tenfourfox/gfx/layers/ImageContainer.cpp

665 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ImageContainer.h"
#include <string.h> // for memcpy, memset
#include "GLImages.h" // for SurfaceTextureImage
#include "gfx2DGlue.h"
#include "gfxPlatform.h" // for gfxPlatform
#include "gfxUtils.h" // for gfxUtils
#include "mozilla/RefPtr.h" // for already_AddRefed
#include "mozilla/ipc/CrossProcessMutex.h" // for CrossProcessMutex, etc
#include "mozilla/layers/CompositorTypes.h"
#include "mozilla/layers/ImageBridgeChild.h" // for ImageBridgeChild
#include "mozilla/layers/PImageContainerChild.h"
#include "mozilla/layers/ImageClient.h" // for ImageClient
#include "mozilla/layers/LayersMessages.h"
#include "mozilla/layers/SharedPlanarYCbCrImage.h"
#include "mozilla/layers/SharedRGBImage.h"
#include "nsISupportsUtils.h" // for NS_IF_ADDREF
#include "YCbCrUtils.h" // for YCbCr conversions
#ifdef MOZ_WIDGET_GONK
#include "GrallocImages.h"
#endif
#if defined(MOZ_WIDGET_GONK) && defined(MOZ_B2G_CAMERA) && defined(MOZ_WEBRTC)
#include "GonkCameraImage.h"
#endif
#include "gfx2DGlue.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/CheckedInt.h"
#ifdef XP_MACOSX
#include "mozilla/gfx/QuartzSupport.h"
#endif
#ifdef XP_WIN
#include "gfxWindowsPlatform.h"
#include <d3d10_1.h>
#endif
namespace mozilla {
namespace layers {
using namespace mozilla::ipc;
using namespace android;
using namespace mozilla::gfx;
Atomic<int32_t> Image::sSerialCounter(0);
Atomic<uint32_t> ImageContainer::sGenerationCounter(0);
RefPtr<PlanarYCbCrImage>
ImageFactory::CreatePlanarYCbCrImage(const gfx::IntSize& aScaleHint, BufferRecycleBin *aRecycleBin)
{
return new RecyclingPlanarYCbCrImage(aRecycleBin);
}
BufferRecycleBin::BufferRecycleBin()
: mLock("mozilla.layers.BufferRecycleBin.mLock")
{
}
void
BufferRecycleBin::RecycleBuffer(UniquePtr<uint8_t[]> aBuffer, uint32_t aSize)
{
MutexAutoLock lock(mLock);
if (!mRecycledBuffers.IsEmpty() && aSize != mRecycledBufferSize) {
mRecycledBuffers.Clear();
}
mRecycledBufferSize = aSize;
mRecycledBuffers.AppendElement(Move(aBuffer));
}
UniquePtr<uint8_t[]>
BufferRecycleBin::GetBuffer(uint32_t aSize)
{
MutexAutoLock lock(mLock);
if (mRecycledBuffers.IsEmpty() || mRecycledBufferSize != aSize)
return MakeUnique<uint8_t[]>(aSize);
uint32_t last = mRecycledBuffers.Length() - 1;
UniquePtr<uint8_t[]> result = Move(mRecycledBuffers[last]);
mRecycledBuffers.RemoveElementAt(last);
return result;
}
/**
* The child side of PImageContainer. It's best to avoid ImageContainer filling
* this role since IPDL objects should be associated with a single thread and
* ImageContainer definitely isn't. This object belongs to (and is always
* destroyed on) the ImageBridge thread, except when we need to destroy it
* during shutdown.
* An ImageContainer owns one of these; we have a weak reference to our
* ImageContainer.
*/
class ImageContainerChild : public PImageContainerChild {
public:
explicit ImageContainerChild(ImageContainer* aImageContainer)
: mLock("ImageContainerChild"), mImageContainer(aImageContainer) {}
void ForgetImageContainer()
{
MutexAutoLock lock(mLock);
mImageContainer = nullptr;
}
// This protects mImageContainer. This is always taken before the
// mImageContainer's monitor (when both need to be held).
Mutex mLock;
ImageContainer* mImageContainer;
};
ImageContainer::ImageContainer(Mode flag)
: mReentrantMonitor("ImageContainer.mReentrantMonitor"),
mGenerationCounter(++sGenerationCounter),
mPaintCount(0),
mDroppedImageCount(0),
mImageFactory(new ImageFactory()),
mRecycleBin(new BufferRecycleBin()),
mImageClient(nullptr),
mCurrentProducerID(-1),
mIPDLChild(nullptr)
{
if (ImageBridgeChild::IsCreated()) {
// the refcount of this ImageClient is 1. we don't use a RefPtr here because the refcount
// of this class must be done on the ImageBridge thread.
switch (flag) {
case SYNCHRONOUS:
break;
case ASYNCHRONOUS:
mIPDLChild = new ImageContainerChild(this);
mImageClient = ImageBridgeChild::GetSingleton()->CreateImageClient(CompositableType::IMAGE, this).take();
MOZ_ASSERT(mImageClient);
break;
case ASYNCHRONOUS_OVERLAY:
mIPDLChild = new ImageContainerChild(this);
mImageClient = ImageBridgeChild::GetSingleton()->CreateImageClient(CompositableType::IMAGE_OVERLAY, this).take();
MOZ_ASSERT(mImageClient);
break;
default:
MOZ_ASSERT(false, "This flag is invalid.");
break;
}
}
}
ImageContainer::~ImageContainer()
{
if (IsAsync()) {
mIPDLChild->ForgetImageContainer();
ImageBridgeChild::DispatchReleaseImageClient(mImageClient, mIPDLChild);
}
}
RefPtr<PlanarYCbCrImage>
ImageContainer::CreatePlanarYCbCrImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mImageClient && mImageClient->AsImageClientSingle()) {
return new SharedPlanarYCbCrImage(mImageClient);
}
return mImageFactory->CreatePlanarYCbCrImage(mScaleHint, mRecycleBin);
}
RefPtr<SharedRGBImage>
ImageContainer::CreateSharedRGBImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (!mImageClient || !mImageClient->AsImageClientSingle()) {
return nullptr;
}
return new SharedRGBImage(mImageClient);
}
#ifdef MOZ_WIDGET_GONK
RefPtr<OverlayImage>
ImageContainer::CreateOverlayImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mImageClient && mImageClient->GetTextureInfo().mCompositableType != CompositableType::IMAGE_OVERLAY) {
// If this ImageContainer is async but the image type mismatch, fix it here
if (ImageBridgeChild::IsCreated()) {
ImageBridgeChild::DispatchReleaseImageClient(mImageClient);
mImageClient = ImageBridgeChild::GetSingleton()->CreateImageClient(
CompositableType::IMAGE_OVERLAY, this).take();
}
}
return new OverlayImage();
}
#endif
void
ImageContainer::SetCurrentImageInternal(const nsTArray<NonOwningImage>& aImages)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
mGenerationCounter = ++sGenerationCounter;
if (!aImages.IsEmpty()) {
NS_ASSERTION(mCurrentImages.IsEmpty() ||
mCurrentImages[0].mProducerID != aImages[0].mProducerID ||
mCurrentImages[0].mFrameID <= aImages[0].mFrameID,
"frame IDs shouldn't go backwards");
if (aImages[0].mProducerID != mCurrentProducerID) {
mFrameIDsNotYetComposited.Clear();
mCurrentProducerID = aImages[0].mProducerID;
} else if (!aImages[0].mTimeStamp.IsNull()) {
// Check for expired frames
for (auto& img : mCurrentImages) {
if (img.mProducerID != aImages[0].mProducerID ||
img.mTimeStamp.IsNull() ||
img.mTimeStamp >= aImages[0].mTimeStamp) {
break;
}
if (!img.mComposited && !img.mTimeStamp.IsNull() &&
img.mFrameID != aImages[0].mFrameID) {
mFrameIDsNotYetComposited.AppendElement(img.mFrameID);
}
}
// Remove really old frames, assuming they'll never be composited.
const uint32_t maxFrames = 100;
if (mFrameIDsNotYetComposited.Length() > maxFrames) {
uint32_t dropFrames = mFrameIDsNotYetComposited.Length() - maxFrames;
mDroppedImageCount += dropFrames;
mFrameIDsNotYetComposited.RemoveElementsAt(0, dropFrames);
}
}
}
nsTArray<OwningImage> newImages;
for (uint32_t i = 0; i < aImages.Length(); ++i) {
NS_ASSERTION(aImages[i].mImage, "image can't be null");
NS_ASSERTION(!aImages[i].mTimeStamp.IsNull() || aImages.Length() == 1,
"Multiple images require timestamps");
if (i > 0) {
NS_ASSERTION(aImages[i].mTimeStamp >= aImages[i - 1].mTimeStamp,
"Timestamps must not decrease");
NS_ASSERTION(aImages[i].mFrameID > aImages[i - 1].mFrameID,
"FrameIDs must increase");
NS_ASSERTION(aImages[i].mProducerID == aImages[i - 1].mProducerID,
"ProducerIDs must be the same");
}
OwningImage* img = newImages.AppendElement();
img->mImage = aImages[i].mImage;
img->mTimeStamp = aImages[i].mTimeStamp;
img->mFrameID = aImages[i].mFrameID;
img->mProducerID = aImages[i].mProducerID;
for (auto& oldImg : mCurrentImages) {
if (oldImg.mFrameID == img->mFrameID &&
oldImg.mProducerID == img->mProducerID) {
img->mComposited = oldImg.mComposited;
break;
}
}
}
mCurrentImages.SwapElements(newImages);
}
void
ImageContainer::ClearImagesFromImageBridge()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
SetCurrentImageInternal(nsTArray<NonOwningImage>());
}
void
ImageContainer::SetCurrentImages(const nsTArray<NonOwningImage>& aImages)
{
MOZ_ASSERT(!aImages.IsEmpty());
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (IsAsync()) {
ImageBridgeChild::DispatchImageClientUpdate(mImageClient, this);
}
SetCurrentImageInternal(aImages);
}
void
ImageContainer::ClearAllImages()
{
if (IsAsync()) {
// Let ImageClient release all TextureClients. This doesn't return
// until ImageBridge has called ClearCurrentImageFromImageBridge.
ImageBridgeChild::FlushAllImages(mImageClient, this);
return;
}
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
SetCurrentImageInternal(nsTArray<NonOwningImage>());
}
void
ImageContainer::SetCurrentImageInTransaction(Image *aImage)
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
NS_ASSERTION(!mImageClient, "Should use async image transfer with ImageBridge.");
nsAutoTArray<NonOwningImage,1> images;
images.AppendElement(NonOwningImage(aImage));
SetCurrentImageInternal(images);
}
bool ImageContainer::IsAsync() const
{
return mImageClient != nullptr;
}
uint64_t ImageContainer::GetAsyncContainerID() const
{
NS_ASSERTION(IsAsync(),"Shared image ID is only relevant to async ImageContainers");
if (IsAsync()) {
return mImageClient->GetAsyncID();
} else {
return 0; // zero is always an invalid AsyncID
}
}
bool
ImageContainer::HasCurrentImage()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
return !mCurrentImages.IsEmpty();
}
void
ImageContainer::GetCurrentImages(nsTArray<OwningImage>* aImages,
uint32_t* aGenerationCounter)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
*aImages = mCurrentImages;
if (aGenerationCounter) {
*aGenerationCounter = mGenerationCounter;
}
}
gfx::IntSize
ImageContainer::GetCurrentSize()
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (mCurrentImages.IsEmpty()) {
return gfx::IntSize(0, 0);
}
return mCurrentImages[0].mImage->GetSize();
}
void
ImageContainer::NotifyCompositeInternal(const ImageCompositeNotification& aNotification)
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
// An image composition notification is sent the first time a particular
// image is composited by an ImageHost. Thus, every time we receive such
// a notification, a new image has been painted.
++mPaintCount;
if (aNotification.producerID() == mCurrentProducerID) {
uint32_t i;
for (i = 0; i < mFrameIDsNotYetComposited.Length(); ++i) {
if (mFrameIDsNotYetComposited[i] <= aNotification.frameID()) {
if (mFrameIDsNotYetComposited[i] < aNotification.frameID()) {
++mDroppedImageCount;
}
} else {
break;
}
}
mFrameIDsNotYetComposited.RemoveElementsAt(0, i);
for (auto& img : mCurrentImages) {
if (img.mFrameID == aNotification.frameID()) {
img.mComposited = true;
}
}
}
if (!aNotification.imageTimeStamp().IsNull()) {
mPaintDelay = aNotification.firstCompositeTimeStamp() -
aNotification.imageTimeStamp();
}
}
PlanarYCbCrImage::PlanarYCbCrImage()
: Image(nullptr, ImageFormat::PLANAR_YCBCR)
, mOffscreenFormat(gfxImageFormat::Unknown)
, mBufferSize(0)
{
}
RecyclingPlanarYCbCrImage::~RecyclingPlanarYCbCrImage()
{
if (mBuffer) {
mRecycleBin->RecycleBuffer(Move(mBuffer), mBufferSize);
}
}
size_t
RecyclingPlanarYCbCrImage::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
// Ignoring:
// - mData - just wraps mBuffer
// - Surfaces should be reported under gfx-surfaces-*:
// - mSourceSurface
// - Base class:
// - mImplData is not used
// Not owned:
// - mRecycleBin
size_t size = aMallocSizeOf(mBuffer.get());
// Could add in the future:
// - mBackendData (from base class)
return size;
}
UniquePtr<uint8_t[]>
RecyclingPlanarYCbCrImage::AllocateBuffer(uint32_t aSize)
{
return mRecycleBin->GetBuffer(aSize);
}
static void
CopyPlane(uint8_t *aDst, const uint8_t *aSrc,
const gfx::IntSize &aSize, int32_t aStride, int32_t aSkip)
{
int32_t height = aSize.height;
int32_t width = aSize.width;
MOZ_RELEASE_ASSERT(width <= aStride);
if (!aSkip) {
// Fast path: planar input.
memcpy(aDst, aSrc, height * aStride);
} else {
for (int y = 0; y < height; ++y) {
const uint8_t *src = aSrc;
uint8_t *dst = aDst;
// Slow path
for (int x = 0; x < width; ++x) {
*dst++ = *src++;
src += aSkip;
}
aSrc += aStride;
aDst += aStride;
}
}
}
bool
RecyclingPlanarYCbCrImage::CopyData(const Data& aData)
{
// update buffer size
// Use uint32_t throughout to match AllocateBuffer's param and mBufferSize
const auto checkedSize =
CheckedInt<uint32_t>(aData.mCbCrStride) * aData.mCbCrSize.height * 2 +
CheckedInt<uint32_t>(aData.mYStride) * aData.mYSize.height;
if (!checkedSize.isValid())
return false;
const auto size = checkedSize.value();
// get new buffer
mBuffer = AllocateBuffer(size);
if (MOZ_UNLIKELY(!mBuffer))
return false;
// update buffer size
mBufferSize = size;
mData = aData;
mData.mYChannel = mBuffer.get();
mData.mCbChannel = mData.mYChannel + mData.mYStride * mData.mYSize.height;
mData.mCrChannel = mData.mCbChannel + mData.mCbCrStride * mData.mCbCrSize.height;
mData.mYSkip = mData.mCbSkip = mData.mCrSkip = 0;
CopyPlane(mData.mYChannel, aData.mYChannel,
aData.mYSize, aData.mYStride, aData.mYSkip);
CopyPlane(mData.mCbChannel, aData.mCbChannel,
aData.mCbCrSize, aData.mCbCrStride, aData.mCbSkip);
CopyPlane(mData.mCrChannel, aData.mCrChannel,
aData.mCbCrSize, aData.mCbCrStride, aData.mCrSkip);
mSize = aData.mPicSize;
return true;
}
bool
RecyclingPlanarYCbCrImage::SetData(const Data &aData)
{
return CopyData(aData);
}
gfxImageFormat
PlanarYCbCrImage::GetOffscreenFormat()
{
return mOffscreenFormat == gfxImageFormat::Unknown ?
gfxPlatform::GetPlatform()->GetOffscreenFormat() :
mOffscreenFormat;
}
bool
PlanarYCbCrImage::SetDataNoCopy(const Data &aData)
{
mData = aData;
mSize = aData.mPicSize;
return true;
}
uint8_t*
RecyclingPlanarYCbCrImage::AllocateAndGetNewBuffer(uint32_t aSize)
{
// get new buffer
mBuffer = AllocateBuffer(aSize);
if (mBuffer) {
// update buffer size
mBufferSize = aSize;
}
return mBuffer.get();
}
already_AddRefed<gfx::SourceSurface>
PlanarYCbCrImage::GetAsSourceSurface()
{
if (mSourceSurface) {
RefPtr<gfx::SourceSurface> surface(mSourceSurface);
return surface.forget();
}
gfx::IntSize size(mSize);
gfx::SurfaceFormat format = gfx::ImageFormatToSurfaceFormat(GetOffscreenFormat());
gfx::GetYCbCrToRGBDestFormatAndSize(mData, format, size);
if (mSize.width > PlanarYCbCrImage::MAX_DIMENSION ||
mSize.height > PlanarYCbCrImage::MAX_DIMENSION) {
NS_ERROR("Illegal image dest width or height");
return nullptr;
}
RefPtr<gfx::DataSourceSurface> surface = gfx::Factory::CreateDataSourceSurface(size, format);
if (NS_WARN_IF(!surface)) {
return nullptr;
}
DataSourceSurface::ScopedMap mapping(surface, DataSourceSurface::WRITE);
if (NS_WARN_IF(!mapping.IsMapped())) {
return nullptr;
}
gfx::ConvertYCbCrToRGB(mData, format, size, mapping.GetData(), mapping.GetStride());
mSourceSurface = surface;
return surface.forget();
}
CairoImage::CairoImage(const gfx::IntSize& aSize, gfx::SourceSurface* aSourceSurface)
: Image(nullptr, ImageFormat::CAIRO_SURFACE),
mSize(aSize),
mSourceSurface(aSourceSurface)
{}
CairoImage::~CairoImage()
{
}
TextureClient*
CairoImage::GetTextureClient(CompositableClient *aClient)
{
if (!aClient) {
return nullptr;
}
CompositableForwarder* forwarder = aClient->GetForwarder();
RefPtr<TextureClient> textureClient = mTextureClients.Get(forwarder->GetSerial());
if (textureClient) {
return textureClient;
}
RefPtr<SourceSurface> surface = GetAsSourceSurface();
MOZ_ASSERT(surface);
if (!surface) {
return nullptr;
}
// XXX windows' TextureClients do not hold ISurfaceAllocator,
// recycler does not work on windows.
#ifndef XP_WIN
// XXX only gonk ensure when TextureClient is recycled,
// TextureHost is not used by CompositableHost.
#ifdef MOZ_WIDGET_GONK
RefPtr<TextureClientRecycleAllocator> recycler =
aClient->GetTextureClientRecycler();
if (recycler) {
textureClient =
recycler->CreateOrRecycle(surface->GetFormat(),
surface->GetSize(),
BackendSelector::Content,
aClient->GetTextureFlags());
}
#endif
#endif
if (!textureClient) {
// gfx::BackendType::NONE means default to content backend
textureClient = aClient->CreateTextureClientForDrawing(surface->GetFormat(),
surface->GetSize(),
BackendSelector::Content,
TextureFlags::DEFAULT);
}
if (!textureClient) {
return nullptr;
}
TextureClientAutoLock autoLock(textureClient, OpenMode::OPEN_WRITE_ONLY);
if (!autoLock.Succeeded()) {
return nullptr;
}
textureClient->UpdateFromSurface(surface);
textureClient->SyncWithObject(forwarder->GetSyncObject());
mTextureClients.Put(forwarder->GetSerial(), textureClient);
return textureClient;
}
PImageContainerChild*
ImageContainer::GetPImageContainerChild()
{
return mIPDLChild;
}
/* static */ void
ImageContainer::NotifyComposite(const ImageCompositeNotification& aNotification)
{
ImageContainerChild* child =
static_cast<ImageContainerChild*>(aNotification.imageContainerChild());
if (child) {
MutexAutoLock lock(child->mLock);
if (child->mImageContainer) {
child->mImageContainer->NotifyCompositeInternal(aNotification);
}
}
}
ImageContainer::ProducerID
ImageContainer::AllocateProducerID()
{
// Callable on all threads.
static Atomic<ImageContainer::ProducerID> sProducerID(0u);
return ++sProducerID;
}
} // namespace layers
} // namespace mozilla