tenfourfox/media/pocketsphinx/src/dict.c
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

740 lines
21 KiB
C

/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 1999-2004 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/* System headers. */
#include <string.h>
#include <limits.h> // We need this for LONG_MIN
/* SphinxBase headers. */
#include <sphinxbase/pio.h>
#include <sphinxbase/strfuncs.h>
/* Local headers. */
#include "dict.h"
#define DELIM " \t\n" /* Set of field separator characters */
#define DEFAULT_NUM_PHONE (MAX_S3CIPID+1)
#if WIN32
#define snprintf sprintf_s
#endif
extern const char *const cmu6_lts_phone_table[];
static s3cipid_t
dict_ciphone_id(dict_t * d, const char *str)
{
if (d->nocase)
return bin_mdef_ciphone_id_nocase(d->mdef, str);
else
return bin_mdef_ciphone_id(d->mdef, str);
}
const char *
dict_ciphone_str(dict_t * d, s3wid_t wid, int32 pos)
{
assert(d != NULL);
assert((wid >= 0) && (wid < d->n_word));
assert((pos >= 0) && (pos < d->word[wid].pronlen));
return bin_mdef_ciphone_str(d->mdef, d->word[wid].ciphone[pos]);
}
s3wid_t
dict_add_word(dict_t * d, char const *word, s3cipid_t const * p, int32 np)
{
int32 len;
dictword_t *wordp;
s3wid_t newwid;
char *wword;
if (d->n_word >= d->max_words) {
E_INFO("Reallocating to %d KiB for word entries\n",
(d->max_words + S3DICT_INC_SZ) * sizeof(dictword_t) / 1024);
d->word =
(dictword_t *) ckd_realloc(d->word,
(d->max_words +
S3DICT_INC_SZ) * sizeof(dictword_t));
d->max_words = d->max_words + S3DICT_INC_SZ;
}
wordp = d->word + d->n_word;
wordp->word = (char *) ckd_salloc(word); /* Freed in dict_free */
/* Determine base/alt wids */
wword = ckd_salloc(word);
if ((len = dict_word2basestr(wword)) > 0) {
int32 w;
/* Truncated to a baseword string; find its ID */
if (hash_table_lookup_int32(d->ht, wword, &w) < 0) {
E_ERROR("Missing base word for: %s\n", word);
ckd_free(wword);
ckd_free(wordp->word);
wordp->word = NULL;
return BAD_S3WID;
}
/* Link into alt list */
wordp->basewid = w;
wordp->alt = d->word[w].alt;
d->word[w].alt = d->n_word;
} else {
wordp->alt = BAD_S3WID;
wordp->basewid = d->n_word;
}
ckd_free(wword);
/* Associate word string with d->n_word in hash table */
if (hash_table_enter_int32(d->ht, wordp->word, d->n_word) != d->n_word) {
ckd_free(wordp->word);
wordp->word = NULL;
return BAD_S3WID;
}
/* Fill in word entry, and set defaults */
if (p && (np > 0)) {
wordp->ciphone = (s3cipid_t *) ckd_malloc(np * sizeof(s3cipid_t)); /* Freed in dict_free */
memcpy(wordp->ciphone, p, np * sizeof(s3cipid_t));
wordp->pronlen = np;
}
else {
wordp->ciphone = NULL;
wordp->pronlen = 0;
}
newwid = d->n_word++;
return newwid;
}
static int32
dict_read(FILE * fp, dict_t * d)
{
lineiter_t *li;
char **wptr;
s3cipid_t *p;
int32 lineno, nwd;
s3wid_t w;
int32 i, maxwd;
size_t stralloc, phnalloc;
maxwd = 512;
p = (s3cipid_t *) ckd_calloc(maxwd + 4, sizeof(*p));
wptr = (char **) ckd_calloc(maxwd, sizeof(char *)); /* Freed below */
lineno = 0;
stralloc = phnalloc = 0;
for (li = lineiter_start(fp); li; li = lineiter_next(li)) {
lineno++;
if (0 == strncmp(li->buf, "##", 2)
|| 0 == strncmp(li->buf, ";;", 2))
continue;
if ((nwd = str2words(li->buf, wptr, maxwd)) < 0) {
/* Increase size of p, wptr. */
nwd = str2words(li->buf, NULL, 0);
assert(nwd > maxwd); /* why else would it fail? */
maxwd = nwd;
p = (s3cipid_t *) ckd_realloc(p, (maxwd + 4) * sizeof(*p));
wptr = (char **) ckd_realloc(wptr, maxwd * sizeof(*wptr));
}
if (nwd == 0) /* Empty line */
continue;
/* wptr[0] is the word-string and wptr[1..nwd-1] the pronunciation sequence */
if (nwd == 1) {
E_ERROR("Line %d: No pronunciation for word '%s'; ignored\n",
lineno, wptr[0]);
continue;
}
/* Convert pronunciation string to CI-phone-ids */
for (i = 1; i < nwd; i++) {
p[i - 1] = dict_ciphone_id(d, wptr[i]);
if (NOT_S3CIPID(p[i - 1])) {
E_ERROR("Line %d: Phone '%s' is mising in the acoustic model; word '%s' ignored\n",
lineno, wptr[i], wptr[0]);
break;
}
}
if (i == nwd) { /* All CI-phones successfully converted to IDs */
w = dict_add_word(d, wptr[0], p, nwd - 1);
if (NOT_S3WID(w))
E_ERROR
("Line %d: Failed to add the word '%s' (duplicate?); ignored\n",
lineno, wptr[0]);
else {
stralloc += strlen(d->word[w].word);
phnalloc += d->word[w].pronlen * sizeof(s3cipid_t);
}
}
}
E_INFO("Allocated %d KiB for strings, %d KiB for phones\n",
(int)stralloc / 1024, (int)phnalloc / 1024);
ckd_free(p);
ckd_free(wptr);
return 0;
}
int
dict_write(dict_t *dict, char const *filename, char const *format)
{
FILE *fh;
int i;
if ((fh = fopen(filename, "w")) == NULL) {
E_ERROR_SYSTEM("Failed to open '%s'", filename);
return -1;
}
for (i = 0; i < dict->n_word; ++i) {
char *phones;
int j, phlen;
if (!dict_real_word(dict, i))
continue;
for (phlen = j = 0; j < dict_pronlen(dict, i); ++j)
phlen += strlen(dict_ciphone_str(dict, i, j)) + 1;
phones = ckd_calloc(1, phlen);
for (j = 0; j < dict_pronlen(dict, i); ++j) {
strcat(phones, dict_ciphone_str(dict, i, j));
if (j != dict_pronlen(dict, i) - 1)
strcat(phones, " ");
}
fprintf(fh, "%-30s %s\n", dict_wordstr(dict, i), phones);
ckd_free(phones);
}
fclose(fh);
return 0;
}
dict_t *
dict_init(cmd_ln_t *config, bin_mdef_t * mdef, logmath_t *logmath)
{
FILE *fp, *fp2;
int32 n;
lineiter_t *li;
dict_t *d;
s3cipid_t sil;
char const *dictfile = NULL, *fillerfile = NULL, *arpafile = NULL;
if (config) {
dictfile = cmd_ln_str_r(config, "-dict");
fillerfile = cmd_ln_str_r(config, "-fdict");
}
/*
* First obtain #words in dictionary (for hash table allocation).
* Reason: The PC NT system doesn't like to grow memory gradually. Better to allocate
* all the required memory in one go.
*/
fp = NULL;
n = 0;
if (dictfile) {
if ((fp = fopen(dictfile, "r")) == NULL) {
E_ERROR_SYSTEM("Failed to open dictionary file '%s' for reading", dictfile);
return NULL;
}
for (li = lineiter_start(fp); li; li = lineiter_next(li)) {
if (0 != strncmp(li->buf, "##", 2)
&& 0 != strncmp(li->buf, ";;", 2))
n++;
}
fseek(fp, 0L, SEEK_SET);
}
fp2 = NULL;
if (fillerfile) {
if ((fp2 = fopen(fillerfile, "r")) == NULL) {
E_ERROR_SYSTEM("Failed to open filler dictionary file '%s' for reading", fillerfile);
fclose(fp);
return NULL;
}
for (li = lineiter_start(fp2); li; li = lineiter_next(li)) {
if (0 != strncmp(li->buf, "##", 2)
&& 0 != strncmp(li->buf, ";;", 2))
n++;
}
fseek(fp2, 0L, SEEK_SET);
}
/*
* Allocate dict entries. HACK!! Allow some extra entries for words not in file.
* Also check for type size restrictions.
*/
d = (dict_t *) ckd_calloc(1, sizeof(dict_t)); /* freed in dict_free() */
if (config){
arpafile = string_join(dictfile, ".dmp", NULL);
}
if (arpafile) {
ngram_model_t *ngram_g2p_model = ngram_model_read(NULL,arpafile,NGRAM_AUTO,logmath);
ckd_free(arpafile);
if (!ngram_g2p_model) {
E_ERROR("No arpa model found \n");
return NULL;
}
d->ngram_g2p_model = ngram_g2p_model;
}
d->refcnt = 1;
d->max_words =
(n + S3DICT_INC_SZ < MAX_S3WID) ? n + S3DICT_INC_SZ : MAX_S3WID;
if (n >= MAX_S3WID) {
E_ERROR("Number of words in dictionaries (%d) exceeds limit (%d)\n", n,
MAX_S3WID);
fclose(fp);
fclose(fp2);
ckd_free(d);
return NULL;
}
E_INFO("Allocating %d * %d bytes (%d KiB) for word entries\n",
d->max_words, sizeof(dictword_t),
d->max_words * sizeof(dictword_t) / 1024);
d->word = (dictword_t *) ckd_calloc(d->max_words, sizeof(dictword_t)); /* freed in dict_free() */
d->n_word = 0;
if (mdef)
d->mdef = bin_mdef_retain(mdef);
/* Create new hash table for word strings; case-insensitive word strings */
if (config && cmd_ln_exists_r(config, "-dictcase"))
d->nocase = cmd_ln_boolean_r(config, "-dictcase");
d->ht = hash_table_new(d->max_words, d->nocase);
/* Digest main dictionary file */
if (fp) {
E_INFO("Reading main dictionary: %s\n", dictfile);
dict_read(fp, d);
fclose(fp);
E_INFO("%d words read\n", d->n_word);
}
/* Now the filler dictionary file, if it exists */
d->filler_start = d->n_word;
if (fillerfile) {
E_INFO("Reading filler dictionary: %s\n", fillerfile);
dict_read(fp2, d);
fclose(fp2);
E_INFO("%d words read\n", d->n_word - d->filler_start);
}
if (mdef)
sil = bin_mdef_silphone(mdef);
else
sil = 0;
if (dict_wordid(d, S3_START_WORD) == BAD_S3WID) {
dict_add_word(d, S3_START_WORD, &sil, 1);
}
if (dict_wordid(d, S3_FINISH_WORD) == BAD_S3WID) {
dict_add_word(d, S3_FINISH_WORD, &sil, 1);
}
if (dict_wordid(d, S3_SILENCE_WORD) == BAD_S3WID) {
dict_add_word(d, S3_SILENCE_WORD, &sil, 1);
}
d->filler_end = d->n_word - 1;
/* Initialize distinguished word-ids */
d->startwid = dict_wordid(d, S3_START_WORD);
d->finishwid = dict_wordid(d, S3_FINISH_WORD);
d->silwid = dict_wordid(d, S3_SILENCE_WORD);
if ((d->filler_start > d->filler_end)
|| (!dict_filler_word(d, d->silwid))) {
E_ERROR("Word '%s' must occur (only) in filler dictionary\n",
S3_SILENCE_WORD);
dict_free(d);
return NULL;
}
/* No check that alternative pronunciations for filler words are in filler range!! */
return d;
}
s3wid_t
dict_wordid(dict_t *d, const char *word)
{
int32 w;
assert(d);
assert(word);
if (hash_table_lookup_int32(d->ht, word, &w) < 0)
return (BAD_S3WID);
return w;
}
int
dict_filler_word(dict_t *d, s3wid_t w)
{
assert(d);
assert((w >= 0) && (w < d->n_word));
w = dict_basewid(d, w);
if ((w == d->startwid) || (w == d->finishwid))
return 0;
if ((w >= d->filler_start) && (w <= d->filler_end))
return 1;
return 0;
}
int
dict_real_word(dict_t *d, s3wid_t w)
{
assert(d);
assert((w >= 0) && (w < d->n_word));
w = dict_basewid(d, w);
if ((w == d->startwid) || (w == d->finishwid))
return 0;
if ((w >= d->filler_start) && (w <= d->filler_end))
return 0;
return 1;
}
int32
dict_word2basestr(char *word)
{
int32 i, len;
len = strlen(word);
if (word[len - 1] == ')') {
for (i = len - 2; (i > 0) && (word[i] != '('); --i);
if (i > 0) {
/* The word is of the form <baseword>(...); strip from left-paren */
word[i] = '\0';
return i;
}
}
return -1;
}
dict_t *
dict_retain(dict_t *d)
{
++d->refcnt;
return d;
}
int
dict_free(dict_t * d)
{
int i;
dictword_t *word;
if (d == NULL)
return 0;
if (--d->refcnt > 0)
return d->refcnt;
/* First Step, free all memory allocated for each word */
for (i = 0; i < d->n_word; i++) {
word = (dictword_t *) & (d->word[i]);
if (word->word)
ckd_free((void *) word->word);
if (word->ciphone)
ckd_free((void *) word->ciphone);
}
if (d->word)
ckd_free((void *) d->word);
if (d->ht)
hash_table_free(d->ht);
if (d->mdef)
bin_mdef_free(d->mdef);
if (d->ngram_g2p_model)
ngram_model_free(d->ngram_g2p_model);
ckd_free((void *) d);
return 0;
}
void
dict_report(dict_t * d)
{
E_INFO_NOFN("Initialization of dict_t, report:\n");
E_INFO_NOFN("Max word: %d\n", d->max_words);
E_INFO_NOFN("No of word: %d\n", d->n_word);
E_INFO_NOFN("\n");
}
// This function returns if a string (str) starts with the passed prefix (*pre)
int
dict_starts_with(const char *pre, const char *str)
{
size_t lenpre = strlen(pre), lenstr = strlen(str);
return lenstr < lenpre ? 0 : strncmp(pre, str, lenpre) == 0;
}
// Helper function to clear unigram
void
free_unigram_t(unigram_t *unigram)
{
ckd_free(unigram->word);
ckd_free(unigram->phone);
}
// This function splits an unigram received (in format e|w}UW) and return a structure
// containing two fields: the grapheme (before }) in unigram.word and the phoneme (after }) unigram.phone
unigram_t
dict_split_unigram(const char * word)
{
size_t total_graphemes = 0;
size_t total_phone = 0;
int token_pos = 0;
int w ;
char *phone;
char *letter;
size_t lenword = 0;
char unigram_letter;
int add;
lenword = strlen(word);
for (w = 0; w < lenword; w++) {
unigram_letter = word[w];
if (unigram_letter == '}') {
token_pos = w;
continue;
}
if (!token_pos)
total_graphemes++;
else
total_phone++;
}
letter = ckd_calloc(1, total_graphemes+1);
add = 0;
for (w = 0; w < total_graphemes; w++) {
if (word[w] == '|')
{
add++;
continue;
}
letter[w - add] = word[w];
}
phone = ckd_calloc(1, total_phone+1);
for (w = 0; w < total_phone; w++) {
if (word[w + 1 + total_graphemes] == '|') {
phone[w] = ' ';
} else {
phone[w] = word[w + 1 + total_graphemes];
}
}
unigram_t unigram = { letter , phone};
return unigram;
};
// This function calculates the most likely unigram to appear in the current position at the word
// based on the three latest chosen/winners unigrams (history) and return a structure containing
// the word id (wid), and lengths of the phoneme and the word
struct winner_t
dict_get_winner_wid(ngram_model_t *model, const char * word_grapheme, glist_t history_list, int word_offset)
{
long current_prob = LONG_MIN;
struct winner_t winner;
int32 i = 0, j = 0;
int nused;
int32 ngram_order = ngram_model_get_size(model);
int32 *history = ckd_calloc((size_t)ngram_order, sizeof(int32));
gnode_t *gn;
const char *vocab;
const char *sub;
int32 prob;
unigram_t unigram;
const int32 *total_unigrams = ngram_model_get_counts(model);
for (gn = history_list; gn; gn = gnode_next(gn)) {
// we need to build history from last to first because glist returns itens from last to first
history[ngram_order - j - 1] = gnode_int32(gn);
j++;
if (j >= ngram_order)
break;
}
for (i = 0; i < *total_unigrams; i++) {
vocab = ngram_word(model, i);
unigram = dict_split_unigram(vocab);
sub = word_grapheme + word_offset;
if (dict_starts_with(unigram.word, sub)) {
prob = ngram_ng_prob(model, i, history, j, &nused);
if (current_prob < prob) {
current_prob = prob;
winner.winner_wid = i;
winner.length_match = strlen(unigram.word);
winner.len_phoneme = strlen(unigram.phone);
}
}
free_unigram_t(&unigram);
}
if (history)
ckd_free(history);
return winner;
}
// This function manages the winner unigrams and builds the history of winners to properly generate the final phoneme. In the first part,
// it gets the most likely unigrams which graphemes compose the word and build a history of wids that is used in this search. In second part, the we
// use the history of wids to get each correspondent unigram, and on third part, we build the final phoneme word from this history.
char *
dict_g2p(char const *word_grapheme, ngram_model_t *ngram_g2p_model)
{
char *final_phone = NULL;
int totalh = 0;
size_t increment = 1;
int word_offset = 0;
int j;
size_t grapheme_len = 0, final_phoneme_len = 0;
glist_t history_list = NULL;
gnode_t *gn;
int first = 0;
struct winner_t winner;
const char *word;
unigram_t unigram;
int32 wid_sentence = ngram_wid(ngram_g2p_model,"<s>"); // start with sentence
history_list = glist_add_int32(history_list, wid_sentence);
grapheme_len = strlen(word_grapheme);
for (j = 0 ; j < grapheme_len ; j += increment) {
winner = dict_get_winner_wid(ngram_g2p_model, word_grapheme, history_list, word_offset);
increment = winner.length_match;
if (increment == 0) {
E_ERROR("Error trying to find matching phoneme (%s) Exiting.. \n" , word_grapheme);
ckd_free(history_list);
return NULL;
}
history_list = glist_add_int32(history_list, winner.winner_wid);
totalh = j + 1;
word_offset += winner.length_match;
final_phoneme_len += winner.len_phoneme;
}
history_list = glist_reverse(history_list);
final_phone = ckd_calloc(1, (final_phoneme_len * 2)+1);
for (gn = history_list; gn; gn = gnode_next(gn)) {
if (!first) {
first = 1;
continue;
}
word = ngram_word(ngram_g2p_model, gnode_int32(gn));
if (!word)
continue;
unigram = dict_split_unigram(word);
if (strcmp(unigram.phone, "_") == 0) {
free_unigram_t(&unigram);
continue;
}
strcat(final_phone, unigram.phone);
strcat(final_phone, " ");
free_unigram_t(&unigram);
}
if (history_list)
glist_free(history_list);
return final_phone;
}
// This function just receives the dict lacking word from fsg_search, call the main function dict_g2p, and then adds the word to the memory dict.
// The second part of this function is the same as pocketsphinx.c: https://github.com/cmusphinx/pocketsphinx/blob/ba6bd21b3601339646d2db6d2297d02a8a6b7029/src/libpocketsphinx/pocketsphinx.c#L816
int
dict_add_g2p_word(dict_t *dict, char const *word)
{
int32 wid = 0;
s3cipid_t *pron;
char **phonestr, *tmp;
int np, i;
char *phones;
phones = dict_g2p(word, dict->ngram_g2p_model);
if (phones == NULL)
return 0;
if (0 == strlen(phones)) {
ckd_free(phones);
return 0;
}
E_INFO("Adding phone '%s' for word '%s' \n", phones, word);
tmp = ckd_salloc(phones);
np = str2words(tmp, NULL, 0);
phonestr = ckd_calloc(np, sizeof(*phonestr));
str2words(tmp, phonestr, np);
pron = ckd_calloc(np, sizeof(*pron));
for (i = 0; i < np; ++i) {
pron[i] = bin_mdef_ciphone_id(dict->mdef, phonestr[i]);
if (pron[i] == -1) {
E_ERROR("Unknown phone %s in phone string %s\n",
phonestr[i], tmp);
ckd_free(phonestr);
ckd_free(tmp);
ckd_free(pron);
ckd_free(phones);
return -1;
}
}
ckd_free(phonestr);
ckd_free(tmp);
ckd_free(phones);
if ((wid = dict_add_word(dict, word, pron, np)) == -1) {
ckd_free(pron);
return -1;
}
ckd_free(pron);
return wid;
}