tenfourfox/xpcom/tests/TestTimers.cpp

492 lines
12 KiB
C++

/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "TestHarness.h"
#include "nsIThread.h"
#include "nsITimer.h"
#include "nsCOMPtr.h"
#include "nsComponentManagerUtils.h"
#include "nsServiceManagerUtils.h"
#include "nsThreadUtils.h"
#include "prinrval.h"
#include "prmon.h"
#include "prthread.h"
#include "mozilla/Attributes.h"
#include "mozilla/ReentrantMonitor.h"
#include <list>
#include <vector>
#include <stdio.h>
using namespace mozilla;
typedef nsresult(*TestFuncPtr)();
class AutoTestThread
{
public:
AutoTestThread() {
nsCOMPtr<nsIThread> newThread;
nsresult rv = NS_NewThread(getter_AddRefs(newThread));
if (NS_FAILED(rv))
return;
newThread.swap(mThread);
}
~AutoTestThread() {
mThread->Shutdown();
}
operator nsIThread*() const {
return mThread;
}
nsIThread* operator->() const MOZ_NO_ADDREF_RELEASE_ON_RETURN {
return mThread;
}
private:
nsCOMPtr<nsIThread> mThread;
};
class AutoCreateAndDestroyReentrantMonitor
{
public:
AutoCreateAndDestroyReentrantMonitor() {
mReentrantMonitor = new ReentrantMonitor("TestTimers::AutoMon");
MOZ_ASSERT(mReentrantMonitor, "Out of memory!");
}
~AutoCreateAndDestroyReentrantMonitor() {
delete mReentrantMonitor;
}
operator ReentrantMonitor* () {
return mReentrantMonitor;
}
private:
ReentrantMonitor* mReentrantMonitor;
};
class TimerCallback final : public nsITimerCallback
{
public:
NS_DECL_THREADSAFE_ISUPPORTS
TimerCallback(nsIThread** aThreadPtr, ReentrantMonitor* aReentrantMonitor)
: mThreadPtr(aThreadPtr), mReentrantMonitor(aReentrantMonitor) { }
NS_IMETHOD Notify(nsITimer* aTimer) override {
MOZ_ASSERT(mThreadPtr, "Callback was not supposed to be called!");
nsCOMPtr<nsIThread> current(do_GetCurrentThread());
ReentrantMonitorAutoEnter mon(*mReentrantMonitor);
MOZ_ASSERT(!*mThreadPtr, "Timer called back more than once!");
*mThreadPtr = current;
mon.Notify();
return NS_OK;
}
private:
~TimerCallback() {}
nsIThread** mThreadPtr;
ReentrantMonitor* mReentrantMonitor;
};
NS_IMPL_ISUPPORTS(TimerCallback, nsITimerCallback)
nsresult
TestTargetedTimers()
{
AutoCreateAndDestroyReentrantMonitor newMon;
NS_ENSURE_TRUE(newMon, NS_ERROR_OUT_OF_MEMORY);
AutoTestThread testThread;
NS_ENSURE_TRUE(testThread, NS_ERROR_OUT_OF_MEMORY);
nsresult rv;
nsCOMPtr<nsITimer> timer = do_CreateInstance(NS_TIMER_CONTRACTID, &rv);
NS_ENSURE_SUCCESS(rv, rv);
nsIEventTarget* target = static_cast<nsIEventTarget*>(testThread);
rv = timer->SetTarget(target);
NS_ENSURE_SUCCESS(rv, rv);
nsIThread* notifiedThread = nullptr;
nsCOMPtr<nsITimerCallback> callback =
new TimerCallback(&notifiedThread, newMon);
NS_ENSURE_TRUE(callback, NS_ERROR_OUT_OF_MEMORY);
rv = timer->InitWithCallback(callback, 2000, nsITimer::TYPE_ONE_SHOT);
NS_ENSURE_SUCCESS(rv, rv);
ReentrantMonitorAutoEnter mon(*newMon);
while (!notifiedThread) {
mon.Wait();
}
NS_ENSURE_TRUE(notifiedThread == testThread, NS_ERROR_FAILURE);
return NS_OK;
}
nsresult
TestTimerWithStoppedTarget()
{
AutoTestThread testThread;
NS_ENSURE_TRUE(testThread, NS_ERROR_OUT_OF_MEMORY);
nsresult rv;
nsCOMPtr<nsITimer> timer = do_CreateInstance(NS_TIMER_CONTRACTID, &rv);
NS_ENSURE_SUCCESS(rv, rv);
nsIEventTarget* target = static_cast<nsIEventTarget*>(testThread);
rv = timer->SetTarget(target);
NS_ENSURE_SUCCESS(rv, rv);
// If this is called, we'll assert
nsCOMPtr<nsITimerCallback> callback =
new TimerCallback(nullptr, nullptr);
NS_ENSURE_TRUE(callback, NS_ERROR_OUT_OF_MEMORY);
rv = timer->InitWithCallback(callback, 100, nsITimer::TYPE_ONE_SHOT);
NS_ENSURE_SUCCESS(rv, rv);
testThread->Shutdown();
PR_Sleep(400);
return NS_OK;
}
#define FUZZ_MAX_TIMEOUT 9
class FuzzTestThreadState final : public nsITimerCallback {
public:
NS_DECL_THREADSAFE_ISUPPORTS
explicit FuzzTestThreadState(nsIThread* thread) :
mThread(thread),
mStopped(false)
{}
class StartRunnable final : public nsRunnable {
public:
explicit StartRunnable(FuzzTestThreadState* threadState) :
mThreadState(threadState)
{}
NS_IMETHOD Run() override
{
mThreadState->ScheduleOrCancelTimers();
return NS_OK;
}
private:
RefPtr<FuzzTestThreadState> mThreadState;
};
void Start()
{
nsCOMPtr<nsIRunnable> runnable = new StartRunnable(this);
nsresult rv = mThread->Dispatch(runnable, NS_DISPATCH_NORMAL);
if (NS_FAILED(rv)) {
MOZ_ASSERT(false, "Failed to dispatch StartRunnable.");
}
}
void Stop()
{
mStopped = true;
}
NS_IMETHOD Notify(nsITimer* aTimer) override
{
bool onCorrectThread;
nsresult rv = mThread->IsOnCurrentThread(&onCorrectThread);
MOZ_ASSERT(NS_SUCCEEDED(rv), "Failed to perform thread check.");
MOZ_ASSERT(onCorrectThread, "Notify invoked on wrong thread.");
uint32_t delay;
rv = aTimer->GetDelay(&delay);
if (NS_FAILED(rv)) {
MOZ_ASSERT(false, "GetDelay failed.");
return rv;
}
if (delay > FUZZ_MAX_TIMEOUT) {
MOZ_ASSERT(false, "Delay was an invalid value for this test.");
return NS_ERROR_FAILURE;
}
uint32_t type;
rv = aTimer->GetType(&type);
MOZ_ASSERT(NS_SUCCEEDED(rv), "Failed to get timer type.");
MOZ_ASSERT(type <= nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP);
if (type == nsITimer::TYPE_ONE_SHOT) {
if (mOneShotTimersByDelay[delay].empty()) {
MOZ_ASSERT(false, "Unexpected one-shot timer.");
return NS_ERROR_FAILURE;
}
if (mOneShotTimersByDelay[delay].front().get() != aTimer) {
MOZ_ASSERT(false,
"One-shot timers for a given duration have been reordered.");
return NS_ERROR_FAILURE;
}
mOneShotTimersByDelay[delay].pop_front();
--mTimersOutstanding;
} else if (mStopped) {
CancelRepeatingTimer(aTimer);
}
ScheduleOrCancelTimers();
RescheduleSomeTimers();
return NS_OK;
}
bool HasTimersOutstanding() const
{
return !!mTimersOutstanding;
}
private:
~FuzzTestThreadState()
{
for (size_t i = 0; i <= FUZZ_MAX_TIMEOUT; ++i) {
MOZ_ASSERT(mOneShotTimersByDelay[i].empty(),
"Timers remain at end of test.");
}
}
uint32_t GetRandomType() const
{
return rand() % (nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP + 1);
}
size_t CountOneShotTimers() const
{
size_t count = 0;
for (size_t i = 0; i <= FUZZ_MAX_TIMEOUT; ++i) {
count += mOneShotTimersByDelay[i].size();
}
return count;
}
void ScheduleOrCancelTimers()
{
if (mStopped) {
return;
}
const size_t numTimersDesired = (rand() % 100) + 100;
MOZ_ASSERT(numTimersDesired >= 100);
MOZ_ASSERT(numTimersDesired < 200);
int adjustment = numTimersDesired - mTimersOutstanding;
while (adjustment > 0) {
CreateRandomTimer();
--adjustment;
}
while (adjustment < 0) {
CancelRandomTimer();
++adjustment;
}
MOZ_ASSERT(numTimersDesired == mTimersOutstanding);
}
void RescheduleSomeTimers()
{
if (mStopped) {
return;
}
static const size_t kNumRescheduled = 40;
// Reschedule some timers with a Cancel first.
for (size_t i = 0; i < kNumRescheduled; ++i) {
InitRandomTimer(CancelRandomTimer().get());
}
// Reschedule some timers without a Cancel first.
for (size_t i = 0; i < kNumRescheduled; ++i) {
InitRandomTimer(RemoveRandomTimer().get());
}
}
void CreateRandomTimer()
{
nsresult rv;
nsCOMPtr<nsITimer> timer = do_CreateInstance(NS_TIMER_CONTRACTID, &rv);
if (NS_FAILED(rv)) {
MOZ_ASSERT(false, "Failed to create timer.");
return;
}
rv = timer->SetTarget(static_cast<nsIEventTarget*>(mThread.get()));
if (NS_FAILED(rv)) {
MOZ_ASSERT(false, "Failed to set target.");
return;
}
InitRandomTimer(timer.get());
}
nsCOMPtr<nsITimer> CancelRandomTimer()
{
nsCOMPtr<nsITimer> timer(RemoveRandomTimer());
timer->Cancel();
return timer;
}
nsCOMPtr<nsITimer> RemoveRandomTimer()
{
MOZ_ASSERT(mTimersOutstanding);
if ((GetRandomType() == nsITimer::TYPE_ONE_SHOT && CountOneShotTimers())
|| mRepeatingTimers.empty()) {
uint32_t delayToRemove = rand() % (FUZZ_MAX_TIMEOUT + 1);
while (mOneShotTimersByDelay[delayToRemove].empty()) {
// ++delayToRemove mod FUZZ_MAX_TIMEOUT + 1
delayToRemove = (delayToRemove + 1) % (FUZZ_MAX_TIMEOUT + 1);
}
uint32_t indexToRemove =
rand() % mOneShotTimersByDelay[delayToRemove].size();
for (auto it = mOneShotTimersByDelay[delayToRemove].begin();
it != mOneShotTimersByDelay[delayToRemove].end();
++it) {
if (indexToRemove) {
--indexToRemove;
continue;
}
nsCOMPtr<nsITimer> removed = *it;
mOneShotTimersByDelay[delayToRemove].erase(it);
--mTimersOutstanding;
return removed;
}
} else {
size_t indexToRemove = rand() % mRepeatingTimers.size();
nsCOMPtr<nsITimer> removed(mRepeatingTimers[indexToRemove]);
mRepeatingTimers.erase(mRepeatingTimers.begin() + indexToRemove);
--mTimersOutstanding;
return removed;
}
MOZ_ASSERT_UNREACHABLE("Unable to remove a timer");
return nullptr;
}
void InitRandomTimer(nsITimer* aTimer)
{
// Between 0 and FUZZ_MAX_TIMEOUT
uint32_t delay = rand() % (FUZZ_MAX_TIMEOUT + 1);
uint32_t type = GetRandomType();
nsresult rv = aTimer->InitWithCallback(this, delay, type);
if (NS_FAILED(rv)) {
MOZ_ASSERT(false, "Failed to set timer.");
return;
}
if (type == nsITimer::TYPE_ONE_SHOT) {
mOneShotTimersByDelay[delay].push_back(aTimer);
} else {
mRepeatingTimers.push_back(aTimer);
}
++mTimersOutstanding;
}
void CancelRepeatingTimer(nsITimer* aTimer)
{
for (auto it = mRepeatingTimers.begin();
it != mRepeatingTimers.end();
++it) {
if (it->get() == aTimer) {
mRepeatingTimers.erase(it);
aTimer->Cancel();
--mTimersOutstanding;
return;
}
}
}
nsCOMPtr<nsIThread> mThread;
// Scheduled timers, indexed by delay between 0-9 ms, in lists
// with most recently scheduled last.
std::list<nsCOMPtr<nsITimer>> mOneShotTimersByDelay[FUZZ_MAX_TIMEOUT + 1];
std::vector<nsCOMPtr<nsITimer>> mRepeatingTimers;
Atomic<bool> mStopped;
Atomic<size_t> mTimersOutstanding;
};
NS_IMPL_ISUPPORTS(FuzzTestThreadState, nsITimerCallback)
nsresult
FuzzTestTimers()
{
static const size_t kNumThreads(10);
AutoTestThread threads[kNumThreads];
RefPtr<FuzzTestThreadState> threadStates[kNumThreads];
for (size_t i = 0; i < kNumThreads; ++i) {
threadStates[i] = new FuzzTestThreadState(&*threads[i]);
threadStates[i]->Start();
}
PR_Sleep(PR_MillisecondsToInterval(20000));
for (size_t i = 0; i < kNumThreads; ++i) {
threadStates[i]->Stop();
}
// Wait at most 10 seconds for all outstanding timers to pop
PRIntervalTime start = PR_IntervalNow();
for (auto& threadState : threadStates) {
while (threadState->HasTimersOutstanding()) {
if (PR_IntervalToMilliseconds(PR_IntervalNow() - start) > 10000) {
MOZ_ASSERT(false, "Timed out waiting for all timers to pop");
return NS_ERROR_FAILURE;
}
PR_Sleep(PR_MillisecondsToInterval(10));
}
}
return NS_OK;
}
int main(int argc, char** argv)
{
ScopedXPCOM xpcom("TestTimers");
NS_ENSURE_FALSE(xpcom.failed(), 1);
static TestFuncPtr testsToRun[] = {
TestTargetedTimers,
TestTimerWithStoppedTarget,
FuzzTestTimers
};
static uint32_t testCount = sizeof(testsToRun) / sizeof(testsToRun[0]);
for (uint32_t i = 0; i < testCount; i++) {
nsresult rv = testsToRun[i]();
NS_ENSURE_SUCCESS(rv, 1);
}
return 0;
}