tenfourfox/media/pocketsphinx/src/bin_mdef.c
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

888 lines
28 KiB
C

/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 2005 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/*********************************************************************
*
* File: bin_mdef.c
*
* Description:
* Binary format model definition files, with support for
* heterogeneous topologies and variable-size N-phones
*
* Author:
* David Huggins-Daines <dhuggins@cs.cmu.edu>
*********************************************************************/
/* System headers. */
#include <stdio.h>
#include <string.h>
#include <assert.h>
/* SphinxBase headers. */
#include <sphinxbase/prim_type.h>
#include <sphinxbase/ckd_alloc.h>
#include <sphinxbase/byteorder.h>
#include <sphinxbase/case.h>
#include <sphinxbase/err.h>
/* Local headers. */
#include "mdef.h"
#include "bin_mdef.h"
bin_mdef_t *
bin_mdef_read_text(cmd_ln_t *config, const char *filename)
{
bin_mdef_t *bmdef;
mdef_t *mdef;
int i, nodes, ci_idx, lc_idx, rc_idx;
int nchars;
if ((mdef = mdef_init((char *) filename, TRUE)) == NULL)
return NULL;
/* Enforce some limits. */
if (mdef->n_sen > BAD_SENID) {
E_ERROR("Number of senones exceeds limit: %d > %d\n",
mdef->n_sen, BAD_SENID);
mdef_free(mdef);
return NULL;
}
if (mdef->n_sseq > BAD_SSID) {
E_ERROR("Number of senone sequences exceeds limit: %d > %d\n",
mdef->n_sseq, BAD_SSID);
mdef_free(mdef);
return NULL;
}
/* We use uint8 for ciphones */
if (mdef->n_ciphone > 255) {
E_ERROR("Number of phones exceeds limit: %d > %d\n",
mdef->n_ciphone, 255);
mdef_free(mdef);
return NULL;
}
bmdef = ckd_calloc(1, sizeof(*bmdef));
bmdef->refcnt = 1;
/* Easy stuff. The mdef.c code has done the heavy lifting for us. */
bmdef->n_ciphone = mdef->n_ciphone;
bmdef->n_phone = mdef->n_phone;
bmdef->n_emit_state = mdef->n_emit_state;
bmdef->n_ci_sen = mdef->n_ci_sen;
bmdef->n_sen = mdef->n_sen;
bmdef->n_tmat = mdef->n_tmat;
bmdef->n_sseq = mdef->n_sseq;
bmdef->sseq = mdef->sseq;
bmdef->cd2cisen = mdef->cd2cisen;
bmdef->sen2cimap = mdef->sen2cimap;
bmdef->n_ctx = 3; /* Triphones only. */
bmdef->sil = mdef->sil;
mdef->sseq = NULL; /* We are taking over this one. */
mdef->cd2cisen = NULL; /* And this one. */
mdef->sen2cimap = NULL; /* And this one. */
/* Get the phone names. If they are not sorted
* ASCII-betically then we are in a world of hurt and
* therefore will simply refuse to continue. */
bmdef->ciname = ckd_calloc(bmdef->n_ciphone, sizeof(*bmdef->ciname));
nchars = 0;
for (i = 0; i < bmdef->n_ciphone; ++i)
nchars += strlen(mdef->ciphone[i].name) + 1;
bmdef->ciname[0] = ckd_calloc(nchars, 1);
strcpy(bmdef->ciname[0], mdef->ciphone[0].name);
for (i = 1; i < bmdef->n_ciphone; ++i) {
bmdef->ciname[i] =
bmdef->ciname[i - 1] + strlen(bmdef->ciname[i - 1]) + 1;
strcpy(bmdef->ciname[i], mdef->ciphone[i].name);
if (i > 0 && strcmp(bmdef->ciname[i - 1], bmdef->ciname[i]) > 0) {
/* FIXME: there should be a solution to this, actually. */
E_ERROR("Phone names are not in sorted order, sorry.");
bin_mdef_free(bmdef);
return NULL;
}
}
/* Copy over phone information. */
bmdef->phone = ckd_calloc(bmdef->n_phone, sizeof(*bmdef->phone));
for (i = 0; i < mdef->n_phone; ++i) {
bmdef->phone[i].ssid = mdef->phone[i].ssid;
bmdef->phone[i].tmat = mdef->phone[i].tmat;
if (i < bmdef->n_ciphone) {
bmdef->phone[i].info.ci.filler = mdef->ciphone[i].filler;
}
else {
bmdef->phone[i].info.cd.wpos = mdef->phone[i].wpos;
bmdef->phone[i].info.cd.ctx[0] = mdef->phone[i].ci;
bmdef->phone[i].info.cd.ctx[1] = mdef->phone[i].lc;
bmdef->phone[i].info.cd.ctx[2] = mdef->phone[i].rc;
}
}
/* Walk the wpos_ci_lclist once to find the total number of
* nodes and the starting locations for each level. */
nodes = lc_idx = ci_idx = rc_idx = 0;
for (i = 0; i < N_WORD_POSN; ++i) {
int j;
for (j = 0; j < mdef->n_ciphone; ++j) {
ph_lc_t *lc;
for (lc = mdef->wpos_ci_lclist[i][j]; lc; lc = lc->next) {
ph_rc_t *rc;
for (rc = lc->rclist; rc; rc = rc->next) {
++nodes; /* RC node */
}
++nodes; /* LC node */
++rc_idx; /* Start of RC nodes (after LC nodes) */
}
++nodes; /* CI node */
++lc_idx; /* Start of LC nodes (after CI nodes) */
++rc_idx; /* Start of RC nodes (after CI and LC nodes) */
}
++nodes; /* wpos node */
++ci_idx; /* Start of CI nodes (after wpos nodes) */
++lc_idx; /* Start of LC nodes (after CI nodes) */
++rc_idx; /* STart of RC nodes (after wpos, CI, and LC nodes) */
}
E_INFO("Allocating %d * %d bytes (%d KiB) for CD tree\n",
nodes, sizeof(*bmdef->cd_tree),
nodes * sizeof(*bmdef->cd_tree) / 1024);
bmdef->n_cd_tree = nodes;
bmdef->cd_tree = ckd_calloc(nodes, sizeof(*bmdef->cd_tree));
for (i = 0; i < N_WORD_POSN; ++i) {
int j;
bmdef->cd_tree[i].ctx = i;
bmdef->cd_tree[i].n_down = mdef->n_ciphone;
bmdef->cd_tree[i].c.down = ci_idx;
#if 0
E_INFO("%d => %c (%d@%d)\n",
i, (WPOS_NAME)[i],
bmdef->cd_tree[i].n_down, bmdef->cd_tree[i].c.down);
#endif
/* Now we can build the rest of the tree. */
for (j = 0; j < mdef->n_ciphone; ++j) {
ph_lc_t *lc;
bmdef->cd_tree[ci_idx].ctx = j;
bmdef->cd_tree[ci_idx].c.down = lc_idx;
for (lc = mdef->wpos_ci_lclist[i][j]; lc; lc = lc->next) {
ph_rc_t *rc;
bmdef->cd_tree[lc_idx].ctx = lc->lc;
bmdef->cd_tree[lc_idx].c.down = rc_idx;
for (rc = lc->rclist; rc; rc = rc->next) {
bmdef->cd_tree[rc_idx].ctx = rc->rc;
bmdef->cd_tree[rc_idx].n_down = 0;
bmdef->cd_tree[rc_idx].c.pid = rc->pid;
#if 0
E_INFO("%d => %s %s %s %c (%d@%d)\n",
rc_idx,
bmdef->ciname[j],
bmdef->ciname[lc->lc],
bmdef->ciname[rc->rc],
(WPOS_NAME)[i],
bmdef->cd_tree[rc_idx].n_down,
bmdef->cd_tree[rc_idx].c.down);
#endif
++bmdef->cd_tree[lc_idx].n_down;
++rc_idx;
}
/* If there are no triphones here,
* this is considered a leafnode, so
* set the pid to -1. */
if (bmdef->cd_tree[lc_idx].n_down == 0)
bmdef->cd_tree[lc_idx].c.pid = -1;
#if 0
E_INFO("%d => %s %s %c (%d@%d)\n",
lc_idx,
bmdef->ciname[j],
bmdef->ciname[lc->lc],
(WPOS_NAME)[i],
bmdef->cd_tree[lc_idx].n_down,
bmdef->cd_tree[lc_idx].c.down);
#endif
++bmdef->cd_tree[ci_idx].n_down;
++lc_idx;
}
/* As above, so below. */
if (bmdef->cd_tree[ci_idx].n_down == 0)
bmdef->cd_tree[ci_idx].c.pid = -1;
#if 0
E_INFO("%d => %d=%s (%d@%d)\n",
ci_idx, j, bmdef->ciname[j],
bmdef->cd_tree[ci_idx].n_down,
bmdef->cd_tree[ci_idx].c.down);
#endif
++ci_idx;
}
}
mdef_free(mdef);
bmdef->alloc_mode = BIN_MDEF_FROM_TEXT;
return bmdef;
}
bin_mdef_t *
bin_mdef_retain(bin_mdef_t *m)
{
++m->refcnt;
return m;
}
int
bin_mdef_free(bin_mdef_t * m)
{
if (m == NULL)
return 0;
if (--m->refcnt > 0)
return m->refcnt;
switch (m->alloc_mode) {
case BIN_MDEF_FROM_TEXT:
ckd_free(m->ciname[0]);
ckd_free(m->sseq[0]);
ckd_free(m->phone);
ckd_free(m->cd_tree);
break;
case BIN_MDEF_IN_MEMORY:
ckd_free(m->ciname[0]);
break;
case BIN_MDEF_ON_DISK:
break;
}
if (m->filemap)
mmio_file_unmap(m->filemap);
ckd_free(m->cd2cisen);
ckd_free(m->sen2cimap);
ckd_free(m->ciname);
ckd_free(m->sseq);
ckd_free(m);
return 0;
}
static const char format_desc[] =
"BEGIN FILE FORMAT DESCRIPTION\n"
"int32 n_ciphone; /**< Number of base (CI) phones */\n"
"int32 n_phone; /**< Number of base (CI) phones + (CD) triphones */\n"
"int32 n_emit_state; /**< Number of emitting states per phone (0 if heterogeneous) */\n"
"int32 n_ci_sen; /**< Number of CI senones; these are the first */\n"
"int32 n_sen; /**< Number of senones (CI+CD) */\n"
"int32 n_tmat; /**< Number of transition matrices */\n"
"int32 n_sseq; /**< Number of unique senone sequences */\n"
"int32 n_ctx; /**< Number of phones of context */\n"
"int32 n_cd_tree; /**< Number of nodes in CD tree structure */\n"
"int32 sil; /**< CI phone ID for silence */\n"
"char ciphones[][]; /**< CI phone strings (null-terminated) */\n"
"char padding[]; /**< Padding to a 4-bytes boundary */\n"
"struct { int16 ctx; int16 n_down; int32 pid/down } cd_tree[];\n"
"struct { int32 ssid; int32 tmat; int8 attr[4] } phones[];\n"
"int16 sseq[]; /**< Unique senone sequences */\n"
"int8 sseq_len[]; /**< Number of states in each sseq (none if homogeneous) */\n"
"END FILE FORMAT DESCRIPTION\n";
bin_mdef_t *
bin_mdef_read(cmd_ln_t *config, const char *filename)
{
bin_mdef_t *m;
FILE *fh;
size_t tree_start;
int32 val, i, do_mmap, swap;
long pos, end;
int32 *sseq_size;
/* Try to read it as text first. */
if ((m = bin_mdef_read_text(config, filename)) != NULL)
return m;
E_INFO("Reading binary model definition: %s\n", filename);
if ((fh = fopen(filename, "rb")) == NULL)
return NULL;
if (fread(&val, 4, 1, fh) != 1) {
fclose(fh);
E_ERROR_SYSTEM("Failed to read byte-order marker from %s\n",
filename);
return NULL;
}
swap = 0;
if (val == BIN_MDEF_OTHER_ENDIAN) {
swap = 1;
E_INFO("Must byte-swap %s\n", filename);
}
if (fread(&val, 4, 1, fh) != 1) {
fclose(fh);
E_ERROR_SYSTEM("Failed to read version from %s\n", filename);
return NULL;
}
if (swap)
SWAP_INT32(&val);
if (val > BIN_MDEF_FORMAT_VERSION) {
E_ERROR("File format version %d for %s is newer than library\n",
val, filename);
fclose(fh);
return NULL;
}
if (fread(&val, 4, 1, fh) != 1) {
fclose(fh);
E_ERROR_SYSTEM("Failed to read header length from %s\n", filename);
return NULL;
}
if (swap)
SWAP_INT32(&val);
/* Skip format descriptor. */
fseek(fh, val, SEEK_CUR);
/* Finally allocate it. */
m = ckd_calloc(1, sizeof(*m));
m->refcnt = 1;
/* Check these, to make gcc/glibc shut up. */
#define FREAD_SWAP32_CHK(dest) \
if (fread((dest), 4, 1, fh) != 1) { \
fclose(fh); \
ckd_free(m); \
E_ERROR_SYSTEM("Failed to read %s from %s\n", #dest, filename); \
return NULL; \
} \
if (swap) SWAP_INT32(dest);
FREAD_SWAP32_CHK(&m->n_ciphone);
FREAD_SWAP32_CHK(&m->n_phone);
FREAD_SWAP32_CHK(&m->n_emit_state);
FREAD_SWAP32_CHK(&m->n_ci_sen);
FREAD_SWAP32_CHK(&m->n_sen);
FREAD_SWAP32_CHK(&m->n_tmat);
FREAD_SWAP32_CHK(&m->n_sseq);
FREAD_SWAP32_CHK(&m->n_ctx);
FREAD_SWAP32_CHK(&m->n_cd_tree);
FREAD_SWAP32_CHK(&m->sil);
/* CI names are first in the file. */
m->ciname = ckd_calloc(m->n_ciphone, sizeof(*m->ciname));
/* Decide whether to read in the whole file or mmap it. */
do_mmap = config ? cmd_ln_boolean_r(config, "-mmap") : TRUE;
if (swap) {
E_WARN("-mmap specified, but mdef is other-endian. Will not memory-map.\n");
do_mmap = FALSE;
}
/* Actually try to mmap it. */
if (do_mmap) {
m->filemap = mmio_file_read(filename);
if (m->filemap == NULL)
do_mmap = FALSE;
}
pos = ftell(fh);
if (do_mmap) {
/* Get the base pointer from the memory map. */
m->ciname[0] = (char *)mmio_file_ptr(m->filemap) + pos;
/* Success! */
m->alloc_mode = BIN_MDEF_ON_DISK;
}
else {
/* Read everything into memory. */
m->alloc_mode = BIN_MDEF_IN_MEMORY;
fseek(fh, 0, SEEK_END);
end = ftell(fh);
fseek(fh, pos, SEEK_SET);
m->ciname[0] = ckd_malloc(end - pos);
if (fread(m->ciname[0], 1, end - pos, fh) != end - pos)
E_FATAL("Failed to read %d bytes of data from %s\n", end - pos, filename);
}
for (i = 1; i < m->n_ciphone; ++i)
m->ciname[i] = m->ciname[i - 1] + strlen(m->ciname[i - 1]) + 1;
/* Skip past the padding. */
tree_start =
m->ciname[i - 1] + strlen(m->ciname[i - 1]) + 1 - m->ciname[0];
tree_start = (tree_start + 3) & ~3;
m->cd_tree = (cd_tree_t *) (m->ciname[0] + tree_start);
if (swap) {
for (i = 0; i < m->n_cd_tree; ++i) {
SWAP_INT16(&m->cd_tree[i].ctx);
SWAP_INT16(&m->cd_tree[i].n_down);
SWAP_INT32(&m->cd_tree[i].c.down);
}
}
m->phone = (mdef_entry_t *) (m->cd_tree + m->n_cd_tree);
if (swap) {
for (i = 0; i < m->n_phone; ++i) {
SWAP_INT32(&m->phone[i].ssid);
SWAP_INT32(&m->phone[i].tmat);
}
}
sseq_size = (int32 *) (m->phone + m->n_phone);
if (swap)
SWAP_INT32(sseq_size);
m->sseq = ckd_calloc(m->n_sseq, sizeof(*m->sseq));
m->sseq[0] = (uint16 *) (sseq_size + 1);
if (swap) {
for (i = 0; i < *sseq_size; ++i)
SWAP_INT16(m->sseq[0] + i);
}
if (m->n_emit_state) {
for (i = 1; i < m->n_sseq; ++i)
m->sseq[i] = m->sseq[0] + i * m->n_emit_state;
}
else {
m->sseq_len = (uint8 *) (m->sseq[0] + *sseq_size);
for (i = 1; i < m->n_sseq; ++i)
m->sseq[i] = m->sseq[i - 1] + m->sseq_len[i - 1];
}
/* Now build the CD-to-CI mappings using the senone sequences.
* This is the only really accurate way to do it, though it is
* still inaccurate in the case of heterogeneous topologies or
* cross-state tying. */
m->cd2cisen = (int16 *) ckd_malloc(m->n_sen * sizeof(*m->cd2cisen));
m->sen2cimap = (int16 *) ckd_malloc(m->n_sen * sizeof(*m->sen2cimap));
/* Default mappings (identity, none) */
for (i = 0; i < m->n_ci_sen; ++i)
m->cd2cisen[i] = i;
for (; i < m->n_sen; ++i)
m->cd2cisen[i] = -1;
for (i = 0; i < m->n_sen; ++i)
m->sen2cimap[i] = -1;
for (i = 0; i < m->n_phone; ++i) {
int32 j, ssid = m->phone[i].ssid;
for (j = 0; j < bin_mdef_n_emit_state_phone(m, i); ++j) {
int s = bin_mdef_sseq2sen(m, ssid, j);
int ci = bin_mdef_pid2ci(m, i);
/* Take the first one and warn if we have cross-state tying. */
if (m->sen2cimap[s] == -1)
m->sen2cimap[s] = ci;
if (m->sen2cimap[s] != ci)
E_WARN
("Senone %d is shared between multiple base phones\n",
s);
if (j > bin_mdef_n_emit_state_phone(m, ci))
E_WARN("CD phone %d has fewer states than CI phone %d\n",
i, ci);
else
m->cd2cisen[s] =
bin_mdef_sseq2sen(m, m->phone[ci].ssid, j);
}
}
/* Set the silence phone. */
m->sil = bin_mdef_ciphone_id(m, S3_SILENCE_CIPHONE);
E_INFO
("%d CI-phone, %d CD-phone, %d emitstate/phone, %d CI-sen, %d Sen, %d Sen-Seq\n",
m->n_ciphone, m->n_phone - m->n_ciphone, m->n_emit_state,
m->n_ci_sen, m->n_sen, m->n_sseq);
fclose(fh);
return m;
}
int
bin_mdef_write(bin_mdef_t * m, const char *filename)
{
FILE *fh;
int32 val, i;
if ((fh = fopen(filename, "wb")) == NULL)
return -1;
/* Byteorder marker. */
val = BIN_MDEF_NATIVE_ENDIAN;
fwrite(&val, 1, 4, fh);
/* Version. */
val = BIN_MDEF_FORMAT_VERSION;
fwrite(&val, 1, sizeof(val), fh);
/* Round the format descriptor size up to a 4-byte boundary. */
val = ((sizeof(format_desc) + 3) & ~3);
fwrite(&val, 1, sizeof(val), fh);
fwrite(format_desc, 1, sizeof(format_desc), fh);
/* Pad it with zeros. */
i = 0;
fwrite(&i, 1, val - sizeof(format_desc), fh);
/* Binary header things. */
fwrite(&m->n_ciphone, 4, 1, fh);
fwrite(&m->n_phone, 4, 1, fh);
fwrite(&m->n_emit_state, 4, 1, fh);
fwrite(&m->n_ci_sen, 4, 1, fh);
fwrite(&m->n_sen, 4, 1, fh);
fwrite(&m->n_tmat, 4, 1, fh);
fwrite(&m->n_sseq, 4, 1, fh);
fwrite(&m->n_ctx, 4, 1, fh);
fwrite(&m->n_cd_tree, 4, 1, fh);
/* Write this as a 32-bit value to preserve alignment for the
* non-mmap case (we want things aligned both from the
* beginning of the file and the beginning of the phone
* strings). */
val = m->sil;
fwrite(&val, 4, 1, fh);
/* Phone strings. */
for (i = 0; i < m->n_ciphone; ++i)
fwrite(m->ciname[i], 1, strlen(m->ciname[i]) + 1, fh);
/* Pad with zeros. */
val = (ftell(fh) + 3) & ~3;
i = 0;
fwrite(&i, 1, val - ftell(fh), fh);
/* Write CD-tree */
fwrite(m->cd_tree, sizeof(*m->cd_tree), m->n_cd_tree, fh);
/* Write phones */
fwrite(m->phone, sizeof(*m->phone), m->n_phone, fh);
if (m->n_emit_state) {
/* Write size of sseq */
val = m->n_sseq * m->n_emit_state;
fwrite(&val, 4, 1, fh);
/* Write sseq */
fwrite(m->sseq[0], sizeof(**m->sseq),
m->n_sseq * m->n_emit_state, fh);
}
else {
int32 n;
/* Calcluate size of sseq */
n = 0;
for (i = 0; i < m->n_sseq; ++i)
n += m->sseq_len[i];
/* Write size of sseq */
fwrite(&n, 4, 1, fh);
/* Write sseq */
fwrite(m->sseq[0], sizeof(**m->sseq), n, fh);
/* Write sseq_len */
fwrite(m->sseq_len, 1, m->n_sseq, fh);
}
fclose(fh);
return 0;
}
int
bin_mdef_write_text(bin_mdef_t * m, const char *filename)
{
FILE *fh;
int p, i, n_total_state;
if (strcmp(filename, "-") == 0)
fh = stdout;
else {
if ((fh = fopen(filename, "w")) == NULL)
return -1;
}
fprintf(fh, "0.3\n");
fprintf(fh, "%d n_base\n", m->n_ciphone);
fprintf(fh, "%d n_tri\n", m->n_phone - m->n_ciphone);
if (m->n_emit_state)
n_total_state = m->n_phone * (m->n_emit_state + 1);
else {
n_total_state = 0;
for (i = 0; i < m->n_phone; ++i)
n_total_state += m->sseq_len[m->phone[i].ssid] + 1;
}
fprintf(fh, "%d n_state_map\n", n_total_state);
fprintf(fh, "%d n_tied_state\n", m->n_sen);
fprintf(fh, "%d n_tied_ci_state\n", m->n_ci_sen);
fprintf(fh, "%d n_tied_tmat\n", m->n_tmat);
fprintf(fh, "#\n# Columns definitions\n");
fprintf(fh, "#%4s %3s %3s %1s %6s %4s %s\n",
"base", "lft", "rt", "p", "attrib", "tmat",
" ... state id's ...");
for (p = 0; p < m->n_ciphone; p++) {
int n_state;
fprintf(fh, "%5s %3s %3s %1s", m->ciname[p], "-", "-", "-");
if (bin_mdef_is_fillerphone(m, p))
fprintf(fh, " %6s", "filler");
else
fprintf(fh, " %6s", "n/a");
fprintf(fh, " %4d", m->phone[p].tmat);
if (m->n_emit_state)
n_state = m->n_emit_state;
else
n_state = m->sseq_len[m->phone[p].ssid];
for (i = 0; i < n_state; i++) {
fprintf(fh, " %6u", m->sseq[m->phone[p].ssid][i]);
}
fprintf(fh, " N\n");
}
for (; p < m->n_phone; p++) {
int n_state;
fprintf(fh, "%5s %3s %3s %c",
m->ciname[m->phone[p].info.cd.ctx[0]],
m->ciname[m->phone[p].info.cd.ctx[1]],
m->ciname[m->phone[p].info.cd.ctx[2]],
(WPOS_NAME)[m->phone[p].info.cd.wpos]);
if (bin_mdef_is_fillerphone(m, p))
fprintf(fh, " %6s", "filler");
else
fprintf(fh, " %6s", "n/a");
fprintf(fh, " %4d", m->phone[p].tmat);
if (m->n_emit_state)
n_state = m->n_emit_state;
else
n_state = m->sseq_len[m->phone[p].ssid];
for (i = 0; i < n_state; i++) {
fprintf(fh, " %6u", m->sseq[m->phone[p].ssid][i]);
}
fprintf(fh, " N\n");
}
if (strcmp(filename, "-") != 0)
fclose(fh);
return 0;
}
int
bin_mdef_ciphone_id(bin_mdef_t * m, const char *ciphone)
{
int low, mid, high;
/* Exact binary search on m->ciphone */
low = 0;
high = m->n_ciphone;
while (low < high) {
int c;
mid = (low + high) / 2;
c = strcmp(ciphone, m->ciname[mid]);
if (c == 0)
return mid;
else if (c > 0)
low = mid + 1;
else if (c < 0)
high = mid;
}
return -1;
}
int
bin_mdef_ciphone_id_nocase(bin_mdef_t * m, const char *ciphone)
{
int low, mid, high;
/* Exact binary search on m->ciphone */
low = 0;
high = m->n_ciphone;
while (low < high) {
int c;
mid = (low + high) / 2;
c = strcmp_nocase(ciphone, m->ciname[mid]);
if (c == 0)
return mid;
else if (c > 0)
low = mid + 1;
else if (c < 0)
high = mid;
}
return -1;
}
const char *
bin_mdef_ciphone_str(bin_mdef_t * m, int32 ci)
{
assert(m != NULL);
assert(ci < m->n_ciphone);
return m->ciname[ci];
}
int
bin_mdef_phone_id(bin_mdef_t * m, int32 ci, int32 lc, int32 rc, int32 wpos)
{
cd_tree_t *cd_tree;
int level, max;
int16 ctx[4];
assert(m);
/* In the future, we might back off when context is not available,
* but for now we'll just return the CI phone. */
if (lc < 0 || rc < 0)
return ci;
assert((ci >= 0) && (ci < m->n_ciphone));
assert((lc >= 0) && (lc < m->n_ciphone));
assert((rc >= 0) && (rc < m->n_ciphone));
assert((wpos >= 0) && (wpos < N_WORD_POSN));
/* Create a context list, mapping fillers to silence. */
ctx[0] = wpos;
ctx[1] = ci;
ctx[2] = (m->sil >= 0
&& m->phone[lc].info.ci.filler) ? m->sil : lc;
ctx[3] = (m->sil >= 0
&& m->phone[rc].info.ci.filler) ? m->sil : rc;
/* Walk down the cd_tree. */
cd_tree = m->cd_tree;
level = 0; /* What level we are on. */
max = N_WORD_POSN; /* Number of nodes on this level. */
while (level < 4) {
int i;
#if 0
E_INFO("Looking for context %d=%s in %d at %d\n",
ctx[level], m->ciname[ctx[level]],
max, cd_tree - m->cd_tree);
#endif
for (i = 0; i < max; ++i) {
#if 0
E_INFO("Look at context %d=%s at %d\n",
cd_tree[i].ctx,
m->ciname[cd_tree[i].ctx], cd_tree + i - m->cd_tree);
#endif
if (cd_tree[i].ctx == ctx[level])
break;
}
if (i == max)
return -1;
#if 0
E_INFO("Found context %d=%s at %d, n_down=%d, down=%d\n",
ctx[level], m->ciname[ctx[level]],
cd_tree + i - m->cd_tree,
cd_tree[i].n_down, cd_tree[i].c.down);
#endif
/* Leaf node, stop here. */
if (cd_tree[i].n_down == 0)
return cd_tree[i].c.pid;
/* Go down one level. */
max = cd_tree[i].n_down;
cd_tree = m->cd_tree + cd_tree[i].c.down;
++level;
}
/* We probably shouldn't get here. */
return -1;
}
int
bin_mdef_phone_id_nearest(bin_mdef_t * m, int32 b, int32 l, int32 r, int32 pos)
{
int p, tmppos;
/* In the future, we might back off when context is not available,
* but for now we'll just return the CI phone. */
if (l < 0 || r < 0)
return b;
p = bin_mdef_phone_id(m, b, l, r, pos);
if (p >= 0)
return p;
/* Exact triphone not found; backoff to other word positions */
for (tmppos = 0; tmppos < N_WORD_POSN; tmppos++) {
if (tmppos != pos) {
p = bin_mdef_phone_id(m, b, l, r, tmppos);
if (p >= 0)
return p;
}
}
/* Nothing yet; backoff to silence phone if non-silence filler context */
/* In addition, backoff to silence phone on left/right if in beginning/end position */
if (m->sil >= 0) {
int newl = l, newr = r;
if (m->phone[(int)l].info.ci.filler
|| pos == WORD_POSN_BEGIN || pos == WORD_POSN_SINGLE)
newl = m->sil;
if (m->phone[(int)r].info.ci.filler
|| pos == WORD_POSN_END || pos == WORD_POSN_SINGLE)
newr = m->sil;
if ((newl != l) || (newr != r)) {
p = bin_mdef_phone_id(m, b, newl, newr, pos);
if (p >= 0)
return p;
for (tmppos = 0; tmppos < N_WORD_POSN; tmppos++) {
if (tmppos != pos) {
p = bin_mdef_phone_id(m, b, newl, newr, tmppos);
if (p >= 0)
return p;
}
}
}
}
/* Nothing yet; backoff to base phone */
return b;
}
int
bin_mdef_phone_str(bin_mdef_t * m, int pid, char *buf)
{
char *wpos_name;
assert(m);
assert((pid >= 0) && (pid < m->n_phone));
wpos_name = WPOS_NAME;
buf[0] = '\0';
if (pid < m->n_ciphone)
sprintf(buf, "%s", bin_mdef_ciphone_str(m, pid));
else {
sprintf(buf, "%s %s %s %c",
bin_mdef_ciphone_str(m, m->phone[pid].info.cd.ctx[0]),
bin_mdef_ciphone_str(m, m->phone[pid].info.cd.ctx[1]),
bin_mdef_ciphone_str(m, m->phone[pid].info.cd.ctx[2]),
wpos_name[m->phone[pid].info.cd.wpos]);
}
return 0;
}