tenfourfox/toolkit/crashreporter/breakpad-patches/04-uniquestringmap.patch
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

1449 lines
60 KiB
Diff

# HG changeset patch
# User Ted Mielczarek <ted.mielczarek@gmail.com>
# Date 1360255134 18000
# Node ID 294ce0d64d35a90be8ea91b719ead8b82aed29f7
# Parent d7bfb673574a3afe8b4f76f42fb52e2545770dad
Rework PostfixEvaluator to use UniqueStringMap
Patch by Julian Seward <jseward@acm.org>, R=ted
diff --git a/src/common/unique_string.h b/src/common/unique_string.h
--- a/src/common/unique_string.h
+++ b/src/common/unique_string.h
@@ -25,16 +25,17 @@
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef COMMON_UNIQUE_STRING_H_
#define COMMON_UNIQUE_STRING_H_
+#include <map>
#include <string>
#include "common/using_std_string.h"
namespace google_breakpad {
// Abstract type
class UniqueString;
@@ -229,11 +230,112 @@
// ".ra"
inline static const UniqueString* ustr__ZDra() {
static const UniqueString* us = NULL;
if (!us) us = ToUniqueString(".ra");
return us;
}
+template <typename ValueType>
+class UniqueStringMap
+{
+ private:
+ static const int N_FIXED = 10;
+
+ public:
+ UniqueStringMap() : n_fixed_(0), n_sets_(0), n_gets_(0), n_clears_(0) {};
+ ~UniqueStringMap() {};
+
+ // Empty out the map.
+ void clear() {
+ ++n_clears_;
+ map_.clear();
+ n_fixed_ = 0;
+ }
+
+ // Do "map[ix] = v".
+ void set(const UniqueString* ix, ValueType v) {
+ ++n_sets_;
+ int i;
+ for (i = 0; i < n_fixed_; ++i) {
+ if (fixed_keys_[i] == ix) {
+ fixed_vals_[i] = v;
+ return;
+ }
+ }
+ if (n_fixed_ < N_FIXED) {
+ i = n_fixed_;
+ fixed_keys_[i] = ix;
+ fixed_vals_[i] = v;
+ ++n_fixed_;
+ } else {
+ map_[ix] = v;
+ }
+ }
+
+ // Lookup 'ix' in the map, and also return a success/fail boolean.
+ ValueType get(/*OUT*/bool* have, const UniqueString* ix) const {
+ ++n_gets_;
+ int i;
+ for (i = 0; i < n_fixed_; ++i) {
+ if (fixed_keys_[i] == ix) {
+ *have = true;
+ return fixed_vals_[i];
+ }
+ }
+ typename std::map<const UniqueString*, ValueType>::const_iterator it
+ = map_.find(ix);
+ if (it == map_.end()) {
+ *have = false;
+ return ValueType();
+ } else {
+ *have = true;
+ return it->second;
+ }
+ };
+
+ // Lookup 'ix' in the map, and return zero if it is not present.
+ ValueType get(const UniqueString* ix) const {
+ ++n_gets_;
+ bool found;
+ ValueType v = get(&found, ix);
+ return found ? v : ValueType();
+ }
+
+ // Find out whether 'ix' is in the map.
+ bool have(const UniqueString* ix) const {
+ ++n_gets_;
+ bool found;
+ (void)get(&found, ix);
+ return found;
+ }
+
+ // Copy the contents to a std::map, generally for testing.
+ void copy_to_map(std::map<const UniqueString*, ValueType>* m) const {
+ m->clear();
+ int i;
+ for (i = 0; i < n_fixed_; ++i) {
+ (*m)[fixed_keys_[i]] = fixed_vals_[i];
+ }
+ m->insert(map_.begin(), map_.end());
+ }
+
+ // Note that users of this class rely on having also a sane
+ // assignment operator. The default one is OK, though.
+ // AFAICT there are no uses of the copy constructor, but if
+ // there were, the default one would also suffice.
+
+ private:
+ // Quick (hopefully) cache
+ const UniqueString* fixed_keys_[N_FIXED];
+ ValueType fixed_vals_[N_FIXED];
+ int n_fixed_; // 0 .. N_FIXED inclusive
+ // Fallback storage when the cache is filled
+ std::map<const UniqueString*, ValueType> map_;
+
+ // For tracking usage stats.
+ mutable int n_sets_, n_gets_, n_clears_;
+};
+
} // namespace google_breakpad
#endif // COMMON_UNIQUE_STRING_H_
diff --git a/src/processor/basic_source_line_resolver_unittest.cc b/src/processor/basic_source_line_resolver_unittest.cc
--- a/src/processor/basic_source_line_resolver_unittest.cc
+++ b/src/processor/basic_source_line_resolver_unittest.cc
@@ -24,16 +24,17 @@
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdio.h>
+#include <map>
#include <string>
#include "breakpad_googletest_includes.h"
#include "common/scoped_ptr.h"
#include "common/using_std_string.h"
#include "google_breakpad/processor/basic_source_line_resolver.h"
#include "google_breakpad/processor/code_module.h"
#include "google_breakpad/processor/stack_frame.h"
@@ -47,16 +48,17 @@
using google_breakpad::BasicSourceLineResolver;
using google_breakpad::CFIFrameInfo;
using google_breakpad::CodeModule;
using google_breakpad::FromUniqueString;
using google_breakpad::MemoryRegion;
using google_breakpad::StackFrame;
using google_breakpad::ToUniqueString;
+using google_breakpad::UniqueString;
using google_breakpad::WindowsFrameInfo;
using google_breakpad::linked_ptr;
using google_breakpad::scoped_ptr;
using google_breakpad::ustr__ZDcfa;
using google_breakpad::ustr__ZDra;
using google_breakpad::ustr__ZSebx;
using google_breakpad::ustr__ZSebp;
using google_breakpad::ustr__ZSedi;
@@ -113,27 +115,30 @@
};
// Verify that, for every association in ACTUAL, EXPECTED has the same
// association. (That is, ACTUAL's associations should be a subset of
// EXPECTED's.) Also verify that ACTUAL has associations for ".ra" and
// ".cfa".
static bool VerifyRegisters(
const char *file, int line,
- const CFIFrameInfo::RegisterValueMap<uint32_t> &expected,
- const CFIFrameInfo::RegisterValueMap<uint32_t> &actual) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::const_iterator a;
+ const std::map<const UniqueString*, uint32_t> &expected,
+ const CFIFrameInfo::RegisterValueMap<uint32_t> &actual_regmap) {
+ std::map<const UniqueString*, uint32_t> actual;
+ actual_regmap.copy_to_map(&actual);
+
+ std::map<const UniqueString*, uint32_t>::const_iterator a;
a = actual.find(ustr__ZDcfa());
if (a == actual.end())
return false;
a = actual.find(ustr__ZDra());
if (a == actual.end())
return false;
for (a = actual.begin(); a != actual.end(); a++) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::const_iterator e =
+ std::map<const UniqueString*, uint32_t>::const_iterator e =
expected.find(a->first);
if (e == expected.end()) {
fprintf(stderr, "%s:%d: unexpected register '%s' recovered, value 0x%x\n",
file, line, FromUniqueString(a->first), a->second);
return false;
}
if (e->second != a->second) {
fprintf(stderr,
@@ -258,86 +263,86 @@
frame.instruction = 0x3e9f;
frame.module = &module1;
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_FALSE(cfi_frame_info.get());
CFIFrameInfo::RegisterValueMap<uint32_t> current_registers;
CFIFrameInfo::RegisterValueMap<uint32_t> caller_registers;
- CFIFrameInfo::RegisterValueMap<uint32_t> expected_caller_registers;
+ std::map<const UniqueString*, uint32_t> expected_caller_registers;
MockMemoryRegion memory;
// Regardless of which instruction evaluation takes place at, it
// should produce the same values for the caller's registers.
expected_caller_registers[ustr__ZDcfa()] = 0x1001c;
expected_caller_registers[ustr__ZDra()] = 0xf6438648;
expected_caller_registers[ustr__ZSebp()] = 0x10038;
expected_caller_registers[ustr__ZSebx()] = 0x98ecadc3;
expected_caller_registers[ustr__ZSesi()] = 0x878f7524;
expected_caller_registers[ustr__ZSedi()] = 0x6312f9a5;
frame.instruction = 0x3d40;
frame.module = &module1;
current_registers.clear();
- current_registers[ustr__ZSesp()] = 0x10018;
- current_registers[ustr__ZSebp()] = 0x10038;
- current_registers[ustr__ZSebx()] = 0x98ecadc3;
- current_registers[ustr__ZSesi()] = 0x878f7524;
- current_registers[ustr__ZSedi()] = 0x6312f9a5;
+ current_registers.set(ustr__ZSesp(), 0x10018);
+ current_registers.set(ustr__ZSebp(), 0x10038);
+ current_registers.set(ustr__ZSebx(), 0x98ecadc3);
+ current_registers.set(ustr__ZSesi(), 0x878f7524);
+ current_registers.set(ustr__ZSedi(), 0x6312f9a5);
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
ASSERT_TRUE(VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers));
frame.instruction = 0x3d41;
- current_registers[ustr__ZSesp()] = 0x10014;
+ current_registers.set(ustr__ZSesp(), 0x10014);
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
ASSERT_TRUE(VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers));
frame.instruction = 0x3d43;
- current_registers[ustr__ZSebp()] = 0x10014;
+ current_registers.set(ustr__ZSebp(), 0x10014);
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
frame.instruction = 0x3d54;
- current_registers[ustr__ZSebx()] = 0x6864f054U;
+ current_registers.set(ustr__ZSebx(), 0x6864f054U);
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
frame.instruction = 0x3d5a;
- current_registers[ustr__ZSesi()] = 0x6285f79aU;
+ current_registers.set(ustr__ZSesi(), 0x6285f79aU);
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
frame.instruction = 0x3d84;
- current_registers[ustr__ZSedi()] = 0x64061449U;
+ current_registers.set(ustr__ZSedi(), 0x64061449U);
cfi_frame_info.reset(resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
diff --git a/src/processor/cfi_frame_info-inl.h b/src/processor/cfi_frame_info-inl.h
--- a/src/processor/cfi_frame_info-inl.h
+++ b/src/processor/cfi_frame_info-inl.h
@@ -35,64 +35,64 @@
#ifndef PROCESSOR_CFI_FRAME_INFO_INL_H_
#define PROCESSOR_CFI_FRAME_INFO_INL_H_
#include <string.h>
namespace google_breakpad {
-template <typename RegisterType, class RawContextType>
-bool SimpleCFIWalker<RegisterType, RawContextType>::FindCallerRegisters(
+template <typename RegisterValueType, class RawContextType>
+bool SimpleCFIWalker<RegisterValueType, RawContextType>::FindCallerRegisters(
const MemoryRegion &memory,
const CFIFrameInfo &cfi_frame_info,
const RawContextType &callee_context,
int callee_validity,
RawContextType *caller_context,
int *caller_validity) const {
- typedef CFIFrameInfo::RegisterValueMap<RegisterType> ValueMap;
+ typedef CFIFrameInfo::RegisterValueMap<RegisterValueType> ValueMap;
ValueMap callee_registers;
ValueMap caller_registers;
- // Just for brevity.
- typename ValueMap::const_iterator caller_none = caller_registers.end();
// Populate callee_registers with register values from callee_context.
for (size_t i = 0; i < map_size_; i++) {
const RegisterSet &r = register_map_[i];
if (callee_validity & r.validity_flag)
- callee_registers[r.name] = callee_context.*r.context_member;
+ callee_registers.set(r.name, callee_context.*r.context_member);
}
// Apply the rules, and see what register values they yield.
- if (!cfi_frame_info.FindCallerRegs<RegisterType>(callee_registers, memory,
- &caller_registers))
+ if (!cfi_frame_info
+ .FindCallerRegs<RegisterValueType>(callee_registers, memory,
+ &caller_registers))
return false;
// Populate *caller_context with the values the rules placed in
// caller_registers.
memset(caller_context, 0xda, sizeof(*caller_context));
*caller_validity = 0;
for (size_t i = 0; i < map_size_; i++) {
const RegisterSet &r = register_map_[i];
- typename ValueMap::const_iterator caller_entry;
// Did the rules provide a value for this register by its name?
- caller_entry = caller_registers.find(r.name);
- if (caller_entry != caller_none) {
- caller_context->*r.context_member = caller_entry->second;
+ bool found = false;
+ RegisterValueType v = caller_registers.get(&found, r.name);
+ if (found) {
+ caller_context->*r.context_member = v;
*caller_validity |= r.validity_flag;
continue;
}
// Did the rules provide a value for this register under its
// alternate name?
if (r.alternate_name) {
- caller_entry = caller_registers.find(r.alternate_name);
- if (caller_entry != caller_none) {
- caller_context->*r.context_member = caller_entry->second;
+ found = false;
+ v = caller_registers.get(&found, r.alternate_name);
+ if (found) {
+ caller_context->*r.context_member = v;
*caller_validity |= r.validity_flag;
continue;
}
}
// Is this a callee-saves register? The walker assumes that these
// still hold the caller's value if the CFI doesn't mention them.
//
diff --git a/src/processor/cfi_frame_info.cc b/src/processor/cfi_frame_info.cc
--- a/src/processor/cfi_frame_info.cc
+++ b/src/processor/cfi_frame_info.cc
@@ -66,33 +66,33 @@
V cfa;
working = registers;
if (!evaluator.EvaluateForValue(cfa_rule_, &cfa))
return false;
// Then, compute the return address.
V ra;
working = registers;
- working[ustr__ZDcfa()] = cfa;
+ working.set(ustr__ZDcfa(), cfa);
if (!evaluator.EvaluateForValue(ra_rule_, &ra))
return false;
// Now, compute values for all the registers register_rules_ mentions.
for (RuleMap::const_iterator it = register_rules_.begin();
it != register_rules_.end(); it++) {
V value;
working = registers;
- working[ustr__ZDcfa()] = cfa;
+ working.set(ustr__ZDcfa(), cfa);
if (!evaluator.EvaluateForValue(it->second, &value))
return false;
- (*caller_registers)[it->first] = value;
+ caller_registers->set(it->first, value);
}
- (*caller_registers)[ustr__ZDra()] = ra;
- (*caller_registers)[ustr__ZDcfa()] = cfa;
+ caller_registers->set(ustr__ZDra(), ra);
+ caller_registers->set(ustr__ZDcfa(), cfa);
return true;
}
// Explicit instantiations for 32-bit and 64-bit architectures.
template bool CFIFrameInfo::FindCallerRegs<uint32_t>(
const RegisterValueMap<uint32_t> &registers,
const MemoryRegion &memory,
diff --git a/src/processor/cfi_frame_info.h b/src/processor/cfi_frame_info.h
--- a/src/processor/cfi_frame_info.h
+++ b/src/processor/cfi_frame_info.h
@@ -64,17 +64,17 @@
// changes given by the 'STACK CFI' records up to our instruction's
// address. Then, use the FindCallerRegs member function to apply the
// rules to the callee frame's register values, yielding the caller
// frame's register values.
class CFIFrameInfo {
public:
// A map from register names onto values.
template<typename ValueType> class RegisterValueMap:
- public map<const UniqueString*, ValueType> { };
+ public UniqueStringMap<ValueType> { };
// Set the expression for computing a call frame address, return
// address, or register's value. At least the CFA rule and the RA
// rule must be set before calling FindCallerRegs.
void SetCFARule(const Module::Expr& rule) { cfa_rule_ = rule; }
void SetRARule(const Module::Expr& rule) { ra_rule_ = rule; }
void SetRegisterRule(const UniqueString* register_name,
const Module::Expr& rule) {
diff --git a/src/processor/cfi_frame_info_unittest.cc b/src/processor/cfi_frame_info_unittest.cc
--- a/src/processor/cfi_frame_info_unittest.cc
+++ b/src/processor/cfi_frame_info_unittest.cc
@@ -111,19 +111,18 @@
TEST_F(Simple, SetCFAAndRARule) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("330903416631436410"));
cfi.SetRARule(Module::Expr("5870666104170902211"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(2U, caller_registers.size());
- ASSERT_EQ(330903416631436410ULL, caller_registers[ustr__ZDcfa()]);
- ASSERT_EQ(5870666104170902211ULL, caller_registers[ustr__ZDra()]);
+ ASSERT_EQ(330903416631436410ULL, caller_registers.get(ustr__ZDcfa()));
+ ASSERT_EQ(5870666104170902211ULL, caller_registers.get(ustr__ZDra()));
ASSERT_EQ(".cfa: 330903416631436410 .ra: 5870666104170902211",
cfi.Serialize());
}
TEST_F(Simple, SetManyRules) {
ExpectNoMemoryReferences();
@@ -136,23 +135,22 @@
const UniqueString* reg4 = ToUniqueString("uncopyrightables");
cfi.SetRegisterRule(reg1, Module::Expr(".cfa 54370437 *"));
cfi.SetRegisterRule(reg2, Module::Expr("24076308 .cfa +"));
cfi.SetRegisterRule(reg3, Module::Expr(".cfa 29801007 -"));
cfi.SetRegisterRule(reg4, Module::Expr("92642917 .cfa /"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(6U, caller_registers.size());
- ASSERT_EQ(7664691U, caller_registers[ustr__ZDcfa()]);
- ASSERT_EQ(107469446U, caller_registers[ustr__ZDra()]);
- ASSERT_EQ(416732599139967ULL, caller_registers[reg1]);
- ASSERT_EQ(31740999U, caller_registers[reg2]);
- ASSERT_EQ(-22136316ULL, caller_registers[reg3]);
- ASSERT_EQ(12U, caller_registers[reg4]);
+ ASSERT_EQ(7664691U, caller_registers.get(ustr__ZDcfa()));
+ ASSERT_EQ(107469446U, caller_registers.get(ustr__ZDra()));
+ ASSERT_EQ(416732599139967ULL, caller_registers.get(reg1));
+ ASSERT_EQ(31740999U, caller_registers.get(reg2));
+ ASSERT_EQ(-22136316ULL, caller_registers.get(reg3));
+ ASSERT_EQ(12U, caller_registers.get(reg4));
ASSERT_EQ(".cfa: $temp1 68737028 = $temp2 61072337 = $temp1 $temp2 - "
".ra: .cfa 99804755 + "
"pubvexingfjordschmaltzy: .cfa 29801007 - "
"register1: .cfa 54370437 * "
"uncopyrightables: 92642917 .cfa / "
"vodkathumbscrewingly: 24076308 .cfa +",
cfi.Serialize());
}
@@ -160,19 +158,18 @@
TEST_F(Simple, RulesOverride) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("330903416631436410"));
cfi.SetRARule(Module::Expr("5870666104170902211"));
cfi.SetCFARule(Module::Expr("2828089117179001"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(2U, caller_registers.size());
- ASSERT_EQ(2828089117179001ULL, caller_registers[ustr__ZDcfa()]);
- ASSERT_EQ(5870666104170902211ULL, caller_registers[ustr__ZDra()]);
+ ASSERT_EQ(2828089117179001ULL, caller_registers.get(ustr__ZDcfa()));
+ ASSERT_EQ(5870666104170902211ULL, caller_registers.get(ustr__ZDra()));
ASSERT_EQ(".cfa: 2828089117179001 .ra: 5870666104170902211",
cfi.Serialize());
}
class Scope: public CFIFixture, public Test { };
// There should be no value for .cfa in scope when evaluating the CFA rule.
TEST_F(Scope, CFALacksCFA) {
@@ -196,37 +193,35 @@
// The current frame's registers should be in scope when evaluating
// the CFA rule.
TEST_F(Scope, CFASeesCurrentRegs) {
ExpectNoMemoryReferences();
const UniqueString* reg1 = ToUniqueString(".baraminology");
const UniqueString* reg2 = ToUniqueString(".ornithorhynchus");
- registers[reg1] = 0x06a7bc63e4f13893ULL;
- registers[reg2] = 0x5e0bf850bafce9d2ULL;
+ registers.set(reg1, 0x06a7bc63e4f13893ULL);
+ registers.set(reg2, 0x5e0bf850bafce9d2ULL);
cfi.SetCFARule(Module::Expr(".baraminology .ornithorhynchus +"));
cfi.SetRARule(Module::Expr("0"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(2U, caller_registers.size());
ASSERT_EQ(0x06a7bc63e4f13893ULL + 0x5e0bf850bafce9d2ULL,
- caller_registers[ustr__ZDcfa()]);
+ caller_registers.get(ustr__ZDcfa()));
}
// .cfa should be in scope in the return address expression.
TEST_F(Scope, RASeesCFA) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("48364076"));
cfi.SetRARule(Module::Expr(".cfa"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(2U, caller_registers.size());
- ASSERT_EQ(48364076U, caller_registers[ustr__ZDra()]);
+ ASSERT_EQ(48364076U, caller_registers.get(ustr__ZDra()));
}
// There should be no value for .ra in scope when evaluating the CFA rule.
TEST_F(Scope, RALacksRA) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("0"));
cfi.SetRARule(Module::Expr(".ra"));
@@ -236,36 +231,34 @@
// The current frame's registers should be in scope in the return
// address expression.
TEST_F(Scope, RASeesCurrentRegs) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("10359370"));
const UniqueString* reg1 = ToUniqueString("noachian");
- registers[reg1] = 0x54dc4a5d8e5eb503ULL;
+ registers.set(reg1, 0x54dc4a5d8e5eb503ULL);
cfi.SetRARule(Module::Expr(reg1, 0, false));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(2U, caller_registers.size());
- ASSERT_EQ(0x54dc4a5d8e5eb503ULL, caller_registers[ustr__ZDra()]);
+ ASSERT_EQ(0x54dc4a5d8e5eb503ULL, caller_registers.get(ustr__ZDra()));
}
// .cfa should be in scope for register rules.
TEST_F(Scope, RegistersSeeCFA) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("6515179"));
cfi.SetRARule(Module::Expr(".cfa"));
const UniqueString* reg1 = ToUniqueString("rogerian");
cfi.SetRegisterRule(reg1, Module::Expr(".cfa"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(3U, caller_registers.size());
- ASSERT_EQ(6515179U, caller_registers[reg1]);
+ ASSERT_EQ(6515179U, caller_registers.get(reg1));
}
// The return address should not be in scope for register rules.
TEST_F(Scope, RegsLackRA) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("42740329"));
cfi.SetRARule(Module::Expr("27045204"));
@@ -276,27 +269,26 @@
}
// Register rules can see the current frame's register values.
TEST_F(Scope, RegsSeeRegs) {
ExpectNoMemoryReferences();
const UniqueString* reg1 = ToUniqueString("$r1");
const UniqueString* reg2 = ToUniqueString("$r2");
- registers[reg1] = 0x6ed3582c4bedb9adULL;
- registers[reg2] = 0xd27d9e742b8df6d0ULL;
+ registers.set(reg1, 0x6ed3582c4bedb9adULL);
+ registers.set(reg2, 0xd27d9e742b8df6d0ULL);
cfi.SetCFARule(Module::Expr("88239303"));
cfi.SetRARule(Module::Expr("30503835"));
cfi.SetRegisterRule(reg1, Module::Expr("$r1 42175211 = $r2"));
cfi.SetRegisterRule(reg2, Module::Expr("$r2 21357221 = $r1"));
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(4U, caller_registers.size());
- ASSERT_EQ(0xd27d9e742b8df6d0ULL, caller_registers[reg1]);
- ASSERT_EQ(0x6ed3582c4bedb9adULL, caller_registers[reg2]);
+ ASSERT_EQ(0xd27d9e742b8df6d0ULL, caller_registers.get(reg1));
+ ASSERT_EQ(0x6ed3582c4bedb9adULL, caller_registers.get(reg2));
}
// Each rule's temporaries are separate.
TEST_F(Scope, SeparateTempsRA) {
ExpectNoMemoryReferences();
cfi.SetCFARule(Module::Expr("$temp1 76569129 = $temp1"));
cfi.SetRARule(Module::Expr("0"));
@@ -440,39 +432,39 @@
CFIFrameInfoParseHandler handler;
};
class ParseHandler: public ParseHandlerFixture, public Test { };
TEST_F(ParseHandler, CFARARule) {
handler.CFARule("reg-for-cfa");
handler.RARule("reg-for-ra");
- registers[ToUniqueString("reg-for-cfa")] = 0x268a9a4a3821a797ULL;
- registers[ToUniqueString("reg-for-ra")] = 0x6301b475b8b91c02ULL;
+ registers.set(ToUniqueString("reg-for-cfa"), 0x268a9a4a3821a797ULL);
+ registers.set(ToUniqueString("reg-for-ra"), 0x6301b475b8b91c02ULL);
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(0x268a9a4a3821a797ULL, caller_registers[ustr__ZDcfa()]);
- ASSERT_EQ(0x6301b475b8b91c02ULL, caller_registers[ustr__ZDra()]);
+ ASSERT_EQ(0x268a9a4a3821a797ULL, caller_registers.get(ustr__ZDcfa()));
+ ASSERT_EQ(0x6301b475b8b91c02ULL, caller_registers.get(ustr__ZDra()));
}
TEST_F(ParseHandler, RegisterRules) {
handler.CFARule("reg-for-cfa");
handler.RARule("reg-for-ra");
handler.RegisterRule(ToUniqueString("reg1"), "reg-for-reg1");
handler.RegisterRule(ToUniqueString("reg2"), "reg-for-reg2");
- registers[ToUniqueString("reg-for-cfa")] = 0x268a9a4a3821a797ULL;
- registers[ToUniqueString("reg-for-ra")] = 0x6301b475b8b91c02ULL;
- registers[ToUniqueString("reg-for-reg1")] = 0x06cde8e2ff062481ULL;
- registers[ToUniqueString("reg-for-reg2")] = 0xff0c4f76403173e2ULL;
+ registers.set(ToUniqueString("reg-for-cfa"), 0x268a9a4a3821a797ULL);
+ registers.set(ToUniqueString("reg-for-ra"), 0x6301b475b8b91c02ULL);
+ registers.set(ToUniqueString("reg-for-reg1"), 0x06cde8e2ff062481ULL);
+ registers.set(ToUniqueString("reg-for-reg2"), 0xff0c4f76403173e2ULL);
ASSERT_TRUE(cfi.FindCallerRegs<uint64_t>(registers, memory,
&caller_registers));
- ASSERT_EQ(0x268a9a4a3821a797ULL, caller_registers[ustr__ZDcfa()]);
- ASSERT_EQ(0x6301b475b8b91c02ULL, caller_registers[ustr__ZDra()]);
- ASSERT_EQ(0x06cde8e2ff062481ULL, caller_registers[ToUniqueString("reg1")]);
- ASSERT_EQ(0xff0c4f76403173e2ULL, caller_registers[ToUniqueString("reg2")]);
+ ASSERT_EQ(0x268a9a4a3821a797ULL, caller_registers.get(ustr__ZDcfa()));
+ ASSERT_EQ(0x6301b475b8b91c02ULL, caller_registers.get(ustr__ZDra()));
+ ASSERT_EQ(0x06cde8e2ff062481ULL, caller_registers.get(ToUniqueString("reg1")));
+ ASSERT_EQ(0xff0c4f76403173e2ULL, caller_registers.get(ToUniqueString("reg2")));
}
struct SimpleCFIWalkerFixture {
struct RawContext {
uint64_t r0, r1, r2, r3, r4, sp, pc;
};
enum Validity {
R0_VALID = 0x01,
diff --git a/src/processor/fast_source_line_resolver_unittest.cc b/src/processor/fast_source_line_resolver_unittest.cc
--- a/src/processor/fast_source_line_resolver_unittest.cc
+++ b/src/processor/fast_source_line_resolver_unittest.cc
@@ -59,16 +59,17 @@
using google_breakpad::FromUniqueString;
using google_breakpad::ModuleSerializer;
using google_breakpad::ModuleComparer;
using google_breakpad::CFIFrameInfo;
using google_breakpad::CodeModule;
using google_breakpad::MemoryRegion;
using google_breakpad::StackFrame;
using google_breakpad::ToUniqueString;
+using google_breakpad::UniqueString;
using google_breakpad::WindowsFrameInfo;
using google_breakpad::linked_ptr;
using google_breakpad::scoped_ptr;
using google_breakpad::ustr__ZDcfa;
using google_breakpad::ustr__ZDra;
using google_breakpad::ustr__ZSebx;
using google_breakpad::ustr__ZSebp;
using google_breakpad::ustr__ZSedi;
@@ -125,27 +126,30 @@
};
// Verify that, for every association in ACTUAL, EXPECTED has the same
// association. (That is, ACTUAL's associations should be a subset of
// EXPECTED's.) Also verify that ACTUAL has associations for ".ra" and
// ".cfa".
static bool VerifyRegisters(
const char *file, int line,
- const CFIFrameInfo::RegisterValueMap<uint32_t> &expected,
- const CFIFrameInfo::RegisterValueMap<uint32_t> &actual) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::const_iterator a;
+ const std::map<const UniqueString*, uint32_t> &expected,
+ const CFIFrameInfo::RegisterValueMap<uint32_t> &actual_regmap) {
+ std::map<const UniqueString*, uint32_t> actual;
+ actual_regmap.copy_to_map(&actual);
+
+ std::map<const UniqueString*, uint32_t>::const_iterator a;
a = actual.find(ustr__ZDcfa());
if (a == actual.end())
return false;
a = actual.find(ustr__ZDra());
if (a == actual.end())
return false;
for (a = actual.begin(); a != actual.end(); a++) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::const_iterator e =
+ std::map<const UniqueString*, uint32_t>::const_iterator e =
expected.find(a->first);
if (e == expected.end()) {
fprintf(stderr, "%s:%d: unexpected register '%s' recovered, value 0x%x\n",
file, line, FromUniqueString(a->first), a->second);
return false;
}
if (e->second != a->second) {
fprintf(stderr,
@@ -286,86 +290,87 @@
frame.instruction = 0x3e9f;
frame.module = &module1;
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_FALSE(cfi_frame_info.get());
CFIFrameInfo::RegisterValueMap<uint32_t> current_registers;
CFIFrameInfo::RegisterValueMap<uint32_t> caller_registers;
- CFIFrameInfo::RegisterValueMap<uint32_t> expected_caller_registers;
+ std::map<const UniqueString*, uint32_t> expected_caller_registers;
MockMemoryRegion memory;
// Regardless of which instruction evaluation takes place at, it
// should produce the same values for the caller's registers.
+ // should produce the same values for the caller's registers.
expected_caller_registers[ustr__ZDcfa()] = 0x1001c;
- expected_caller_registers[ustr__ZDra()] = 0xf6438648;
+ expected_caller_registers[ustr__ZDra()] = 0xf6438648;
expected_caller_registers[ustr__ZSebp()] = 0x10038;
expected_caller_registers[ustr__ZSebx()] = 0x98ecadc3;
expected_caller_registers[ustr__ZSesi()] = 0x878f7524;
expected_caller_registers[ustr__ZSedi()] = 0x6312f9a5;
frame.instruction = 0x3d40;
frame.module = &module1;
current_registers.clear();
- current_registers[ustr__ZSesp()] = 0x10018;
- current_registers[ustr__ZSebp()] = 0x10038;
- current_registers[ustr__ZSebx()] = 0x98ecadc3;
- current_registers[ustr__ZSesi()] = 0x878f7524;
- current_registers[ustr__ZSedi()] = 0x6312f9a5;
+ current_registers.set(ustr__ZSesp(), 0x10018);
+ current_registers.set(ustr__ZSebp(), 0x10038);
+ current_registers.set(ustr__ZSebx(), 0x98ecadc3);
+ current_registers.set(ustr__ZSesi(), 0x878f7524);
+ current_registers.set(ustr__ZSedi(), 0x6312f9a5);
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
ASSERT_TRUE(VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers));
frame.instruction = 0x3d41;
- current_registers[ustr__ZSesp()] = 0x10014;
+ current_registers.set(ustr__ZSesp(), 0x10014);
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
ASSERT_TRUE(VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers));
frame.instruction = 0x3d43;
- current_registers[ustr__ZSebp()] = 0x10014;
+ current_registers.set(ustr__ZSebp(), 0x10014);
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
frame.instruction = 0x3d54;
- current_registers[ustr__ZSebx()] = 0x6864f054U;
+ current_registers.set(ustr__ZSebx(), 0x6864f054U);
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
frame.instruction = 0x3d5a;
- current_registers[ustr__ZSesi()] = 0x6285f79aU;
+ current_registers.set(ustr__ZSesi(), 0x6285f79aU);
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
frame.instruction = 0x3d84;
- current_registers[ustr__ZSedi()] = 0x64061449U;
+ current_registers.set(ustr__ZSedi(), 0x64061449U);
cfi_frame_info.reset(fast_resolver.FindCFIFrameInfo(&frame));
ASSERT_TRUE(cfi_frame_info.get());
ASSERT_TRUE(cfi_frame_info.get()
->FindCallerRegs<uint32_t>(current_registers, memory,
&caller_registers));
VerifyRegisters(__FILE__, __LINE__,
expected_caller_registers, caller_registers);
diff --git a/src/processor/postfix_evaluator-inl.h b/src/processor/postfix_evaluator-inl.h
--- a/src/processor/postfix_evaluator-inl.h
+++ b/src/processor/postfix_evaluator-inl.h
@@ -185,19 +185,19 @@
return false;
}
if (identifier == ustr__empty() || Index(identifier,0) != '$') {
BPLOG(ERROR) << "Can't assign " << HexString(value) << " to " <<
identifier << ": " << expression;
return false;
}
- (*dictionary_)[identifier] = value;
+ dictionary_->set(identifier, value);
if (assigned)
- (*assigned)[identifier] = true;
+ assigned->set(identifier, true);
} else {
// Push it onto the stack as-is, but first convert it either to a
// ValueType (if a literal) or to a UniqueString* (if an identifier).
//
// First, try to treat the value as a literal. Literals may have leading
// '-' sign, and the entire remaining string must be parseable as
// ValueType. If this isn't possible, it can't be a literal, so treat it
// as an identifier instead.
@@ -300,28 +300,28 @@
return PopValue(result);
}
// Simple-form expressions
case Module::kExprSimple:
case Module::kExprSimpleMem: {
// Look up the base value
- typename DictionaryType::const_iterator iterator
- = dictionary_->find(expr.ident_);
- if (iterator == dictionary_->end()) {
+ bool found = false;
+ ValueType v = dictionary_->get(&found, expr.ident_);
+ if (!found) {
// The identifier wasn't found in the dictionary. Don't imply any
// default value, just fail.
- BPLOG(INFO) << "Identifier " << expr.ident_
+ BPLOG(INFO) << "Identifier " << FromUniqueString(expr.ident_)
<< " not in dictionary (kExprSimple{Mem})";
return false;
}
// Form the sum
- ValueType sum = iterator->second + (int64_t)expr.offset_;
+ ValueType sum = v + (int64_t)expr.offset_;
// and dereference if necessary
if (expr.how_ == Module::kExprSimpleMem) {
ValueType derefd;
if (!memory_ || !memory_->GetMemoryAtAddress(sum, &derefd)) {
return false;
}
*result = derefd;
@@ -368,27 +368,27 @@
if ((result = PopValueOrIdentifier(&literal, &token)) == POP_RESULT_FAIL) {
return false;
} else if (result == POP_RESULT_VALUE) {
// This is the easy case.
*value = literal;
} else { // result == POP_RESULT_IDENTIFIER
// There was an identifier at the top of the stack. Resolve it to a
// value by looking it up in the dictionary.
- typename DictionaryType::const_iterator iterator =
- dictionary_->find(token);
- if (iterator == dictionary_->end()) {
+ bool found = false;
+ ValueType v = dictionary_->get(&found, token);
+ if (!found) {
// The identifier wasn't found in the dictionary. Don't imply any
// default value, just fail.
BPLOG(INFO) << "Identifier " << FromUniqueString(token)
<< " not in dictionary";
return false;
}
- *value = iterator->second;
+ *value = v;
}
return true;
}
template<typename ValueType>
bool PostfixEvaluator<ValueType>::PopValues(ValueType *value1,
diff --git a/src/processor/postfix_evaluator.h b/src/processor/postfix_evaluator.h
--- a/src/processor/postfix_evaluator.h
+++ b/src/processor/postfix_evaluator.h
@@ -93,18 +93,18 @@
StackElem(const UniqueString* ustr) { isValue = false; u.ustr = ustr; }
bool isValue;
union { ValueType val; const UniqueString* ustr; } u;
};
template<typename ValueType>
class PostfixEvaluator {
public:
- typedef map<const UniqueString*, ValueType> DictionaryType;
- typedef map<const UniqueString*, bool> DictionaryValidityType;
+ typedef UniqueStringMap<ValueType> DictionaryType;
+ typedef UniqueStringMap<bool> DictionaryValidityType;
// Create a PostfixEvaluator object that may be used (with Evaluate) on
// one or more expressions. PostfixEvaluator does not take ownership of
// either argument. |memory| may be NULL, in which case dereferencing
// (^) will not be supported. |dictionary| may be NULL, but evaluation
// will fail in that case unless set_dictionary is used before calling
// Evaluate.
PostfixEvaluator(DictionaryType *dictionary, const MemoryRegion *memory)
diff --git a/src/processor/postfix_evaluator_unittest.cc b/src/processor/postfix_evaluator_unittest.cc
--- a/src/processor/postfix_evaluator_unittest.cc
+++ b/src/processor/postfix_evaluator_unittest.cc
@@ -178,22 +178,22 @@
validate_data_0[ToUniqueString("$rAdd3")] = 4;
validate_data_0[ToUniqueString("$rMul2")] = 54;
// The second test set simulates a couple of MSVC program strings.
// The data is fudged a little bit because the tests use FakeMemoryRegion
// instead of a real stack snapshot, but the program strings are real and
// the implementation doesn't know or care that the data is not real.
PostfixEvaluator<unsigned int>::DictionaryType dictionary_1;
- dictionary_1[ustr__ZSebp()] = 0xbfff0010;
- dictionary_1[ustr__ZSeip()] = 0x10000000;
- dictionary_1[ustr__ZSesp()] = 0xbfff0000;
- dictionary_1[ustr__ZDcbSavedRegs()] = 4;
- dictionary_1[ustr__ZDcbParams()] = 4;
- dictionary_1[ustr__ZDraSearchStart()] = 0xbfff0020;
+ dictionary_1.set(ustr__ZSebp(), 0xbfff0010);
+ dictionary_1.set(ustr__ZSeip(), 0x10000000);
+ dictionary_1.set(ustr__ZSesp(), 0xbfff0000);
+ dictionary_1.set(ustr__ZDcbSavedRegs(), 4);
+ dictionary_1.set(ustr__ZDcbParams(), 4);
+ dictionary_1.set(ustr__ZDraSearchStart(), 0xbfff0020);
const EvaluateTest evaluate_tests_1[] = {
{ "$T0 $ebp = $eip $T0 4 + ^ = $ebp $T0 ^ = $esp $T0 8 + = "
"$L $T0 .cbSavedRegs - = $P $T0 8 + .cbParams + =", true },
// Intermediate state: $T0 = 0xbfff0010, $eip = 0xbfff0015,
// $ebp = 0xbfff0011, $esp = 0xbfff0018,
// $L = 0xbfff000c, $P = 0xbfff001c
{ "$T0 $ebp = $eip $T0 4 + ^ = $ebp $T0 ^ = $esp $T0 8 + = "
"$L $T0 .cbSavedRegs - = $P $T0 8 + .cbParams + = $ebx $T0 28 - ^ =",
@@ -273,70 +273,65 @@
for (map<const UniqueString*, unsigned int>::const_iterator
validate_iterator =
evaluate_test_set->validate_data->begin();
validate_iterator != evaluate_test_set->validate_data->end();
++validate_iterator) {
const UniqueString* identifier = validate_iterator->first;
unsigned int expected_value = validate_iterator->second;
- map<const UniqueString*, unsigned int>::const_iterator
- dictionary_iterator =
- evaluate_test_set->dictionary->find(identifier);
-
// The identifier must exist in the dictionary.
- if (dictionary_iterator == evaluate_test_set->dictionary->end()) {
+ if (!evaluate_test_set->dictionary->have(identifier)) {
fprintf(stderr, "FAIL: evaluate test set %d/%d, "
"validate identifier \"%s\", "
"expected %d, observed not found\n",
evaluate_test_set_index, evaluate_test_set_count,
FromUniqueString(identifier), expected_value);
return false;
}
// The value in the dictionary must be the same as the expected value.
- unsigned int observed_value = dictionary_iterator->second;
+ unsigned int observed_value =
+ evaluate_test_set->dictionary->get(identifier);
if (expected_value != observed_value) {
fprintf(stderr, "FAIL: evaluate test set %d/%d, "
"validate identifier \"%s\", "
"expected %d, observed %d\n",
evaluate_test_set_index, evaluate_test_set_count,
FromUniqueString(identifier), expected_value, observed_value);
return false;
}
// The value must be set in the "assigned" dictionary if it was a
// variable. It must not have been assigned if it was a constant.
bool expected_assigned = FromUniqueString(identifier)[0] == '$';
bool observed_assigned = false;
- PostfixEvaluator<unsigned int>::DictionaryValidityType::const_iterator
- iterator_assigned = assigned.find(identifier);
- if (iterator_assigned != assigned.end()) {
- observed_assigned = iterator_assigned->second;
+ if (assigned.have(identifier)) {
+ observed_assigned = assigned.get(identifier);
}
if (expected_assigned != observed_assigned) {
fprintf(stderr, "FAIL: evaluate test set %d/%d, "
"validate assignment of \"%s\", "
"expected %d, observed %d\n",
evaluate_test_set_index, evaluate_test_set_count,
FromUniqueString(identifier), expected_assigned,
observed_assigned);
return false;
}
}
}
// EvaluateForValue tests.
PostfixEvaluator<unsigned int>::DictionaryType dictionary_2;
- dictionary_2[ustr__ZSebp()] = 0xbfff0010;
- dictionary_2[ustr__ZSeip()] = 0x10000000;
- dictionary_2[ustr__ZSesp()] = 0xbfff0000;
- dictionary_2[ustr__ZDcbSavedRegs()] = 4;
- dictionary_2[ustr__ZDcbParams()] = 4;
- dictionary_2[ustr__ZDraSearchStart()] = 0xbfff0020;
+ dictionary_2.set(ustr__ZSebp(), 0xbfff0010);
+ dictionary_2.set(ustr__ZSeip(), 0x10000000);
+ dictionary_2.set(ustr__ZSesp(), 0xbfff0000);
+ dictionary_2.set(ustr__ZDcbSavedRegs(), 4);
+ dictionary_2.set(ustr__ZDcbParams(), 4);
+ dictionary_2.set(ustr__ZDraSearchStart(), 0xbfff0020);
const EvaluateForValueTest evaluate_for_value_tests_2[] = {
{ "28907223", true, 28907223 }, // simple constant
{ "89854293 40010015 +", true, 89854293 + 40010015 }, // arithmetic
{ "-870245 8769343 +", true, 7899098 }, // negative constants
{ "$ebp $esp - $eip +", true, 0x10000010 }, // variable references
{ "18929794 34015074", false, 0 }, // too many values
{ "$ebp $ebp 4 - =", false, 0 }, // too few values
{ "$new $eip = $new", true, 0x10000000 }, // make new variable
@@ -370,41 +365,43 @@
if (test->evaluable && result != test->value) {
fprintf(stderr, "FAIL: evaluate for value test %d, "
"expected value to be 0x%x, but it was 0x%x\n",
i, test->value, result);
return false;
}
}
+ map<const UniqueString*, unsigned int> dictionary_2_map;
+ dictionary_2.copy_to_map(&dictionary_2_map);
for (map<const UniqueString*, unsigned int>::iterator v =
validate_data_2.begin();
v != validate_data_2.end(); v++) {
map<const UniqueString*, unsigned int>::iterator a =
- dictionary_2.find(v->first);
- if (a == dictionary_2.end()) {
+ dictionary_2_map.find(v->first);
+ if (a == dictionary_2_map.end()) {
fprintf(stderr, "FAIL: evaluate for value dictionary check: "
"expected dict[\"%s\"] to be 0x%x, but it was unset\n",
FromUniqueString(v->first), v->second);
return false;
} else if (a->second != v->second) {
fprintf(stderr, "FAIL: evaluate for value dictionary check: "
"expected dict[\"%s\"] to be 0x%x, but it was 0x%x\n",
FromUniqueString(v->first), v->second, a->second);
return false;
- }
- dictionary_2.erase(a);
+ }
+ dictionary_2_map.erase(a);
}
-
+
map<const UniqueString*, unsigned int>::iterator remaining =
- dictionary_2.begin();
- if (remaining != dictionary_2.end()) {
+ dictionary_2_map.begin();
+ if (remaining != dictionary_2_map.end()) {
fprintf(stderr, "FAIL: evaluation of test expressions put unexpected "
"values in dictionary:\n");
- for (; remaining != dictionary_2.end(); remaining++)
+ for (; remaining != dictionary_2_map.end(); remaining++)
fprintf(stderr, " dict[\"%s\"] == 0x%x\n",
FromUniqueString(remaining->first), remaining->second);
return false;
}
return true;
}
diff --git a/src/processor/stackwalker_arm.cc b/src/processor/stackwalker_arm.cc
--- a/src/processor/stackwalker_arm.cc
+++ b/src/processor/stackwalker_arm.cc
@@ -97,70 +97,70 @@
ToUniqueString("fps"), ToUniqueString("cpsr"),
NULL
};
// Populate a dictionary with the valid register values in last_frame.
CFIFrameInfo::RegisterValueMap<uint32_t> callee_registers;
for (int i = 0; register_names[i]; i++)
if (last_frame->context_validity & StackFrameARM::RegisterValidFlag(i))
- callee_registers[register_names[i]] = last_frame->context.iregs[i];
+ callee_registers.set(register_names[i], last_frame->context.iregs[i]);
// Use the STACK CFI data to recover the caller's register values.
CFIFrameInfo::RegisterValueMap<uint32_t> caller_registers;
if (!cfi_frame_info->FindCallerRegs(callee_registers, *memory_,
&caller_registers))
return NULL;
// Construct a new stack frame given the values the CFI recovered.
scoped_ptr<StackFrameARM> frame(new StackFrameARM());
for (int i = 0; register_names[i]; i++) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::iterator entry =
- caller_registers.find(register_names[i]);
- if (entry != caller_registers.end()) {
+ bool found = false;
+ uint32_t v = caller_registers.get(&found, register_names[i]);
+ if (found) {
// We recovered the value of this register; fill the context with the
// value from caller_registers.
frame->context_validity |= StackFrameARM::RegisterValidFlag(i);
- frame->context.iregs[i] = entry->second;
+ frame->context.iregs[i] = v;
} else if (4 <= i && i <= 11 && (last_frame->context_validity &
StackFrameARM::RegisterValidFlag(i))) {
// If the STACK CFI data doesn't mention some callee-saves register, and
// it is valid in the callee, assume the callee has not yet changed it.
// Registers r4 through r11 are callee-saves, according to the Procedure
// Call Standard for the ARM Architecture, which the Linux ABI follows.
frame->context_validity |= StackFrameARM::RegisterValidFlag(i);
frame->context.iregs[i] = last_frame->context.iregs[i];
}
}
// If the CFI doesn't recover the PC explicitly, then use .ra.
if (!(frame->context_validity & StackFrameARM::CONTEXT_VALID_PC)) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::iterator entry =
- caller_registers.find(ustr__ZDra());
- if (entry != caller_registers.end()) {
+ bool found = false;
+ uint32_t v = caller_registers.get(&found, ustr__ZDra());
+ if (found) {
if (fp_register_ == -1) {
frame->context_validity |= StackFrameARM::CONTEXT_VALID_PC;
- frame->context.iregs[MD_CONTEXT_ARM_REG_PC] = entry->second;
+ frame->context.iregs[MD_CONTEXT_ARM_REG_PC] = v;
} else {
// The CFI updated the link register and not the program counter.
// Handle getting the program counter from the link register.
frame->context_validity |= StackFrameARM::CONTEXT_VALID_PC;
frame->context_validity |= StackFrameARM::CONTEXT_VALID_LR;
- frame->context.iregs[MD_CONTEXT_ARM_REG_LR] = entry->second;
+ frame->context.iregs[MD_CONTEXT_ARM_REG_LR] = v;
frame->context.iregs[MD_CONTEXT_ARM_REG_PC] =
last_frame->context.iregs[MD_CONTEXT_ARM_REG_LR];
}
}
}
// If the CFI doesn't recover the SP explicitly, then use .cfa.
if (!(frame->context_validity & StackFrameARM::CONTEXT_VALID_SP)) {
- CFIFrameInfo::RegisterValueMap<uint32_t>::iterator entry =
- caller_registers.find(ustr__ZDcfa());
- if (entry != caller_registers.end()) {
+ bool found = false;
+ uint32_t v = caller_registers.get(&found, ustr__ZDcfa());
+ if (found) {
frame->context_validity |= StackFrameARM::CONTEXT_VALID_SP;
- frame->context.iregs[MD_CONTEXT_ARM_REG_SP] = entry->second;
+ frame->context.iregs[MD_CONTEXT_ARM_REG_SP] = v;
}
}
// If we didn't recover the PC and the SP, then the frame isn't very useful.
static const int essentials = (StackFrameARM::CONTEXT_VALID_SP
| StackFrameARM::CONTEXT_VALID_PC);
if ((frame->context_validity & essentials) != essentials)
return NULL;
diff --git a/src/processor/stackwalker_x86.cc b/src/processor/stackwalker_x86.cc
--- a/src/processor/stackwalker_x86.cc
+++ b/src/processor/stackwalker_x86.cc
@@ -194,26 +194,26 @@
}
}
// Set up the dictionary for the PostfixEvaluator. %ebp and %esp are used
// in each program string, and their previous values are known, so set them
// here.
PostfixEvaluator<uint32_t>::DictionaryType dictionary;
// Provide the current register values.
- dictionary[ustr__ZSebp()] = last_frame->context.ebp;
- dictionary[ustr__ZSesp()] = last_frame->context.esp;
+ dictionary.set(ustr__ZSebp(), last_frame->context.ebp);
+ dictionary.set(ustr__ZSesp(), last_frame->context.esp);
// Provide constants from the debug info for last_frame and its callee.
// .cbCalleeParams is a Breakpad extension that allows us to use the
// PostfixEvaluator engine when certain types of debugging information
// are present without having to write the constants into the program
// string as literals.
- dictionary[ustr__ZDcbCalleeParams()] = last_frame_callee_parameter_size;
- dictionary[ustr__ZDcbSavedRegs()] = last_frame_info->saved_register_size;
- dictionary[ustr__ZDcbLocals()] = last_frame_info->local_size;
+ dictionary.set(ustr__ZDcbCalleeParams(), last_frame_callee_parameter_size);
+ dictionary.set(ustr__ZDcbSavedRegs(), last_frame_info->saved_register_size);
+ dictionary.set(ustr__ZDcbLocals(), last_frame_info->local_size);
uint32_t raSearchStart = last_frame->context.esp +
last_frame_callee_parameter_size +
last_frame_info->local_size +
last_frame_info->saved_register_size;
uint32_t raSearchStartOld = raSearchStart;
uint32_t found = 0; // dummy value
@@ -232,20 +232,20 @@
// Skip one slot from the stack and do another scan in order to get the
// actual return address.
raSearchStart += 4;
ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3);
}
// The difference between raSearch and raSearchStart is unknown,
// but making them the same seems to work well in practice.
- dictionary[ustr__ZDraSearchStart()] = raSearchStart;
- dictionary[ustr__ZDraSearch()] = raSearchStart;
+ dictionary.set(ustr__ZDraSearchStart(), raSearchStart);
+ dictionary.set(ustr__ZDraSearch(), raSearchStart);
- dictionary[ustr__ZDcbParams()] = last_frame_info->parameter_size;
+ dictionary.set(ustr__ZDcbParams(), last_frame_info->parameter_size);
// Decide what type of program string to use. The program string is in
// postfix notation and will be passed to PostfixEvaluator::Evaluate.
// Given the dictionary and the program string, it is possible to compute
// the return address and the values of other registers in the calling
// function. Because of bugs described below, the stack may need to be
// scanned for these values. The results of program string evaluation
// will be used to determine whether to scan for better values.
@@ -325,18 +325,18 @@
}
// Now crank it out, making sure that the program string set at least the
// two required variables.
PostfixEvaluator<uint32_t> evaluator =
PostfixEvaluator<uint32_t>(&dictionary, memory_);
PostfixEvaluator<uint32_t>::DictionaryValidityType dictionary_validity;
if (!evaluator.Evaluate(program_string, &dictionary_validity) ||
- dictionary_validity.find(ustr__ZSeip()) == dictionary_validity.end() ||
- dictionary_validity.find(ustr__ZSesp()) == dictionary_validity.end()) {
+ !dictionary_validity.have(ustr__ZSeip()) ||
+ !dictionary_validity.have(ustr__ZSesp())) {
// Program string evaluation failed. It may be that %eip is not somewhere
// with stack frame info, and %ebp is pointing to non-stack memory, so
// our evaluation couldn't succeed. We'll scan the stack for a return
// address. This can happen if the stack is in a module for which
// we don't have symbols, and that module is compiled without a
// frame pointer.
uint32_t location_start = last_frame->context.esp;
uint32_t location, eip;
@@ -344,69 +344,70 @@
// if we can't find an instruction pointer even with stack scanning,
// give up.
return NULL;
}
// This seems like a reasonable return address. Since program string
// evaluation failed, use it and set %esp to the location above the
// one where the return address was found.
- dictionary[ustr__ZSeip()] = eip;
- dictionary[ustr__ZSesp()] = location + 4;
+ dictionary.set(ustr__ZSeip(), eip);
+ dictionary.set(ustr__ZSesp(), location + 4);
trust = StackFrame::FRAME_TRUST_SCAN;
}
// Since this stack frame did not use %ebp in a traditional way,
// locating the return address isn't entirely deterministic. In that
// case, the stack can be scanned to locate the return address.
//
// However, if program string evaluation resulted in both %eip and
// %ebp values of 0, trust that the end of the stack has been
// reached and don't scan for anything else.
- if (dictionary[ustr__ZSeip()] != 0 || dictionary[ustr__ZSebp()] != 0) {
+ if (dictionary.get(ustr__ZSeip()) != 0 ||
+ dictionary.get(ustr__ZSebp()) != 0) {
int offset = 0;
// This scan can only be done if a CodeModules object is available, to
// check that candidate return addresses are in fact inside a module.
//
// TODO(mmentovai): This ignores dynamically-generated code. One possible
// solution is to check the minidump's memory map to see if the candidate
// %eip value comes from a mapped executable page, although this would
// require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad
// client doesn't currently write (it would need to call MiniDumpWriteDump
// with the MiniDumpWithFullMemoryInfo type bit set). Even given this
// ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce
// an independent execute privilege on memory pages.
- uint32_t eip = dictionary[ustr__ZSeip()];
+ uint32_t eip = dictionary.get(ustr__ZSeip());
if (modules_ && !modules_->GetModuleForAddress(eip)) {
// The instruction pointer at .raSearchStart was invalid, so start
// looking one 32-bit word above that location.
- uint32_t location_start = dictionary[ustr__ZDraSearchStart()] + 4;
+ uint32_t location_start = dictionary.get(ustr__ZDraSearchStart()) + 4;
uint32_t location;
if (ScanForReturnAddress(location_start, &location, &eip)) {
// This is a better return address that what program string
// evaluation found. Use it, and set %esp to the location above the
// one where the return address was found.
- dictionary[ustr__ZSeip()] = eip;
- dictionary[ustr__ZSesp()] = location + 4;
+ dictionary.set(ustr__ZSeip(), eip);
+ dictionary.set(ustr__ZSesp(), location + 4);
offset = location - location_start;
trust = StackFrame::FRAME_TRUST_CFI_SCAN;
}
}
if (recover_ebp) {
// When trying to recover the previous value of the frame pointer (%ebp),
// start looking at the lowest possible address in the saved-register
// area, and look at the entire saved register area, increased by the
// size of |offset| to account for additional data that may be on the
// stack. The scan is performed from the highest possible address to
// the lowest, because the expectation is that the function's prolog
// would have saved %ebp early.
- uint32_t ebp = dictionary[ustr__ZSebp()];
+ uint32_t ebp = dictionary.get(ustr__ZSebp());
// When a scan for return address is used, it is possible to skip one or
// more frames (when return address is not in a known module). One
// indication for skipped frames is when the value of %ebp is lower than
// the location of the return address on the stack
bool has_skipped_frames =
(trust != StackFrame::FRAME_TRUST_CFI && ebp <= raSearchStart + offset);
@@ -420,49 +421,49 @@
location >= location_end;
location -= 4) {
if (!memory_->GetMemoryAtAddress(location, &ebp))
break;
if (memory_->GetMemoryAtAddress(ebp, &value)) {
// The candidate value is a pointer to the same memory region
// (the stack). Prefer it as a recovered %ebp result.
- dictionary[ustr__ZSebp()] = ebp;
+ dictionary.set(ustr__ZSebp(), ebp);
break;
}
}
}
}
}
// Create a new stack frame (ownership will be transferred to the caller)
// and fill it in.
StackFrameX86* frame = new StackFrameX86();
frame->trust = trust;
frame->context = last_frame->context;
- frame->context.eip = dictionary[ustr__ZSeip()];
- frame->context.esp = dictionary[ustr__ZSesp()];
- frame->context.ebp = dictionary[ustr__ZSebp()];
+ frame->context.eip = dictionary.get(ustr__ZSeip());
+ frame->context.esp = dictionary.get(ustr__ZSesp());
+ frame->context.ebp = dictionary.get(ustr__ZSebp());
frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
StackFrameX86::CONTEXT_VALID_ESP |
StackFrameX86::CONTEXT_VALID_EBP;
// These are nonvolatile (callee-save) registers, and the program string
// may have filled them in.
- if (dictionary_validity.find(ustr__ZSebx()) != dictionary_validity.end()) {
- frame->context.ebx = dictionary[ustr__ZSebx()];
+ if (dictionary_validity.have(ustr__ZSebx())) {
+ frame->context.ebx = dictionary.get(ustr__ZSebx());
frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX;
}
- if (dictionary_validity.find(ustr__ZSesi()) != dictionary_validity.end()) {
- frame->context.esi = dictionary[ustr__ZSesi()];
+ if (dictionary_validity.have(ustr__ZSesi())) {
+ frame->context.esi = dictionary.get(ustr__ZSesi());
frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI;
}
- if (dictionary_validity.find(ustr__ZSedi()) != dictionary_validity.end()) {
- frame->context.edi = dictionary[ustr__ZSedi()];
+ if (dictionary_validity.have(ustr__ZSedi())) {
+ frame->context.edi = dictionary.get(ustr__ZSedi());
frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI;
}
return frame;
}
StackFrameX86* StackwalkerX86::GetCallerByCFIFrameInfo(
const vector<StackFrame*> &frames,