArray<nsString>>& aNameList)
{
MOZ_ASSERT(aNth && *aNth > 0);
int32_t nth = *aNth;
const uint32_t len = aNameList.Length();
uint32_t line;
uint32_t i = aFromIndex;
for (; i < len; i = line) {
line = i + 1;
if (line == aImplicitLine || aNameList[i].Contains(aName)) {
if (--nth == 0) {
return line;
}
}
}
if (aImplicitLine > i) {
// aImplicitLine is after the lines we searched above so it's last.
// (grid-template-areas has more tracks than grid-template-[rows|columns])
if (--nth == 0) {
return aImplicitLine;
}
}
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
*aNth = nth;
return 0;
}
/**
* @see FindLine, this function does the same but searches in reverse.
*/
static uint32_t
RFindLine(const nsString& aName, int32_t* aNth,
uint32_t aFromIndex, uint32_t aImplicitLine,
const nsTArray<nsTArray<nsString>>& aNameList)
{
MOZ_ASSERT(aNth && *aNth > 0);
int32_t nth = *aNth;
const uint32_t len = aNameList.Length();
// The implicit line may be beyond the length of aNameList so we match this
// line first if it's within the len..aFromIndex range.
if (aImplicitLine > len && aImplicitLine < aFromIndex) {
if (--nth == 0) {
return aImplicitLine;
}
}
uint32_t i = aFromIndex == 0 ? len : std::min(aFromIndex, len);
for (; i; --i) {
if (i == aImplicitLine || aNameList[i - 1].Contains(aName)) {
if (--nth == 0) {
return i;
}
}
}
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
*aNth = nth;
return 0;
}
static uint32_t
FindNamedLine(const nsString& aName, int32_t* aNth,
uint32_t aFromIndex, uint32_t aImplicitLine,
const nsTArray<nsTArray<nsString>>& aNameList)
{
MOZ_ASSERT(aNth && *aNth != 0);
if (*aNth > 0) {
return ::FindLine(aName, aNth, aFromIndex, aImplicitLine, aNameList);
}
int32_t nth = -*aNth;
int32_t line = ::RFindLine(aName, &nth, aFromIndex, aImplicitLine, aNameList);
*aNth = -nth;
return line;
}
/**
* A convenience method to lookup a name in 'grid-template-areas'.
* @param aStyle the StylePosition() for the grid container
* @return null if not found
*/
static const css::GridNamedArea*
FindNamedArea(const nsSubstring& aName, const nsStylePosition* aStyle)
{
if (!aStyle->mGridTemplateAreas) {
return nullptr;
}
const nsTArray<css::GridNamedArea>& areas =
aStyle->mGridTemplateAreas->mNamedAreas;
size_t len = areas.Length();
for (size_t i = 0; i < len; ++i) {
const css::GridNamedArea& area = areas[i];
if (area.mName == aName) {
return &area;
}
}
return nullptr;
}
// Return true if aString ends in aSuffix and has at least one character before
// the suffix. Assign aIndex to where the suffix starts.
static bool
IsNameWithSuffix(const nsString& aString, const nsString& aSuffix,
uint32_t* aIndex)
{
if (StringEndsWith(aString, aSuffix)) {
*aIndex = aString.Length() - aSuffix.Length();
return *aIndex != 0;
}
return false;
}
static bool
IsNameWithEndSuffix(const nsString& aString, uint32_t* aIndex)
{
return IsNameWithSuffix(aString, NS_LITERAL_STRING("-end"), aIndex);
}
static bool
IsNameWithStartSuffix(const nsString& aString, uint32_t* aIndex)
{
return IsNameWithSuffix(aString, NS_LITERAL_STRING("-start"), aIndex);
}
enum class GridLineSide {
eBeforeGridGap,
eAfterGridGap,
};
static nscoord
GridLineEdge(uint32_t aLine, const nsTArray<TrackSize>& aTrackSizes,
GridLineSide aSide)
{
if (MOZ_UNLIKELY(aTrackSizes.IsEmpty())) {
// https://drafts.csswg.org/css-grid/#grid-definition
// "... the explicit grid still contains one grid line in each axis."
MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
return nscoord(0);
}
MOZ_ASSERT(aLine <= aTrackSizes.Length(), "aTrackSizes is too small");
if (aSide == GridLineSide::eBeforeGridGap) {
if (aLine == 0) {
return aTrackSizes[0].mPosition;
}
const TrackSize& sz = aTrackSizes[aLine - 1];
return sz.mPosition + sz.mBase;
}
if (aLine == aTrackSizes.Length()) {
const TrackSize& sz = aTrackSizes[aLine - 1];
return sz.mPosition + sz.mBase;
}
return aTrackSizes[aLine].mPosition;
}
/**
* (XXX share this utility function with nsFlexContainerFrame at some point)
*
* Helper for BuildDisplayList, to implement this special-case for grid
* items from the spec:
* The painting order of grid items is exactly the same as inline blocks,
* except that [...] 'z-index' values other than 'auto' create a stacking
* context even if 'position' is 'static'.
* http://dev.w3.org/csswg/css-grid/#z-order
*/
static uint32_t
GetDisplayFlagsForGridItem(nsIFrame* aFrame)
{
const nsStylePosition* pos = aFrame->StylePosition();
if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
}
return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
}
static nscoord
SpaceToFill(WritingMode aWM, const LogicalSize& aSize, nscoord aMargin,
LogicalAxis aAxis, nscoord aCBSize)
{
nscoord size = aAxis == eLogicalAxisBlock ? aSize.BSize(aWM)
: aSize.ISize(aWM);
return aCBSize - (size + aMargin);
}
// Align (or stretch) an item's margin box in its aAxis inside aCBSize.
static bool
AlignJustifySelf(uint8_t aAlignment, bool aOverflowSafe, LogicalAxis aAxis,
bool aSameSide, nscoord aCBSize, const nsHTMLReflowState& aRS,
const LogicalSize& aChildSize, LogicalSize* aContentSize,
LogicalPoint* aPos)
{
MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_AUTO, "unexpected 'auto' "
"computed value for normal flow grid item");
MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_LEFT &&
aAlignment != NS_STYLE_ALIGN_RIGHT,
"caller should map that to the corresponding START/END");
// Map some alignment values to 'start' / 'end'.
switch (aAlignment) {
case NS_STYLE_ALIGN_SELF_START: // align/justify-self: self-start
aAlignment = MOZ_LIKELY(aSameSide) ? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END;
break;
case NS_STYLE_ALIGN_SELF_END: // align/justify-self: self-end
aAlignment = MOZ_LIKELY(aSameSide) ? NS_STYLE_ALIGN_END
: NS_STYLE_ALIGN_START;
break;
case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid
aAlignment = NS_STYLE_ALIGN_START;
break;
case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid
aAlignment = NS_STYLE_ALIGN_END;
break;
}
// XXX try to condense this code a bit by adding the necessary convenience
// methods? (bug 1209710)
// Get the item's margin corresponding to the container's start/end side.
const LogicalMargin margin = aRS.ComputedLogicalMargin();
WritingMode wm = aRS.GetWritingMode();
nscoord marginStart, marginEnd;
if (aAxis == eLogicalAxisBlock) {
if (MOZ_LIKELY(aSameSide)) {
marginStart = margin.BStart(wm);
marginEnd = margin.BEnd(wm);
} else {
marginStart = margin.BEnd(wm);
marginEnd = margin.BStart(wm);
}
} else {
if (MOZ_LIKELY(aSameSide)) {
marginStart = margin.IStart(wm);
marginEnd = margin.IEnd(wm);
} else {
marginStart = margin.IEnd(wm);
marginEnd = margin.IStart(wm);
}
}
const auto& styleMargin = aRS.mStyleMargin->mMargin;
bool hasAutoMarginStart;
bool hasAutoMarginEnd;
if (aAxis == eLogicalAxisBlock) {
hasAutoMarginStart = styleMargin.GetBStartUnit(wm) == eStyleUnit_Auto;
hasAutoMarginEnd = styleMargin.GetBEndUnit(wm) == eStyleUnit_Auto;
} else {
hasAutoMarginStart = styleMargin.GetIStartUnit(wm) == eStyleUnit_Auto;
hasAutoMarginEnd = styleMargin.GetIEndUnit(wm) == eStyleUnit_Auto;
}
// https://drafts.csswg.org/css-align-3/#overflow-values
// This implements <overflow-position> = 'safe'.
// And auto-margins: https://drafts.csswg.org/css-grid/#auto-margins
if ((MOZ_UNLIKELY(aOverflowSafe) && aAlignment != NS_STYLE_ALIGN_START) ||
hasAutoMarginStart || hasAutoMarginEnd) {
nscoord space = SpaceToFill(wm, aChildSize, marginStart + marginEnd,
aAxis, aCBSize);
// XXX we might want to include == 0 here as an optimization -
// I need to see what the baseline/last-baseline code looks like first.
if (space < 0) {
// "Overflowing elements ignore their auto margins and overflow
// in the end directions"
aAlignment = NS_STYLE_ALIGN_START;
} else if (hasAutoMarginEnd) {
aAlignment = hasAutoMarginStart ? NS_STYLE_ALIGN_CENTER
: (aSameSide ? NS_STYLE_ALIGN_START
: NS_STYLE_ALIGN_END);
} else if (hasAutoMarginStart) {
aAlignment = aSameSide ? NS_STYLE_ALIGN_END : NS_STYLE_ALIGN_START;
}
}
// Set the position and size (aPos/aContentSize) for the requested alignment.
bool didResize = false;
nscoord offset = 0; // NOTE: this is the resulting frame offset (border box).
switch (aAlignment) {
case NS_STYLE_ALIGN_BASELINE:
case NS_STYLE_ALIGN_LAST_BASELINE:
NS_WARNING("NYI: baseline/last-baseline for grid (bug 1151204)"); // XXX
case NS_STYLE_ALIGN_START:
offset = marginStart;
break;
case NS_STYLE_ALIGN_END: {
nscoord size = aAxis == eLogicalAxisBlock ? aChildSize.BSize(wm)
: aChildSize.ISize(wm);
offset = aCBSize - (size + marginEnd);
break;
}
case NS_STYLE_ALIGN_CENTER: {
nscoord size = aAxis == eLogicalAxisBlock ? aChildSize.BSize(wm)
: aChildSize.ISize(wm);
offset = (aCBSize - size + marginStart - marginEnd) / 2;
break;
}
case NS_STYLE_ALIGN_STRETCH: {
MOZ_ASSERT(!hasAutoMarginStart && !hasAutoMarginEnd);
offset = marginStart;
if (aAxis == eLogicalAxisBlock
? (aRS.mStylePosition->BSize(wm).GetUnit() == eStyleUnit_Auto)
: (aRS.mStylePosition->ISize(wm).GetUnit() == eStyleUnit_Auto)) {
nscoord size = aAxis == eLogicalAxisBlock ? aChildSize.BSize(wm)
: aChildSize.ISize(wm);
nscoord gap = aCBSize - (size + marginStart + marginEnd);
if (gap > 0) {
// Note: The ComputedMax* values are always content-box max values,
// even for box-sizing:border-box.
LogicalMargin bp = aRS.ComputedLogicalBorderPadding();
// XXX ApplySkipSides is probably not very useful here since we
// might not have created any next-in-flow yet. Use the reflow status
// instead? Do all fragments stretch? (bug 1144096).
bp.ApplySkipSides(aRS.frame->GetLogicalSkipSides());
nscoord bpInAxis = aAxis == eLogicalAxisBlock ? bp.BStartEnd(wm)
: bp.IStartEnd(wm);
nscoord contentSize = size - bpInAxis;
const nscoord unstretchedContentSize = contentSize;
contentSize += gap;
nscoord max = aAxis == eLogicalAxisBlock ? aRS.ComputedMaxBSize()
: aRS.ComputedMaxISize();
if (MOZ_UNLIKELY(contentSize > max)) {
contentSize = max;
gap = contentSize - unstretchedContentSize;
}
// |gap| is now how much the content size is actually allowed to grow.
didResize = gap > 0;
// (nscoord overflow can make |contentSize| negative, bug 1225118)
if (didResize && MOZ_LIKELY(contentSize >= 0)) {
(aAxis == eLogicalAxisBlock ? aContentSize->BSize(wm)
: aContentSize->ISize(wm)) = contentSize;
if (MOZ_UNLIKELY(!aSameSide)) {
offset += gap;
}
}
}
}
break;
}
default:
MOZ_ASSERT_UNREACHABLE("unknown align-/justify-self value");
}
if (offset != 0) {
nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm);
pos += MOZ_LIKELY(aSameSide) ? offset : -offset;
}
return didResize;
}
static bool
SameSide(WritingMode aContainerWM, LogicalSide aContainerSide,
WritingMode aChildWM, LogicalSide aChildSide)
{
MOZ_ASSERT(aContainerWM.PhysicalAxis(GetAxis(aContainerSide)) ==
aChildWM.PhysicalAxis(GetAxis(aChildSide)));
return aContainerWM.PhysicalSide(aContainerSide) ==
aChildWM.PhysicalSide(aChildSide);
}
static Maybe<LogicalAxis>
AlignSelf(uint8_t aAlignSelf, const LogicalRect& aCB, const WritingMode aCBWM,
const nsHTMLReflowState& aRS, const LogicalSize& aSize,
LogicalSize* aContentSize, LogicalPoint* aPos)
{
Maybe<LogicalAxis> resizedAxis;
auto alignSelf = aAlignSelf;
bool overflowSafe = alignSelf & NS_STYLE_ALIGN_SAFE;
alignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS;
// Grid's 'align-self' axis is never parallel to the container's inline axis.
if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) {
alignSelf = NS_STYLE_ALIGN_START;
}
if (MOZ_UNLIKELY(alignSelf == NS_STYLE_ALIGN_AUTO)) {
// Happens in rare edge cases when 'position' was ignored by the frame
// constructor (and the style system computed 'auto' based on 'position').
alignSelf = NS_STYLE_ALIGN_STRETCH;
}
WritingMode childWM = aRS.GetWritingMode();
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
// |sameSide| is true if the container's start side in this axis is the same
// as the child's start side, in the child's parallel axis.
bool sameSide = SameSide(aCBWM, eLogicalSideBStart,
childWM, isOrthogonal ? eLogicalSideIStart
: eLogicalSideBStart);
LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
if (AlignJustifySelf(alignSelf, overflowSafe, axis, sameSide,
aCB.BSize(aCBWM), aRS, aSize, aContentSize, aPos)) {
resizedAxis.emplace(axis);
}
return resizedAxis;
}
static Maybe<LogicalAxis>
JustifySelf(uint8_t aJustifySelf, const LogicalRect& aCB, const WritingMode aCBWM,
const nsHTMLReflowState& aRS, const LogicalSize& aSize,
LogicalSize* aContentSize, LogicalPoint* aPos)
{
Maybe<LogicalAxis> resizedAxis;
auto justifySelf = aJustifySelf;
bool overflowSafe = justifySelf & NS_STYLE_JUSTIFY_SAFE;
justifySelf &= ~NS_STYLE_JUSTIFY_FLAG_BITS;
if (MOZ_UNLIKELY(justifySelf == NS_STYLE_ALIGN_AUTO)) {
// Happens in rare edge cases when 'position' was ignored by the frame
// constructor (and the style system computed 'auto' based on 'position').
justifySelf = NS_STYLE_ALIGN_STRETCH;
}
WritingMode childWM = aRS.GetWritingMode();
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
// |sameSide| is true if the container's start side in this axis is the same
// as the child's start side, in the child's parallel axis.
bool sameSide = SameSide(aCBWM, eLogicalSideIStart,
childWM, isOrthogonal ? eLogicalSideBStart
: eLogicalSideIStart);
// Grid's 'justify-self' axis is always parallel to the container's inline
// axis, so justify-self:left|right always applies.
switch (justifySelf) {
case NS_STYLE_JUSTIFY_LEFT:
justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_START
: NS_STYLE_JUSTIFY_END;
break;
case NS_STYLE_JUSTIFY_RIGHT:
justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_END
: NS_STYLE_JUSTIFY_START;
break;
}
LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
if (AlignJustifySelf(justifySelf, overflowSafe, axis, sameSide,
aCB.ISize(aCBWM), aRS, aSize, aContentSize, aPos)) {
resizedAxis.emplace(axis);
}
return resizedAxis;
}
static uint16_t
GetAlignJustifyValue(uint16_t aAlignment, const WritingMode aWM,
const bool aIsAlign, bool* aOverflowSafe)
{
*aOverflowSafe = aAlignment & NS_STYLE_ALIGN_SAFE;
aAlignment &= (NS_STYLE_ALIGN_ALL_BITS & ~NS_STYLE_ALIGN_FLAG_BITS);
// Map some alignment values to 'start' / 'end'.
switch (aAlignment) {
case NS_STYLE_ALIGN_LEFT:
case NS_STYLE_ALIGN_RIGHT: {
if (aIsAlign) {
// Grid's 'align-content' axis is never parallel to the inline axis.
return NS_STYLE_ALIGN_START;
}
bool isStart = aWM.IsBidiLTR() == (aAlignment == NS_STYLE_ALIGN_LEFT);
return isStart ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END;
}
case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid
return NS_STYLE_ALIGN_START;
case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid
return NS_STYLE_ALIGN_END;
}
return aAlignment;
}
static uint16_t
GetAlignJustifyFallbackIfAny(uint16_t aAlignment, const WritingMode aWM,
const bool aIsAlign, bool* aOverflowSafe)
{
uint16_t fallback = aAlignment >> NS_STYLE_ALIGN_ALL_SHIFT;
if (fallback) {
return GetAlignJustifyValue(fallback, aWM, aIsAlign, aOverflowSafe);
}
// https://drafts.csswg.org/css-align-3/#fallback-alignment
switch (aAlignment) {
case NS_STYLE_ALIGN_STRETCH:
case NS_STYLE_ALIGN_SPACE_BETWEEN:
return NS_STYLE_ALIGN_START;
case NS_STYLE_ALIGN_SPACE_AROUND:
case NS_STYLE_ALIGN_SPACE_EVENLY:
return NS_STYLE_ALIGN_CENTER;
}
return 0;
}
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsGridContainerFrame)
NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)
nsContainerFrame*
NS_NewGridContainerFrame(nsIPresShell* aPresShell,
nsStyleContext* aContext)
{
return new (aPresShell) nsGridContainerFrame(aContext);
}
//----------------------------------------------------------------------
// nsGridContainerFrame Method Implementations
// ===========================================
/*static*/ const nsRect&
nsGridContainerFrame::GridItemCB(nsIFrame* aChild)
{
MOZ_ASSERT((aChild->GetStateBits() & NS_FRAME_OUT_OF_FLOW) &&
aChild->IsAbsolutelyPositioned());
nsRect* cb = static_cast<nsRect*>(aChild->Properties().Get(
GridItemContainingBlockRect()));
MOZ_ASSERT(cb, "this method must only be called on grid items, and the grid "
"container should've reflowed this item by now and set up cb");
return *cb;
}
void
nsGridContainerFrame::AddImplicitNamedAreas(
const nsTArray<nsTArray<nsString>>& aLineNameLists)
{
// http://dev.w3.org/csswg/css-grid/#implicit-named-areas
// Note: recording these names for fast lookup later is just an optimization.
const uint32_t len =
std::min(aLineNameLists.Length(), size_t(nsStyleGridLine::kMaxLine));
nsTHashtable<nsStringHashKey> currentStarts;
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
for (uint32_t i = 0; i < len; ++i) {
for (const nsString& name : aLineNameLists[i]) {
uint32_t index;
if (::IsNameWithStartSuffix(name, &index) ||
::IsNameWithEndSuffix(name, &index)) {
nsDependentSubstring area(name, 0, index);
if (!areas) {
areas = new ImplicitNamedAreas;
Properties().Set(ImplicitNamedAreasProperty(), areas);
}
areas->PutEntry(area);
}
}
}
}
void
nsGridContainerFrame::InitImplicitNamedAreas(const nsStylePosition* aStyle)
{
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
if (areas) {
// Clear it, but reuse the hashtable itself for now. We'll remove it
// below if it isn't needed anymore.
areas->Clear();
}
AddImplicitNamedAreas(aStyle->mGridTemplateColumns.mLineNameLists);
AddImplicitNamedAreas(aStyle->mGridTemplateRows.mLineNameLists);
if (areas && areas->Count() == 0) {
Properties().Delete(ImplicitNamedAreasProperty());
}
}
int32_t
nsGridContainerFrame::ResolveLine(
const nsStyleGridLine& aLine,
int32_t aNth,
uint32_t aFromIndex,
const nsTArray<nsTArray<nsString>>& aLineNameList,
uint32_t GridNamedArea::* aAreaStart,
uint32_t GridNamedArea::* aAreaEnd,
uint32_t aExplicitGridEnd,
LineRangeSide aSide,
const nsStylePosition* aStyle)
{
MOZ_ASSERT(!aLine.IsAuto());
int32_t line = 0;
if (aLine.mLineName.IsEmpty()) {
MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
line = int32_t(aFromIndex) + aNth;
} else {
if (aNth == 0) {
// <integer> was omitted; treat it as 1.
aNth = 1;
}
bool isNameOnly = !aLine.mHasSpan && aLine.mInteger == 0;
if (isNameOnly) {
const GridNamedArea* area = ::FindNamedArea(aLine.mLineName, aStyle);
if (area || HasImplicitNamedArea(aLine.mLineName)) {
// The given name is a named area - look for explicit lines named
// <name>-start/-end depending on which side we're resolving.
// http://dev.w3.org/csswg/css-grid/#grid-placement-slot
uint32_t implicitLine = 0;
nsAutoString lineName(aLine.mLineName);
if (aSide == eLineRangeSideStart) {
lineName.AppendLiteral("-start");
implicitLine = area ? area->*aAreaStart : 0;
} else {
lineName.AppendLiteral("-end");
implicitLine = area ? area->*aAreaEnd : 0;
}
line = ::FindNamedLine(lineName, &aNth, aFromIndex, implicitLine,
aLineNameList);
}
}
if (line == 0) {
// If mLineName ends in -start/-end, try the prefix as a named area.
uint32_t implicitLine = 0;
uint32_t index;
auto GridNamedArea::* areaEdge = aAreaStart;
bool found = ::IsNameWithStartSuffix(aLine.mLineName, &index);
if (!found) {
found = ::IsNameWithEndSuffix(aLine.mLineName, &index);
areaEdge = aAreaEnd;
}
if (found) {
const GridNamedArea* area =
::FindNamedArea(nsDependentSubstring(aLine.mLineName, 0, index),
aStyle);
if (area) {
implicitLine = area->*areaEdge;
}
}
line = ::FindNamedLine(aLine.mLineName, &aNth, aFromIndex, implicitLine,
aLineNameList);
}
if (line == 0) {
MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
int32_t edgeLine;
if (aLine.mHasSpan) {
// http://dev.w3.org/csswg/css-grid/#grid-placement-span-int
// 'span <custom-ident> N'
edgeLine = aSide == eLineRangeSideStart ? 1 : aExplicitGridEnd;
} else {
// http://dev.w3.org/csswg/css-grid/#grid-placement-int
// '<custom-ident> N'
edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
}
// "If not enough lines with that name exist, all lines in the implicit
// grid are assumed to have that name..."
line = edgeLine + aNth;
}
}
return clamped(line, nsStyleGridLine::kMinLine, nsStyleGridLine::kMaxLine);
}
nsGridContainerFrame::LinePair
nsGridContainerFrame::ResolveLineRangeHelper(
const nsStyleGridLine& aStart,
const nsStyleGridLine& aEnd,
const nsTArray<nsTArray<nsString>>& aLineNameList,
uint32_t GridNamedArea::* aAreaStart,
uint32_t GridNamedArea::* aAreaEnd,
uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle)
{
MOZ_ASSERT(int32_t(nsGridContainerFrame::kAutoLine) > nsStyleGridLine::kMaxLine);
if (aStart.mHasSpan) {
if (aEnd.mHasSpan || aEnd.IsAuto()) {
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
if (aStart.mLineName.IsEmpty()) {
// span <integer> / span *
// span <integer> / auto
return LinePair(kAutoLine, aStart.mInteger);
}
// span <custom-ident> / span *
// span <custom-ident> / auto
return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
}
uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd : 0;
auto end = ResolveLine(aEnd, aEnd.mInteger, from, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd,
aStyle);
int32_t span = aStart.mInteger == 0 ? 1 : aStart.mInteger;
if (end <= 1) {
// The end is at or before the first explicit line, thus all lines before
// it match <custom-ident> since they're implicit.
int32_t start = std::max(end - span, nsStyleGridLine::kMinLine);
return LinePair(start, end);
}
auto start = ResolveLine(aStart, -span, end, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, eLineRangeSideStart,
aStyle);
return LinePair(start, end);
}
int32_t start = kAutoLine;
if (aStart.IsAuto()) {
if (aEnd.IsAuto()) {
// auto / auto
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
}
if (aEnd.mHasSpan) {
if (aEnd.mLineName.IsEmpty()) {
// auto / span <integer>
MOZ_ASSERT(aEnd.mInteger != 0);
return LinePair(start, aEnd.mInteger);
}
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
// auto / span <custom-ident>
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
}
} else {
uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd : 0;
start = ResolveLine(aStart, aStart.mInteger, from, aLineNameList,
aAreaStart, aAreaEnd, aExplicitGridEnd,
eLineRangeSideStart, aStyle);
if (aEnd.IsAuto()) {
// A "definite line / auto" should resolve the auto to 'span 1'.
// The error handling in ResolveLineRange will make that happen and also
// clamp the end line correctly if we return "start / start".
return LinePair(start, start);
}
}
uint32_t from;
int32_t nth = aEnd.mInteger == 0 ? 1 : aEnd.mInteger;
if (aEnd.mHasSpan) {
if (MOZ_UNLIKELY(start < 0)) {
if (aEnd.mLineName.IsEmpty()) {
return LinePair(start, start + nth);
}
from = 0;
} else {
if (start >= int32_t(aExplicitGridEnd)) {
// The start is at or after the last explicit line, thus all lines
// after it match <custom-ident> since they're implicit.
return LinePair(start, std::min(start + nth, nsStyleGridLine::kMaxLine));
}
from = start;
}
} else {
from = aEnd.mInteger < 0 ? aExplicitGridEnd : 0;
}
auto end = ResolveLine(aEnd, nth, from, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
if (start == int32_t(kAutoLine)) {
// auto / definite line
start = std::max(nsStyleGridLine::kMinLine, end - 1);
}
return LinePair(start, end);
}
nsGridContainerFrame::LineRange
nsGridContainerFrame::ResolveLineRange(
const nsStyleGridLine& aStart,
const nsStyleGridLine& aEnd,
const nsTArray<nsTArray<nsString>>& aLineNameList,
uint32_t GridNamedArea::* aAreaStart,
uint32_t GridNamedArea::* aAreaEnd,
uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle)
{
LinePair r = ResolveLineRangeHelper(aStart, aEnd, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, aStyle);
MOZ_ASSERT(r.second != int32_t(kAutoLine));
if (r.first == int32_t(kAutoLine)) {
// r.second is a span, clamp it to kMaxLine - 1 so that the returned
// range has a HypotheticalEnd <= kMaxLine.
// http://dev.w3.org/csswg/css-grid/#overlarge-grids
r.second = std::min(r.second, nsStyleGridLine::kMaxLine - 1);
} else {
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
if (r.first > r.second) {
Swap(r.first, r.second);
} else if (r.first == r.second) {
if (MOZ_UNLIKELY(r.first == nsStyleGridLine::kMaxLine)) {
r.first = nsStyleGridLine::kMaxLine - 1;
}
r.second = r.first + 1; // XXX subgrid explicit size instead of 1?
}
}
return LineRange(r.first, r.second);
}
nsGridContainerFrame::GridArea
nsGridContainerFrame::PlaceDefinite(nsIFrame* aChild,
const nsStylePosition* aStyle)
{
const nsStylePosition* itemStyle = aChild->StylePosition();
return GridArea(
ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
aStyle->mGridTemplateColumns.mLineNameLists,
&GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
mExplicitGridColEnd, aStyle),
ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
aStyle->mGridTemplateRows.mLineNameLists,
&GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
mExplicitGridRowEnd, aStyle));
}
nsGridContainerFrame::LineRange
nsGridContainerFrame::ResolveAbsPosLineRange(
const nsStyleGridLine& aStart,
const nsStyleGridLine& aEnd,
const nsTArray<nsTArray<nsString>>& aLineNameList,
uint32_t GridNamedArea::* aAreaStart,
uint32_t GridNamedArea::* aAreaEnd,
uint32_t aExplicitGridEnd,
int32_t aGridStart,
int32_t aGridEnd,
const nsStylePosition* aStyle)
{
if (aStart.IsAuto()) {
if (aEnd.IsAuto()) {
return LineRange(kAutoLine, kAutoLine);
}
int32_t end = ResolveLine(aEnd, aEnd.mInteger, 0, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd,
aStyle);
if (aEnd.mHasSpan) {
++end;
}
// A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
end = AutoIfOutside(end, aGridStart, aGridEnd);
return LineRange(kAutoLine, end);
}
if (aEnd.IsAuto()) {
int32_t start =
ResolveLine(aStart, aStart.mInteger, 0, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle);
if (aStart.mHasSpan) {
start = std::max(aGridEnd - start, aGridStart);
}
start = AutoIfOutside(start, aGridStart, aGridEnd);
return LineRange(start, kAutoLine);
}
LineRange r = ResolveLineRange(aStart, aEnd, aLineNameList, aAreaStart,
aAreaEnd, aExplicitGridEnd, aStyle);
if (r.IsAuto()) {
MOZ_ASSERT(aStart.mHasSpan && aEnd.mHasSpan, "span / span is the only case "
"leading to IsAuto here -- we dealt with the other cases above");
// The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this
// case should result in "auto / auto" unlike normal flow grid items.
return LineRange(kAutoLine, kAutoLine);
}
return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
}
uint32_t
nsGridContainerFrame::FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
const GridArea* aArea) const
{
const uint32_t extent = aArea->mCols.Extent();
const uint32_t iStart = aLockedRow;
const uint32_t iEnd = iStart + aArea->mRows.Extent();
uint32_t candidate = aStartCol;
for (uint32_t i = iStart; i < iEnd; ) {
if (i >= mCellMap.mCells.Length()) {
break;
}
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
const uint32_t len = cellsInRow.Length();
const uint32_t lastCandidate = candidate;
// Find the first gap in the current row that's at least 'extent' wide.
// ('gap' tracks how wide the current column gap is.)
for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
if (!cellsInRow[j].mIsOccupied) {
++gap;
continue;
}
candidate = j + 1;
gap = 0;
}
if (lastCandidate < candidate && i != iStart) {
// Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
// restart from the beginning with the new 'candidate'.
i = iStart;
} else {
++i;
}
}
return candidate;
}
nsGridContainerFrame::GridArea
nsGridContainerFrame::PlaceAbsPos(nsIFrame* aChild,
const nsStylePosition* aStyle)
{
const nsStylePosition* itemStyle = aChild->StylePosition();
int32_t gridColStart = 1 - mExplicitGridOffsetCol;
int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
return GridArea(
ResolveAbsPosLineRange(itemStyle->mGridColumnStart,
itemStyle->mGridColumnEnd,
aStyle->mGridTemplateColumns.mLineNameLists,
&GridNamedArea::mColumnStart,
&GridNamedArea::mColumnEnd,
mExplicitGridColEnd, gridColStart, mGridColEnd,
aStyle),
ResolveAbsPosLineRange(itemStyle->mGridRowStart,
itemStyle->mGridRowEnd,
aStyle->mGridTemplateRows.mLineNameLists,
&GridNamedArea::mRowStart,
&GridNamedArea::mRowEnd,
mExplicitGridRowEnd, gridRowStart, mGridRowEnd,
aStyle));
}
void
nsGridContainerFrame::PlaceAutoCol(uint32_t aStartCol, GridArea* aArea) const
{
MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
MOZ_ASSERT(aArea->IsDefinite());
}
uint32_t
nsGridContainerFrame::FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
const GridArea* aArea) const
{
const uint32_t extent = aArea->mRows.Extent();
const uint32_t jStart = aLockedCol;
const uint32_t jEnd = jStart + aArea->mCols.Extent();
const uint32_t iEnd = mCellMap.mCells.Length();
uint32_t candidate = aStartRow;
// Find the first gap in the rows that's at least 'extent' tall.
// ('gap' tracks how tall the current row gap is.)
for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
++gap; // tentative, but we may reset it below if a column is occupied
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
// Check if the current row is unoccupied from jStart to jEnd.
for (uint32_t j = jStart; j < clampedJEnd; ++j) {
if (cellsInRow[j].mIsOccupied) {
// Couldn't fit 'extent' rows at 'candidate' here; we hit something
// at row 'i'. So, try the row after 'i' as our next candidate.
candidate = i + 1;
gap = 0;
break;
}
}
}
return candidate;
}
void
nsGridContainerFrame::PlaceAutoRow(uint32_t aStartRow, GridArea* aArea) const
{
MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
MOZ_ASSERT(aArea->IsDefinite());
}
void
nsGridContainerFrame::PlaceAutoAutoInRowOrder(uint32_t aStartCol,
uint32_t aStartRow,
GridArea* aArea) const
{
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
const uint32_t colExtent = aArea->mCols.Extent();
const uint32_t gridRowEnd = mGridRowEnd;
const uint32_t gridColEnd = mGridColEnd;
uint32_t col = aStartCol;
uint32_t row = aStartRow;
for (; row < gridRowEnd; ++row) {
col = FindAutoCol(col, row, aArea);
if (col + colExtent <= gridColEnd) {
break;
}
col = 0;
}
MOZ_ASSERT(row < gridRowEnd || col == 0,
"expected column 0 for placing in a new row");
aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
MOZ_ASSERT(aArea->IsDefinite());
}
void
nsGridContainerFrame::PlaceAutoAutoInColOrder(uint32_t aStartCol,
uint32_t aStartRow,
GridArea* aArea) const
{
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
const uint32_t rowExtent = aArea->mRows.Extent();
const uint32_t gridRowEnd = mGridRowEnd;
const uint32_t gridColEnd = mGridColEnd;
uint32_t col = aStartCol;
uint32_t row = aStartRow;
for (; col < gridColEnd; ++col) {
row = FindAutoRow(col, row, aArea);
if (row + rowExtent <= gridRowEnd) {
break;
}
row = 0;
}
MOZ_ASSERT(col < gridColEnd || row == 0,
"expected row 0 for placing in a new column");
aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
MOZ_ASSERT(aArea->IsDefinite());
}
void
nsGridContainerFrame::InitializeGridBounds(const nsStylePosition* aStyle)
{
// http://dev.w3.org/csswg/css-grid/#grid-definition
// Note that this is for a grid with a 1,1 origin. We'll change that
// to a 0,0 based grid after placing definite lines.
uint32_t colEnd = aStyle->mGridTemplateColumns.mLineNameLists.Length();
uint32_t rowEnd = aStyle->mGridTemplateRows.mLineNameLists.Length();
auto areas = aStyle->mGridTemplateAreas.get();
mExplicitGridColEnd = std::max(colEnd, areas ? areas->mNColumns + 1 : 1);
mExplicitGridRowEnd = std::max(rowEnd, areas ? areas->NRows() + 1 : 1);
mExplicitGridColEnd =
std::min(mExplicitGridColEnd, uint32_t(nsStyleGridLine::kMaxLine));
mExplicitGridRowEnd =
std::min(mExplicitGridRowEnd, uint32_t(nsStyleGridLine::kMaxLine));
mGridColEnd = mExplicitGridColEnd;
mGridRowEnd = mExplicitGridRowEnd;
}
void
nsGridContainerFrame::PlaceGridItems(GridReflowState& aState)
{
const nsStylePosition* const gridStyle = aState.mGridStyle;
mCellMap.ClearOccupied();
InitializeGridBounds(gridStyle);
// http://dev.w3.org/csswg/css-grid/#line-placement
// Resolve definite positions per spec chap 9.2.
int32_t minCol = 1;
int32_t minRow = 1;
mGridItems.ClearAndRetainStorage();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
nsIFrame* child = *aState.mIter;
GridItemInfo* info =
mGridItems.AppendElement(GridItemInfo(PlaceDefinite(child, gridStyle)));
#ifdef DEBUG
MOZ_ASSERT(aState.mIter.GridItemIndex() == mGridItems.Length() - 1,
"GridItemIndex() is broken");
info->mFrame = child;
#endif
GridArea& area = info->mArea;
if (area.mCols.IsDefinite()) {
minCol = std::min(minCol, area.mCols.mUntranslatedStart);
}
if (area.mRows.IsDefinite()) {
minRow = std::min(minRow, area.mRows.mUntranslatedStart);
}
}
// Translate the whole grid so that the top-/left-most area is at 0,0.
mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
mExplicitGridOffsetRow = 1 - minRow;
aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
mGridColEnd += offsetToColZero;
mGridRowEnd += offsetToRowZero;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
GridArea& area = mGridItems[aState.mIter.GridItemIndex()].mArea;
if (area.mCols.IsDefinite()) {
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
}
if (area.mRows.IsDefinite()) {
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
}
if (area.IsDefinite()) {
mCellMap.Fill(area);
InflateGridFor(area);
}
}
// http://dev.w3.org/csswg/css-grid/#auto-placement-algo
// Step 1, place 'auto' items that have one definite position -
// definite row (column) for grid-auto-flow:row (column).
auto flowStyle = gridStyle->mGridAutoFlow;
const bool isRowOrder = (flowStyle & NS_STYLE_GRID_AUTO_FLOW_ROW);
const bool isSparse = !(flowStyle & NS_STYLE_GRID_AUTO_FLOW_DENSE);
// We need 1 cursor per row (or column) if placement is sparse.
{
Maybe<nsDataHashtable<nsUint32HashKey, uint32_t>> cursors;
if (isSparse) {
cursors.emplace();
}
auto placeAutoMinorFunc = isRowOrder ? &nsGridContainerFrame::PlaceAutoCol
: &nsGridContainerFrame::PlaceAutoRow;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
GridArea& area = mGridItems[aState.mIter.GridItemIndex()].mArea;
LineRange& major = isRowOrder ? area.mRows : area.mCols;
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
if (major.IsDefinite() && minor.IsAuto()) {
// Items with 'auto' in the minor dimension only.
uint32_t cursor = 0;
if (isSparse) {
cursors->Get(major.mStart, &cursor);
}
(this->*placeAutoMinorFunc)(cursor, &area);
mCellMap.Fill(area);
if (isSparse) {
cursors->Put(major.mStart, minor.mEnd);
}
}
InflateGridFor(area); // Step 2, inflating for auto items too
}
}
// XXX NOTE possible spec issue.
// XXX It's unclear if the remaining major-dimension auto and
// XXX auto in both dimensions should use the same cursor or not,
// XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
// XXX seems to indicate it shouldn't.
// XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor
// XXX now says it should (but didn't in earlier versions)
// Step 3, place the remaining grid items
uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
uint32_t cursorMinor = 0;
auto placeAutoMajorFunc = isRowOrder ? &nsGridContainerFrame::PlaceAutoRow
: &nsGridContainerFrame::PlaceAutoCol;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
GridArea& area = mGridItems[aState.mIter.GridItemIndex()].mArea;
MOZ_ASSERT(*aState.mIter == mGridItems[aState.mIter.GridItemIndex()].mFrame,
"iterator out of sync with mGridItems");
LineRange& major = isRowOrder ? area.mRows : area.mCols;
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
if (major.IsAuto()) {
if (minor.IsDefinite()) {
// Items with 'auto' in the major dimension only.
if (isSparse) {
if (minor.mStart < cursorMinor) {
++cursorMajor;
}
cursorMinor = minor.mStart;
}
(this->*placeAutoMajorFunc)(cursorMajor, &area);
if (isSparse) {
cursorMajor = major.mStart;
}
} else {
// Items with 'auto' in both dimensions.
if (isRowOrder) {
PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area);
} else {
PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area);
}
if (isSparse) {
cursorMajor = major.mStart;
cursorMinor = minor.mEnd;
#ifdef DEBUG
uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
MOZ_ASSERT(cursorMajor <= gridMajorEnd,
"we shouldn't need to place items further than 1 track "
"past the current end of the grid, in major dimension");
MOZ_ASSERT(cursorMinor <= gridMinorEnd,
"we shouldn't add implicit minor tracks for auto/auto");
#endif
}
}
mCellMap.Fill(area);
InflateGridFor(area);
}
}
if (IsAbsoluteContainer()) {
// 9.4 Absolutely-positioned Grid Items
// http://dev.w3.org/csswg/css-grid/#abspos-items
// We only resolve definite lines here; we'll align auto positions to the
// grid container later during reflow.
nsFrameList children(GetChildList(GetAbsoluteListID()));
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
// Untranslate the grid again temporarily while resolving abs.pos. lines.
AutoRestore<uint32_t> save1(mGridColEnd);
AutoRestore<uint32_t> save2(mGridRowEnd);
mGridColEnd -= offsetToColZero;
mGridRowEnd -= offsetToRowZero;
mAbsPosItems.ClearAndRetainStorage();
size_t i = 0;
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
nsIFrame* child = e.get();
GridItemInfo* info =
mAbsPosItems.AppendElement(GridItemInfo(PlaceAbsPos(child, gridStyle)));
#ifdef DEBUG
info->mFrame = child;
#endif
GridArea& area = info->mArea;
if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
}
if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
}
if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
}
if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
}
}
}
}
void
nsGridContainerFrame::TrackSize::Initialize(nscoord aPercentageBasis,
const nsStyleCoord& aMinCoord,
const nsStyleCoord& aMaxCoord)
{
MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
"track size data is expected to be initialized to zero");
// http://dev.w3.org/csswg/css-grid/#algo-init
switch (aMinCoord.GetUnit()) {
case eStyleUnit_Auto:
mState = eAutoMinSizing;
break;
case eStyleUnit_Enumerated:
mState = IsMinContent(aMinCoord) ? eMinContentMinSizing
: eMaxContentMinSizing;
break;
case eStyleUnit_FlexFraction:
mState = eFlexMinSizing;
break;
default:
mBase = nsRuleNode::ComputeCoordPercentCalc(aMinCoord, aPercentageBasis);
}
switch (aMaxCoord.GetUnit()) {
case eStyleUnit_Auto:
mState |= eAutoMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
case eStyleUnit_Enumerated:
mState |= IsMinContent(aMaxCoord) ? eMinContentMaxSizing
: eMaxContentMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
case eStyleUnit_FlexFraction:
mState |= eFlexMaxSizing;
mLimit = mBase;
break;
default:
mLimit = nsRuleNode::ComputeCoordPercentCalc(aMaxCoord, aPercentageBasis);
if (mLimit < mBase) {
mLimit = mBase;
}
}
}
void
nsGridContainerFrame::Tracks::Initialize(
const TrackSizingFunctions& aFunctions,
nscoord aGridGap,
uint32_t aNumTracks,
nscoord aContentBoxSize)
{
mSizes.SetLength(aNumTracks);
PodZero(mSizes.Elements(), mSizes.Length());
nscoord percentageBasis = aContentBoxSize;
if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
percentageBasis = 0;
}
const uint32_t explicitGridOffset = aFunctions.mExplicitGridOffset;
MOZ_ASSERT(mSizes.Length() >=
explicitGridOffset + aFunctions.mMinSizingFunctions.Length());
MOZ_ASSERT(aFunctions.mMinSizingFunctions.Length() ==
aFunctions.mMaxSizingFunctions.Length());
// First we initialize the implicit tracks before the explicit grid starts.
uint32_t i = 0;
uint32_t sentinel = std::min<uint32_t>(explicitGridOffset, mSizes.Length());
for (; i < sentinel; ++i) {
mSizes[i].Initialize(percentageBasis,
aFunctions.mAutoMinSizing,
aFunctions.mAutoMaxSizing);
}
// Now initialize the explicit grid tracks.
sentinel = std::min<uint32_t>(i + aFunctions.mMinSizingFunctions.Length(),
mSizes.Length());
for (uint32_t j = 0; i < sentinel; ++i, ++j) {
mSizes[i].Initialize(percentageBasis,
aFunctions.mMinSizingFunctions[j],
aFunctions.mMaxSizingFunctions[j]);
}
// Finally, initialize the implicit tracks that comes after the explicit grid.
sentinel = mSizes.Length();
for (; i < sentinel; ++i) {
mSizes[i].Initialize(percentageBasis,
aFunctions.mAutoMinSizing,
aFunctions.mAutoMaxSizing);
}
mGridGap = aGridGap;
MOZ_ASSERT(mGridGap >= nscoord(0), "negative grid gap");
}
/**
* Return the [min|max]-content contribution of aChild to its parent (i.e.
* the child's margin-box) in aAxis.
*/
static nscoord
ContentContribution(nsIFrame* aChild,
const nsHTMLReflowState* aReflowState,
nsRenderingContext* aRC,
WritingMode aCBWM,
LogicalAxis aAxis,
nsLayoutUtils::IntrinsicISizeType aConstraint,
uint32_t aFlags = 0)
{
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
nscoord size = nsLayoutUtils::IntrinsicForAxis(axis, aRC, aChild, aConstraint,
aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED);
if (size == NS_INTRINSIC_WIDTH_UNKNOWN) {
// We need to reflow the child to find its BSize contribution.
WritingMode wm = aChild->GetWritingMode();
nsContainerFrame* parent = aChild->GetParent();
nsPresContext* pc = aChild->PresContext();
Maybe<nsHTMLReflowState> dummyParentState;
const nsHTMLReflowState* rs = aReflowState;
if (!aReflowState) {
MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
dummyParentState.emplace(pc, parent, aRC,
LogicalSize(parent->GetWritingMode(), 0,
NS_UNCONSTRAINEDSIZE),
nsHTMLReflowState::DUMMY_PARENT_REFLOW_STATE);
rs = dummyParentState.ptr();
}
#ifdef DEBUG
// This will suppress various CRAZY_SIZE warnings for this reflow.
parent->Properties().Set(nsContainerFrame::DebugReflowingWithInfiniteISize(),
parent /* anything non-null will do */);
#endif
// XXX this will give mostly correct results for now (until bug 1174569).
LogicalSize availableSize(wm, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
nsHTMLReflowState childRS(pc, *rs, aChild, availableSize, nullptr,
nsHTMLReflowState::COMPUTE_SIZE_SHRINK_WRAP);
nsHTMLReflowMetrics childSize(childRS);
nsReflowStatus childStatus;
const uint32_t flags = NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW;
parent->ReflowChild(aChild, pc, childSize, childRS, wm,
LogicalPoint(wm), nsSize(), flags, childStatus);
parent->FinishReflowChild(aChild, pc, childSize, &childRS, wm,
LogicalPoint(wm), nsSize(), flags);
size = childSize.BSize(wm);
nsIFrame::IntrinsicISizeOffsetData offsets = aChild->IntrinsicBSizeOffsets();
size += offsets.hMargin;
size = nsLayoutUtils::AddPercents(aConstraint, size, offsets.hPctMargin);
#ifdef DEBUG
parent->Properties().Delete(nsContainerFrame::DebugReflowingWithInfiniteISize());
#endif
}
return std::max(size, 0);
}
static nscoord
MinContentContribution(nsIFrame* aChild,
const nsHTMLReflowState* aRS,
nsRenderingContext* aRC,
WritingMode aCBWM,
LogicalAxis aAxis)
{
return ContentContribution(aChild, aRS, aRC, aCBWM, aAxis,
nsLayoutUtils::MIN_ISIZE);
}
static nscoord
MaxContentContribution(nsIFrame* aChild,
const nsHTMLReflowState* aRS,
nsRenderingContext* aRC,
WritingMode aCBWM,
LogicalAxis aAxis)
{
return ContentContribution(aChild, aRS, aRC, aCBWM, aAxis,
nsLayoutUtils::PREF_ISIZE);
}
static nscoord
MinSize(nsIFrame* aChild,
const nsHTMLReflowState* aRS,
nsRenderingContext* aRC,
WritingMode aCBWM,
LogicalAxis aAxis)
{
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
const nsStylePosition* stylePos = aChild->StylePosition();
const nsStyleCoord& style = axis == eAxisHorizontal ? stylePos->mMinWidth
: stylePos->mMinHeight;
// https://drafts.csswg.org/css-grid/#min-size-auto
// This calculates the min-content contribution from either a definite
// min-width (or min-height depending on aAxis), or the "specified /
// transferred size" for min-width:auto if overflow == visible (as min-width:0
// otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
// (which results in always taking the "content size" part below).
nscoord sz =
nsLayoutUtils::MinSizeContributionForAxis(axis, aRC, aChild,
nsLayoutUtils::MIN_ISIZE);
auto unit = style.GetUnit();
if (unit == eStyleUnit_Enumerated ||
(unit == eStyleUnit_Auto &&
aChild->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE)) {
// Now calculate the "content size" part and return whichever is smaller.
MOZ_ASSERT(unit != eStyleUnit_Enumerated || sz == NS_UNCONSTRAINEDSIZE);
sz = std::min(sz, ContentContribution(aChild, aRS, aRC, aCBWM, aAxis,
nsLayoutUtils::MIN_ISIZE,
nsLayoutUtils::MIN_INTRINSIC_ISIZE));
}
return sz;
}
void
nsGridContainerFrame::Tracks::CalculateSizes(
GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aContentBoxSize,
LineRange GridArea::* aRange,
IntrinsicISizeType aConstraint)
{
nscoord percentageBasis = aContentBoxSize;
if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
percentageBasis = 0;
}
ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis,
aConstraint);
if (aConstraint != nsLayoutUtils::MIN_ISIZE) {
nscoord freeSpace = aContentBoxSize;
if (freeSpace != NS_UNCONSTRAINEDSIZE) {
freeSpace -= SumOfGridGaps();
}
DistributeFreeSpace(freeSpace);
StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace);
}
}
void
nsGridContainerFrame::CalculateTrackSizes(GridReflowState& aState,
const LogicalSize& aContentBox,
IntrinsicISizeType aConstraint)
{
const WritingMode& wm = aState.mWM;
const nsStylePosition* stylePos = aState.mGridStyle;
aState.mCols.Initialize(aState.mColFunctions, stylePos->mGridColumnGap,
mGridColEnd, aContentBox.ISize(wm));
aState.mRows.Initialize(aState.mRowFunctions, stylePos->mGridRowGap,
mGridRowEnd, aContentBox.BSize(wm));
aState.mCols.CalculateSizes(aState, mGridItems, aState.mColFunctions,
aContentBox.ISize(wm), &GridArea::mCols,
aConstraint);
aState.mIter.Reset(); // XXX cleanup this Reset mess!
aState.mRows.CalculateSizes(aState, mGridItems, aState.mRowFunctions,
aContentBox.BSize(wm), &GridArea::mRows,
aConstraint);
}
bool
nsGridContainerFrame::Tracks::HasIntrinsicButNoFlexSizingInRange(
const LineRange& aRange,
IntrinsicISizeType aConstraint,
TrackSize::StateBits* aState) const
{
MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range");
const uint32_t start = aRange.mStart;
const uint32_t end = aRange.mEnd;
const TrackSize::StateBits selector =
TrackSize::eIntrinsicMinSizing |
TrackSize::eIntrinsicMaxSizing |
(aConstraint == nsLayoutUtils::MIN_ISIZE ? TrackSize::eFlexMinSizing
: TrackSize::StateBits(0));
bool foundIntrinsic = false;
for (uint32_t i = start; i < end; ++i) {
TrackSize::StateBits state = mSizes[i].mState;
*aState |= state;
if (state & TrackSize::eFlexMaxSizing) {
return false;
}
if (state & selector) {
foundIntrinsic = true;
}
}
return foundIntrinsic;
}
bool
nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1(
GridReflowState& aState,
const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis,
IntrinsicISizeType aConstraint,
const LineRange& aRange,
nsIFrame* aGridItem)
{
Maybe<nscoord> minContentContribution;
Maybe<nscoord> maxContentContribution;
// min sizing
TrackSize& sz = mSizes[aRange.mStart];
WritingMode wm = aState.mWM;
const nsHTMLReflowState* rs = aState.mReflowState;
nsRenderingContext* rc = &aState.mRenderingContext;
if (sz.mState & TrackSize::eAutoMinSizing) {
nscoord s = MinSize(aGridItem, rs, rc, wm, mAxis);
sz.mBase = std::max(sz.mBase, s);
} else if ((sz.mState & TrackSize::eMinContentMinSizing) ||
(aConstraint == nsLayoutUtils::MIN_ISIZE &&
(sz.mState & TrackSize::eFlexMinSizing))) {
nscoord s = MinContentContribution(aGridItem, rs, rc, wm, mAxis);
minContentContribution.emplace(s);
sz.mBase = std::max(sz.mBase, minContentContribution.value());
} else if (sz.mState & TrackSize::eMaxContentMinSizing) {
nscoord s = MaxContentContribution(aGridItem, rs, rc, wm, mAxis);
maxContentContribution.emplace(s);
sz.mBase = std::max(sz.mBase, maxContentContribution.value());
}
// max sizing
if (sz.mState & TrackSize::eMinContentMaxSizing) {
if (minContentContribution.isNothing()) {
nscoord s = MinContentContribution(aGridItem, rs, rc, wm, mAxis);
minContentContribution.emplace(s);
}
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = minContentContribution.value();
} else {
sz.mLimit = std::max(sz.mLimit, minContentContribution.value());
}
} else if (sz.mState & (TrackSize::eAutoMaxSizing |
TrackSize::eMaxContentMaxSizing)) {
if (maxContentContribution.isNothing()) {
nscoord s = MaxContentContribution(aGridItem, rs, rc, wm, mAxis);
maxContentContribution.emplace(s);
}
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = maxContentContribution.value();
} else {
sz.mLimit = std::max(sz.mLimit, maxContentContribution.value());
}
}
if (sz.mLimit < sz.mBase) {
sz.mLimit = sz.mBase;
}
return sz.mState & TrackSize::eFlexMaxSizing;
}
void
nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
LineRange GridArea::* aRange,
nscoord aPercentageBasis,
IntrinsicISizeType aConstraint)
{
// Some data we collect on each item for Step 2 of the algorithm below.
struct Step2ItemData
{
uint32_t mSpan;
TrackSize::StateBits mState;
LineRange mLineRange;
nscoord mMinSize;
nscoord mMinContentContribution;
nscoord mMaxContentContribution;
nsIFrame* mFrame;
static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b)
{
return a.mSpan < b.mSpan;
}
};
// Resolve Intrinsic Track Sizes
// http://dev.w3.org/csswg/css-grid/#algo-content
// We're also setting mIsFlexing on the item here to speed up
// FindUsedFlexFraction later.
nsAutoTArray<TrackSize::StateBits, 16> stateBitsPerSpan;
nsTArray<Step2ItemData> step2Items;
GridItemCSSOrderIterator& iter = aState.mIter;
nsRenderingContext* rc = &aState.mRenderingContext;
WritingMode wm = aState.mWM;
uint32_t maxSpan = 0; // max span of the step2Items items
const TrackSize::StateBits flexMin =
aConstraint == nsLayoutUtils::MIN_ISIZE ? TrackSize::eFlexMinSizing
: TrackSize::StateBits(0);
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* child = *iter;
const GridArea& area = aGridItems[iter.GridItemIndex()].mArea;
const LineRange& lineRange = area.*aRange;
uint32_t span = lineRange.Extent();
if (span == 1) {
// Step 1. Size tracks to fit non-spanning items.
aGridItems[iter.GridItemIndex()].mIsFlexing[mAxis] =
ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis,
aConstraint, lineRange, child);
} else {
TrackSize::StateBits state = TrackSize::StateBits(0);
if (HasIntrinsicButNoFlexSizingInRange(lineRange, aConstraint, &state)) {
// Collect data for Step 2.
maxSpan = std::max(maxSpan, span);
if (span >= stateBitsPerSpan.Length()) {
uint32_t len = 2 * span;
stateBitsPerSpan.SetCapacity(len);
for (uint32_t i = stateBitsPerSpan.Length(); i < len; ++i) {
stateBitsPerSpan.AppendElement(TrackSize::StateBits(0));
}
}
stateBitsPerSpan[span] |= state;
nscoord minSize = 0;
if (state & (flexMin | TrackSize::eIntrinsicMinSizing)) { // for 2.1
minSize = MinSize(child, aState.mReflowState, rc, wm, mAxis);
}
nscoord minContent = 0;
if (state & (flexMin | TrackSize::eMinOrMaxContentMinSizing | // for 2.2
TrackSize::eIntrinsicMaxSizing)) { // for 2.5
minContent = MinContentContribution(child, aState.mReflowState,
rc, wm, mAxis);
}
nscoord maxContent = 0;
if (state & (TrackSize::eMaxContentMinSizing | // for 2.3
TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6
maxContent = MaxContentContribution(child, aState.mReflowState,
rc, wm, mAxis);
}
step2Items.AppendElement(
Step2ItemData({span, state, lineRange, minSize,
minContent, maxContent, child}));
} else {
aGridItems[iter.GridItemIndex()].mIsFlexing[mAxis] =
!!(state & TrackSize::eFlexMaxSizing);
}
}
}
// Step 2.
if (maxSpan) {
// Sort the collected items on span length, shortest first.
std::stable_sort(step2Items.begin(), step2Items.end(),
Step2ItemData::IsSpanLessThan);
nsTArray<uint32_t> tracks(maxSpan);
nsTArray<TrackSize> plan(mSizes.Length());
plan.SetLength(mSizes.Length());
for (uint32_t i = 0, len = step2Items.Length(); i < len; ) {
// Start / end index for items of the same span length:
const uint32_t spanGroupStartIndex = i;
uint32_t spanGroupEndIndex = len;
const uint32_t span = step2Items[i].mSpan;
for (++i; i < len; ++i) {
if (step2Items[i].mSpan != span) {
spanGroupEndIndex = i;
break;
}
}
bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3?
TrackSize::StateBits selector(flexMin | TrackSize::eIntrinsicMinSizing);
if (stateBitsPerSpan[span] & selector) {
// Step 2.1 MinSize to intrinsic min-sizing.
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
Step2ItemData& item = step2Items[i];
if (!(item.mState & selector)) {
continue;
}
nscoord space = item.mMinSize;
if (space <= 0) {
continue;
}
tracks.ClearAndRetainStorage();
space = CollectGrowable(space, mSizes, item.mLineRange, selector,
tracks);
if (space > 0) {
DistributeToTrackBases(space, plan, tracks, selector);
updatedBase = true;
}
}
}
selector = flexMin | TrackSize::eMinOrMaxContentMinSizing;
if (stateBitsPerSpan[span] & selector) {
// Step 2.2 MinContentContribution to min-/max-content min-sizing.
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
Step2ItemData& item = step2Items[i];
if (!(item.mState & selector)) {
continue;
}
nscoord space = item.mMinContentContribution;
if (space <= 0) {
continue;
}
tracks.ClearAndRetainStorage();
space = CollectGrowable(space, mSizes, item.mLineRange, selector,
tracks);
if (space > 0) {
DistributeToTrackBases(space, plan, tracks, selector);
updatedBase = true;
}
}
}
if (stateBitsPerSpan[span] & TrackSize::eMaxContentMinSizing) {
// Step 2.3 MaxContentContribution to max-content min-sizing.
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
Step2ItemData& item = step2Items[i];
if (!(item.mState & TrackSize::eMaxContentMinSizing)) {
continue;
}
nscoord space = item.mMaxContentContribution;
if (space <= 0) {
continue;
}
tracks.ClearAndRetainStorage();
space = CollectGrowable(space, mSizes, item.mLineRange,
TrackSize::eMaxContentMinSizing,
tracks);
if (space > 0) {
DistributeToTrackBases(space, plan, tracks,
TrackSize::eMaxContentMinSizing);
updatedBase = true;
}
}
}
if (updatedBase) {
// Step 2.4
for (TrackSize& sz : mSizes) {
if (sz.mBase > sz.mLimit) {
sz.mLimit = sz.mBase;
}
}
}
if (stateBitsPerSpan[span] & TrackSize::eIntrinsicMaxSizing) {
plan = mSizes;
for (TrackSize& sz : plan) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
// use mBase as the planned limit
} else {
sz.mBase = sz.mLimit;
}
}
// Step 2.5 MinContentContribution to intrinsic max-sizing.
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
Step2ItemData& item = step2Items[i];
if (!(item.mState & TrackSize::eIntrinsicMaxSizing)) {
continue;
}
nscoord space = item.mMinContentContribution;
if (space <= 0) {
continue;
}
tracks.ClearAndRetainStorage();
space = CollectGrowable(space, plan, item.mLineRange,
TrackSize::eIntrinsicMaxSizing,
tracks);
if (space > 0) {
DistributeToTrackLimits(space, plan, tracks);
}
}
for (size_t j = 0, len = mSizes.Length(); j < len; ++j) {
TrackSize& sz = plan[j];
sz.mState &= ~(TrackSize::eFrozen | TrackSize::eSkipGrowUnlimited);
if (sz.mLimit != NS_UNCONSTRAINEDSIZE) {
sz.mLimit = sz.mBase; // collect the results from 2.5
}
}
if (stateBitsPerSpan[span] & TrackSize::eAutoOrMaxContentMaxSizing) {
// Step 2.6 MaxContentContribution to max-content max-sizing.
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
Step2ItemData& item = step2Items[i];
if (!(item.mState & TrackSize::eAutoOrMaxContentMaxSizing)) {
continue;
}
nscoord space = item.mMaxContentContribution;
if (space <= 0) {
continue;
}
tracks.ClearAndRetainStorage();
space = CollectGrowable(space, plan, item.mLineRange,
TrackSize::eAutoOrMaxContentMaxSizing,
tracks);
if (space > 0) {
DistributeToTrackLimits(space, plan, tracks);
}
}
}
}
}
}
// Step 3.
for (TrackSize& sz : mSizes) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = sz.mBase;
}
}
}
float
nsGridContainerFrame::Tracks::FindFrUnitSize(
const LineRange& aRange,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aSpaceToFill) const
{
MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
float flexFactorSum = 0.0f;
nscoord leftOverSpace = aSpaceToFill;
for (uint32_t i = aRange.mStart, end = aRange.mEnd; i < end; ++i) {
const TrackSize& sz = mSizes[i];
if (sz.mState & TrackSize::eFlexMaxSizing) {
flexFactorSum += aFunctions.MaxSizingFor(i).GetFlexFractionValue();
} else {
leftOverSpace -= sz.mBase;
if (leftOverSpace <= 0) {
return 0.0f;
}
}
}
bool restart;
float hypotheticalFrSize;
nsTArray<uint32_t> flexTracks(aFlexTracks);
uint32_t numFlexTracks = flexTracks.Length();
do {
restart = false;
hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
uint32_t track = flexTracks[i];
if (track == kAutoLine) {
continue; // Track marked as inflexible in a prev. iter of this loop.
}
float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
const nscoord base = mSizes[track].mBase;
if (flexFactor * hypotheticalFrSize < base) {
// 12.7.1.4: Treat this track as inflexible.
flexTracks[i] = kAutoLine;
flexFactorSum -= flexFactor;
leftOverSpace -= base;
--numFlexTracks;
if (numFlexTracks == 0 || leftOverSpace <= 0) {
return 0.0f;
}
restart = true;
// break; XXX (bug 1176621 comment 16) measure which is more common
}
}
} while (restart);
return hypotheticalFrSize;
}
float
nsGridContainerFrame::Tracks::FindUsedFlexFraction(
GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize) const
{
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
// Use all of the grid tracks and a 'space to fill' of the available space.
const TranslatedLineRange range(0, mSizes.Length());
return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
}
// The used flex fraction is the maximum of:
// ... each flexible track's base size divided by its flex factor
float fr = 0.0f;
for (uint32_t track : aFlexTracks) {
float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
if (flexFactor > 0.0f) {
fr = std::max(fr, mSizes[track].mBase / flexFactor);
}
}
WritingMode wm = aState.mWM;
nsRenderingContext* rc = &aState.mRenderingContext;
const nsHTMLReflowState* rs = aState.mReflowState;
GridItemCSSOrderIterator& iter = aState.mIter;
iter.Reset();
// ... the result of 'finding the size of an fr' for each item that spans
// a flex track with its max-content contribution as 'space to fill'
for (; !iter.AtEnd(); iter.Next()) {
const GridItemInfo& item = aGridItems[iter.GridItemIndex()];
if (item.mIsFlexing[mAxis]) {
nscoord spaceToFill = MaxContentContribution(*iter, rs, rc, wm, mAxis);
if (spaceToFill <= 0) {
continue;
}
// ... and all its spanned tracks as input.
const LineRange& range =
mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows;
nsTArray<uint32_t> itemFlexTracks;
for (uint32_t i = range.mStart, end = range.mEnd; i < end; ++i) {
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
itemFlexTracks.AppendElement(i);
}
}
float itemFr =
FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
fr = std::max(fr, itemFr);
}
}
return fr;
}
void
nsGridContainerFrame::Tracks::StretchFlexibleTracks(
GridReflowState& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize)
{
if (aAvailableSize <= 0) {
return;
}
nsTArray<uint32_t> flexTracks(mSizes.Length());
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
flexTracks.AppendElement(i);
}
}
if (flexTracks.IsEmpty()) {
return;
}
float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks,
aFunctions, aAvailableSize);
if (fr != 0.0f) {
for (uint32_t i : flexTracks) {
float flexFactor = aFunctions.MaxSizingFor(i).GetFlexFractionValue();
nscoord flexLength = NSToCoordRound(flexFactor * fr);
nscoord& base = mSizes[i].mBase;
if (flexLength > base) {
base = flexLength;
}
}
}
}
void
nsGridContainerFrame::Tracks::AlignJustifyContent(
const nsHTMLReflowState& aReflowState,
const LogicalSize& aContainerSize)
{
if (mSizes.IsEmpty()) {
return;
}
const bool isAlign = mAxis == eLogicalAxisBlock;
auto stylePos = aReflowState.mStylePosition;
const auto valueAndFallback = isAlign ?
stylePos->ComputedAlignContent() :
stylePos->ComputedJustifyContent(aReflowState.mStyleDisplay);
WritingMode wm = aReflowState.GetWritingMode();
bool overflowSafe;
auto alignment = ::GetAlignJustifyValue(valueAndFallback, wm, isAlign,
&overflowSafe);
if (alignment == NS_STYLE_ALIGN_AUTO) {
alignment = NS_STYLE_ALIGN_START;
}
// Compute the free space and count auto-sized tracks.
size_t numAutoTracks = 0;
nscoord space;
if (alignment != NS_STYLE_ALIGN_START) {
nscoord trackSizeSum = 0;
for (const TrackSize& sz : mSizes) {
trackSizeSum += sz.mBase;
if (sz.mState & TrackSize::eAutoMaxSizing) {
++numAutoTracks;
}
}
nscoord cbSize = isAlign ? aContainerSize.BSize(wm)
: aContainerSize.ISize(wm);
space = cbSize - trackSizeSum - SumOfGridGaps();
// Use the fallback value instead when applicable.
if (space < 0 ||
(alignment == NS_STYLE_ALIGN_SPACE_BETWEEN && mSizes.Length() == 1)) {
auto fallback = ::GetAlignJustifyFallbackIfAny(valueAndFallback, wm,
isAlign, &overflowSafe);
if (fallback) {
alignment = fallback;
}
}
if (space == 0 || (space < 0 && overflowSafe)) {
// XXX check that this makes sense also for [last-]baseline (bug 1151204).
alignment = NS_STYLE_ALIGN_START;
}
}
// Optimize the cases where we just need to set each track's position.
nscoord pos = 0;
bool distribute = true;
switch (alignment) {
case NS_STYLE_ALIGN_BASELINE:
case NS_STYLE_ALIGN_LAST_BASELINE:
NS_WARNING("'NYI: baseline/last-baseline' (bug 1151204)"); // XXX
case NS_STYLE_ALIGN_START:
distribute = false;
break;
case NS_STYLE_ALIGN_END:
pos = space;
distribute = false;
break;
case NS_STYLE_ALIGN_CENTER:
pos = space / 2;
distribute = false;
break;
case NS_STYLE_ALIGN_STRETCH:
distribute = numAutoTracks != 0;
break;
}
if (!distribute) {
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
pos += sz.mBase + mGridGap;
}
return;
}
// Distribute free space to/between tracks and set their position.
MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
nscoord between, roundingError;
switch (alignment) {
case NS_STYLE_ALIGN_STRETCH: {
MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
nscoord spacePerTrack;
roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
pos += sz.mBase + mGridGap;
continue;
}
nscoord stretch = spacePerTrack;
if (roundingError) {
roundingError -= 1;
stretch += 1;
}
nscoord newBase = sz.mBase + stretch;
sz.mBase = newBase;
pos += newBase + mGridGap;
}
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
return;
}
case NS_STYLE_ALIGN_SPACE_BETWEEN:
MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
break;
case NS_STYLE_ALIGN_SPACE_AROUND:
roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
pos = between / 2;
break;
case NS_STYLE_ALIGN_SPACE_EVENLY:
roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
pos = between;
break;
default:
MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
between = 0; // just to avoid a compiler warning
}
between += mGridGap;
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
nscoord spacing = between;
if (roundingError) {
roundingError -= 1;
spacing += 1;
}
pos += sz.mBase + spacing;
}
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
}
void
nsGridContainerFrame::LineRange::ToPositionAndLength(
const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos, nscoord* aLength) const
{
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
"expected a definite LineRange");
MOZ_ASSERT(mStart < mEnd);
nscoord startPos = aTrackSizes[mStart].mPosition;
const TrackSize& sz = aTrackSizes[mEnd - 1];
*aPos = startPos;
*aLength = (sz.mPosition + sz.mBase) - startPos;
}
nscoord
nsGridContainerFrame::LineRange::ToLength(
const nsTArray<TrackSize>& aTrackSizes) const
{
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
"expected a definite LineRange");
MOZ_ASSERT(mStart < mEnd);
nscoord startPos = aTrackSizes[mStart].mPosition;
const TrackSize& sz = aTrackSizes[mEnd - 1];
return (sz.mPosition + sz.mBase) - startPos;
}
void
nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
const nsTArray<TrackSize>& aTrackSizes, nscoord aGridOrigin,
nscoord* aPos, nscoord* aLength) const
{
// kAutoLine for abspos children contributes the corresponding edge
// of the grid container's padding-box.
if (mEnd == kAutoLine) {
if (mStart == kAutoLine) {
// done
} else {
const nscoord endPos = *aPos + *aLength;
nscoord startPos =
::GridLineEdge(mStart, aTrackSizes, GridLineSide::eAfterGridGap);
*aPos = aGridOrigin + startPos;
*aLength = std::max(endPos - *aPos, 0);
}
} else {
if (mStart == kAutoLine) {
nscoord endPos =
::GridLineEdge(mEnd, aTrackSizes, GridLineSide::eBeforeGridGap);
*aLength = std::max(aGridOrigin + endPos, 0);
} else {
nscoord pos;
ToPositionAndLength(aTrackSizes, &pos, aLength);
*aPos = aGridOrigin + pos;
}
}
}
LogicalRect
nsGridContainerFrame::ContainingBlockFor(const GridReflowState& aState,
const GridArea& aArea) const
{
nscoord i, b, iSize, bSize;
MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
aArea.mCols.ToPositionAndLength(aState.mCols.mSizes, &i, &iSize);
aArea.mRows.ToPositionAndLength(aState.mRows.mSizes, &b, &bSize);
return LogicalRect(aState.mWM, i, b, iSize, bSize);
}
LogicalRect
nsGridContainerFrame::ContainingBlockForAbsPos(const GridReflowState& aState,
const GridArea& aArea,
const LogicalPoint& aGridOrigin,
const LogicalRect& aGridCB) const
{
const WritingMode& wm = aState.mWM;
nscoord i = aGridCB.IStart(wm);
nscoord b = aGridCB.BStart(wm);
nscoord iSize = aGridCB.ISize(wm);
nscoord bSize = aGridCB.BSize(wm);
aArea.mCols.ToPositionAndLengthForAbsPos(aState.mCols.mSizes,
aGridOrigin.I(wm),
&i, &iSize);
aArea.mRows.ToPositionAndLengthForAbsPos(aState.mRows.mSizes,
aGridOrigin.B(wm),
&b, &bSize);
return LogicalRect(wm, i, b, iSize, bSize);
}
void
nsGridContainerFrame::ReflowChildren(GridReflowState& aState,
const LogicalRect& aContentArea,
nsHTMLReflowMetrics& aDesiredSize,
nsReflowStatus& aStatus)
{
MOZ_ASSERT(aState.mReflowState);
WritingMode wm = aState.mReflowState->GetWritingMode();
const LogicalPoint gridOrigin(aContentArea.Origin(wm));
const nsSize containerSize =
(aContentArea.Size(wm) +
aState.mReflowState->ComputedLogicalBorderPadding().Size(wm)).GetPhysicalSize(wm);
nsPresContext* pc = PresContext();
nsStyleContext* containerSC = StyleContext();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
nsIFrame* child = *aState.mIter;
const bool isGridItem = child->GetType() != nsGkAtoms::placeholderFrame;
LogicalRect cb(wm);
if (MOZ_LIKELY(isGridItem)) {
MOZ_ASSERT(mGridItems[aState.mIter.GridItemIndex()].mFrame == child,
"iterator out of sync with mGridItems");
GridArea& area = mGridItems[aState.mIter.GridItemIndex()].mArea;
MOZ_ASSERT(area.IsDefinite());
cb = ContainingBlockFor(aState, area);
cb += gridOrigin;
} else {
cb = aContentArea;
}
WritingMode childWM = child->GetWritingMode();
LogicalSize childCBSize = cb.Size(wm).ConvertTo(childWM, wm);
LogicalSize percentBasis(childCBSize);
// XXX temporary workaround to avoid being INCOMPLETE until we have
// support for fragmentation (bug 1144096)
childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
Maybe<nsHTMLReflowState> childRS; // Maybe<> so we can reuse the space
childRS.emplace(pc, *aState.mReflowState, child, childCBSize, &percentBasis);
// We need the width of the child before we can correctly convert
// the writing-mode of its origin, so we reflow at (0, 0) using a dummy
// containerSize, and then pass the correct position to FinishReflowChild.
Maybe<nsHTMLReflowMetrics> childSize; // Maybe<> so we can reuse the space
childSize.emplace(*childRS);
nsReflowStatus childStatus;
const nsSize dummyContainerSize;
ReflowChild(child, pc, *childSize, *childRS, childWM, LogicalPoint(childWM),
dummyContainerSize, 0, childStatus);
LogicalPoint childPos =
cb.Origin(wm).ConvertTo(childWM, wm,
containerSize - childSize->PhysicalSize());
// Apply align/justify-self and reflow again if that affects the size.
if (isGridItem) {
LogicalSize oldSize = childSize->Size(childWM); // from the ReflowChild()
LogicalSize newContentSize(childWM);
auto align = childRS->mStylePosition->ComputedAlignSelf(
childRS->mStyleDisplay, containerSC);
Maybe<LogicalAxis> alignResize =
AlignSelf(align, cb, wm, *childRS, oldSize, &newContentSize, &childPos);
auto justify = childRS->mStylePosition->ComputedJustifySelf(
childRS->mStyleDisplay, containerSC);
Maybe<LogicalAxis> justifyResize =
JustifySelf(justify, cb, wm, *childRS, oldSize, &newContentSize, &childPos);
if (alignResize || justifyResize) {
FinishReflowChild(child, pc, *childSize, childRS.ptr(), childWM,
LogicalPoint(childWM), containerSize,
NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW);
childSize.reset(); // In reverse declaration order since it runs
childRS.reset(); // destructors.
childRS.emplace(pc, *aState.mReflowState, child, childCBSize, &percentBasis);
if ((alignResize && alignResize.value() == eLogicalAxisBlock) ||
(justifyResize && justifyResize.value() == eLogicalAxisBlock)) {
childRS->SetComputedBSize(newContentSize.BSize(childWM));
childRS->SetBResize(true);
}
if ((alignResize && alignResize.value() == eLogicalAxisInline) ||
(justifyResize && justifyResize.value() == eLogicalAxisInline)) {
childRS->SetComputedISize(newContentSize.ISize(childWM));
childRS->SetIResize(true);
}
childSize.emplace(*childRS);
ReflowChild(child, pc, *childSize, *childRS, childWM,
LogicalPoint(childWM), dummyContainerSize, 0, childStatus);
}
}
childRS->ApplyRelativePositioning(&childPos, containerSize);
FinishReflowChild(child, pc, *childSize, childRS.ptr(), childWM, childPos,
containerSize, 0);
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, child);
// XXX deal with 'childStatus' not being COMPLETE (bug 1144096)
}
if (IsAbsoluteContainer()) {
nsFrameList children(GetChildList(GetAbsoluteListID()));
if (!children.IsEmpty()) {
LogicalMargin pad(aState.mReflowState->ComputedLogicalPadding());
pad.ApplySkipSides(GetLogicalSkipSides(aState.mReflowState));
// 'gridOrigin' is the origin of the grid (the start of the first track),
// with respect to the grid container's padding-box (CB).
const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
const LogicalRect gridCB(wm, 0, 0,
aContentArea.ISize(wm) + pad.IStartEnd(wm),
aContentArea.BSize(wm) + pad.BStartEnd(wm));
const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
size_t i = 0;
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
nsIFrame* child = e.get();
MOZ_ASSERT(i < mAbsPosItems.Length());
MOZ_ASSERT(mAbsPosItems[i].mFrame == child);
GridArea& area = mAbsPosItems[i].mArea;
LogicalRect itemCB =
ContainingBlockForAbsPos(aState, area, gridOrigin, gridCB);
// nsAbsoluteContainingBlock::Reflow uses physical coordinates.
nsRect* cb = static_cast<nsRect*>(child->Properties().Get(
GridItemContainingBlockRect()));
if (!cb) {
cb = new nsRect;
child->Properties().Set(GridItemContainingBlockRect(), cb);
}
*cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
}
// This rect isn't used at all for layout so we use it to optimize
// away the virtual GetType() call in the callee in most cases.
// @see nsAbsoluteContainingBlock::Reflow
nsRect dummyRect(0, 0, VERY_LIKELY_A_GRID_CONTAINER, 0);
GetAbsoluteContainingBlock()->Reflow(this, pc, *aState.mReflowState,
aStatus, dummyRect, true,
true, true, // XXX could be optimized
&aDesiredSize.mOverflowAreas);
}
}
}
void
nsGridContainerFrame::Reflow(nsPresContext* aPresContext,
nsHTMLReflowMetrics& aDesiredSize,
const nsHTMLReflowState& aReflowState,
nsReflowStatus& aStatus)
{
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus);
if (IsFrameTreeTooDeep(aReflowState, aDesiredSize, aStatus)) {
return;
}
#ifdef DEBUG
SanityCheckAnonymousGridItems();
#endif // DEBUG
LogicalMargin bp = aReflowState.ComputedLogicalBorderPadding();
bp.ApplySkipSides(GetLogicalSkipSides());
const nsStylePosition* stylePos = aReflowState.mStylePosition;
InitImplicitNamedAreas(stylePos);
GridReflowState gridReflowState(this, aReflowState);
mIsNormalFlowInCSSOrder = gridReflowState.mIter.ItemsAreAlreadyInOrder();
PlaceGridItems(gridReflowState);
const nscoord computedBSize = aReflowState.ComputedBSize();
const nscoord computedISize = aReflowState.ComputedISize();
const WritingMode& wm = gridReflowState.mWM;
gridReflowState.mIter.Reset();
CalculateTrackSizes(gridReflowState,
LogicalSize(wm, computedISize, computedBSize),
nsLayoutUtils::PREF_ISIZE);
// FIXME bug 1229180: Instead of doing this on every reflow, we should only
// set these properties if they are needed.
nsTArray<nscoord> colTrackSizes(gridReflowState.mCols.mSizes.Length());
for (const TrackSize& sz : gridReflowState.mCols.mSizes) {
colTrackSizes.AppendElement(sz.mBase);
}
Properties().Set(GridColTrackSizes(),
new nsTArray<nscoord>(mozilla::Move(colTrackSizes)));
nsTArray<nscoord> rowTrackSizes(gridReflowState.mRows.mSizes.Length());
for (const TrackSize& sz : gridReflowState.mRows.mSizes) {
rowTrackSizes.AppendElement(sz.mBase);
}
Properties().Set(GridRowTrackSizes(),
new nsTArray<nscoord>(mozilla::Move(rowTrackSizes)));
nscoord bSize = 0;
if (computedBSize == NS_AUTOHEIGHT) {
for (uint32_t i = 0; i < mGridRowEnd; ++i) {
bSize += gridReflowState.mRows.mSizes[i].mBase;
}
bSize += gridReflowState.mRows.SumOfGridGaps();
bSize = NS_CSS_MINMAX(bSize,
aReflowState.ComputedMinBSize(),
aReflowState.ComputedMaxBSize());
} else {
bSize = computedBSize;
}
bSize = std::max(bSize - GetConsumedBSize(), 0);
LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
bSize + bp.BStartEnd(wm));
aDesiredSize.SetSize(wm, desiredSize);
aDesiredSize.SetOverflowAreasToDesiredBounds();
LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm),
computedISize, bSize);
// Apply 'align/justify-content' to the grid.
gridReflowState.mCols.AlignJustifyContent(aReflowState, contentArea.Size(wm));
gridReflowState.mRows.AlignJustifyContent(aReflowState, contentArea.Size(wm));
gridReflowState.mIter.Reset(GridItemCSSOrderIterator::eIncludeAll);
ReflowChildren(gridReflowState, contentArea, aDesiredSize, aStatus);
FinishAndStoreOverflow(&aDesiredSize);
aStatus = NS_FRAME_COMPLETE;
NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize);
}
nscoord
nsGridContainerFrame::IntrinsicISize(nsRenderingContext* aRenderingContext,
IntrinsicISizeType aConstraint)
{
// Calculate the sum of column sizes under aConstraint.
// http://dev.w3.org/csswg/css-grid/#intrinsic-sizes
GridReflowState state(this, *aRenderingContext);
InitImplicitNamedAreas(state.mGridStyle); // XXX optimize
PlaceGridItems(state); // XXX optimize
if (mGridColEnd == 0) {
return 0;
}
state.mCols.Initialize(state.mColFunctions, state.mGridStyle->mGridColumnGap,
mGridColEnd, NS_UNCONSTRAINEDSIZE);
state.mIter.Reset();
state.mCols.CalculateSizes(state, mGridItems, state.mColFunctions,
NS_UNCONSTRAINEDSIZE, &GridArea::mCols,
aConstraint);
nscoord length = 0;
for (const TrackSize& sz : state.mCols.mSizes) {
length += sz.mBase;
}
return length + state.mCols.SumOfGridGaps();
}
nscoord
nsGridContainerFrame::GetMinISize(nsRenderingContext* aRC)
{
DISPLAY_MIN_WIDTH(this, mCachedMinISize);
if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
mCachedMinISize = IntrinsicISize(aRC, nsLayoutUtils::MIN_ISIZE);
}
return mCachedMinISize;
}
nscoord
nsGridContainerFrame::GetPrefISize(nsRenderingContext* aRC)
{
DISPLAY_PREF_WIDTH(this, mCachedPrefISize);
if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
mCachedPrefISize = IntrinsicISize(aRC, nsLayoutUtils::PREF_ISIZE);
}
return mCachedPrefISize;
}
void
nsGridContainerFrame::MarkIntrinsicISizesDirty()
{
mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN;
mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN;
nsContainerFrame::MarkIntrinsicISizesDirty();
}
nsIAtom*
nsGridContainerFrame::GetType() const
{
return nsGkAtoms::gridContainerFrame;
}
void
nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsRect& aDirtyRect,
const nsDisplayListSet& aLists)
{
DisplayBorderBackgroundOutline(aBuilder, aLists);
// Our children are all grid-level boxes, which behave the same as
// inline-blocks in painting, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
// Also, we capture positioned descendants so we can sort them by
// CSS 'order'.
nsDisplayList positionedDescendants;
nsDisplayListSet childLists(aLists.BlockBorderBackgrounds(),
aLists.BlockBorderBackgrounds(),
aLists.Floats(),
aLists.Content(),
&positionedDescendants,
aLists.Outlines());
typedef GridItemCSSOrderIterator::OrderState OrderState;
OrderState order = mIsNormalFlowInCSSOrder ? OrderState::eKnownOrdered
: OrderState::eKnownUnordered;
GridItemCSSOrderIterator iter(this, kPrincipalList,
GridItemCSSOrderIterator::eIncludeAll, order);
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* child = *iter;
BuildDisplayListForChild(aBuilder, child, aDirtyRect, childLists,
::GetDisplayFlagsForGridItem(child));
}
positionedDescendants.SortByCSSOrder(aBuilder);
aLists.PositionedDescendants()->AppendToTop(&positionedDescendants);
}
#ifdef DEBUG_FRAME_DUMP
nsresult
nsGridContainerFrame::GetFrameName(nsAString& aResult) const
{
return MakeFrameName(NS_LITERAL_STRING("GridContainer"), aResult);
}
#endif
void
nsGridContainerFrame::CellMap::Fill(const GridArea& aGridArea)
{
MOZ_ASSERT(aGridArea.IsDefinite());
MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
const auto numRows = aGridArea.mRows.mEnd;
const auto numCols = aGridArea.mCols.mEnd;
mCells.EnsureLengthAtLeast(numRows);
for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
nsTArray<Cell>& cellsInRow = mCells[i];
cellsInRow.EnsureLengthAtLeast(numCols);
for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
cellsInRow[j].mIsOccupied = true;
}
}
}
void
nsGridContainerFrame::CellMap::ClearOccupied()
{
const size_t numRows = mCells.Length();
for (size_t i = 0; i < numRows; ++i) {
nsTArray<Cell>& cellsInRow = mCells[i];
const size_t numCols = cellsInRow.Length();
for (size_t j = 0; j < numCols; ++j) {
cellsInRow[j].mIsOccupied = false;
}
}
}
#ifdef DEBUG
void
nsGridContainerFrame::CellMap::Dump() const
{
const size_t numRows = mCells.Length();
for (size_t i = 0; i < numRows; ++i) {
const nsTArray<Cell>& cellsInRow = mCells[i];
const size_t numCols = cellsInRow.Length();
printf("%lu:\t", (unsigned long)i + 1);
for (size_t j = 0; j < numCols; ++j) {
printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
}
printf("\n");
}
}
static bool
FrameWantsToBeInAnonymousGridItem(nsIFrame* aFrame)
{
// Note: This needs to match the logic in
// nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexOrGridItem()
return aFrame->IsFrameOfType(nsIFrame::eLineParticipant);
}
// Debugging method, to let us assert that our anonymous grid items are
// set up correctly -- in particular, we assert:
// (1) we don't have any inline non-replaced children
// (2) we don't have any consecutive anonymous grid items
// (3) we don't have any empty anonymous grid items
// (4) all children are on the expected child lists
void
nsGridContainerFrame::SanityCheckAnonymousGridItems() const
{
// XXX handle kOverflowContainersList / kExcessOverflowContainersList
// when we implement fragmentation?
ChildListIDs noCheckLists = kAbsoluteList | kFixedList;
ChildListIDs checkLists = kPrincipalList | kOverflowList;
for (nsIFrame::ChildListIterator childLists(this);
!childLists.IsDone(); childLists.Next()) {
if (!checkLists.Contains(childLists.CurrentID())) {
MOZ_ASSERT(noCheckLists.Contains(childLists.CurrentID()),
"unexpected non-empty child list");
continue;
}
bool prevChildWasAnonGridItem = false;
nsFrameList children = childLists.CurrentList();
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next()) {
nsIFrame* child = e.get();
MOZ_ASSERT(!FrameWantsToBeInAnonymousGridItem(child),
"frame wants to be inside an anonymous grid item, "
"but it isn't");
if (child->StyleContext()->GetPseudo() ==
nsCSSAnonBoxes::anonymousGridItem) {
/*
XXX haven't decided yet whether to reorder children or not.
XXX If we do, we want this assertion instead of the one below.
MOZ_ASSERT(!prevChildWasAnonGridItem ||
HasAnyStateBits(NS_STATE_GRID_CHILDREN_REORDERED),
"two anon grid items in a row (shouldn't happen, unless our "
"children have been reordered with the 'order' property)");
*/
MOZ_ASSERT(!prevChildWasAnonGridItem, "two anon grid items in a row");
nsIFrame* firstWrappedChild = child->GetFirstPrincipalChild();
MOZ_ASSERT(firstWrappedChild,
"anonymous grid item is empty (shouldn't happen)");
prevChildWasAnonGridItem = true;
} else {
prevChildWasAnonGridItem = false;
}
}
}
}
void
nsGridContainerFrame::TrackSize::Dump() const
{
printf("mBase=%d mLimit=%d", mBase, mLimit);
printf(" min:");
if (mState & eAutoMinSizing) {
printf("auto ");
} else if (mState & eMinContentMinSizing) {
printf("min-content ");
} else if (mState & eMaxContentMinSizing) {
printf("max-content ");
} else if (mState & eFlexMinSizing) {
printf("flex ");
}
printf(" max:");
if (mState & eAutoMaxSizing) {
printf("auto ");
} else if (mState & eMinContentMaxSizing) {
printf("min-content ");
} else if (mState & eMaxContentMaxSizing) {
printf("max-content ");
} else if (mState & eFlexMaxSizing) {
printf("flex ");
}
if (mState & eFrozen) {
printf("frozen ");
}
}
#endif // DEBUG