tenfourfox/dom/media/webaudio/ScriptProcessorNode.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

571 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ScriptProcessorNode.h"
#include "mozilla/dom/ScriptProcessorNodeBinding.h"
#include "AudioBuffer.h"
#include "AudioDestinationNode.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "AudioProcessingEvent.h"
#include "WebAudioUtils.h"
#include "mozilla/dom/ScriptSettings.h"
#include "mozilla/Mutex.h"
#include "mozilla/PodOperations.h"
#include <deque>
namespace mozilla {
namespace dom {
// The maximum latency, in seconds, that we can live with before dropping
// buffers.
static const float MAX_LATENCY_S = 0.5;
NS_IMPL_ISUPPORTS_INHERITED0(ScriptProcessorNode, AudioNode)
// This class manages a queue of output buffers shared between
// the main thread and the Media Stream Graph thread.
class SharedBuffers final
{
private:
class OutputQueue final
{
public:
explicit OutputQueue(const char* aName)
: mMutex(aName)
{}
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
mMutex.AssertCurrentThreadOwns();
size_t amount = 0;
for (size_t i = 0; i < mBufferList.size(); i++) {
amount += mBufferList[i].SizeOfExcludingThis(aMallocSizeOf, false);
}
return amount;
}
Mutex& Lock() const { return const_cast<OutputQueue*>(this)->mMutex; }
size_t ReadyToConsume() const
{
// Accessed on both main thread and media graph thread.
mMutex.AssertCurrentThreadOwns();
return mBufferList.size();
}
// Produce one buffer
AudioChunk& Produce()
{
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(NS_IsMainThread());
mBufferList.push_back(AudioChunk());
return mBufferList.back();
}
// Consumes one buffer.
AudioChunk Consume()
{
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!NS_IsMainThread());
MOZ_ASSERT(ReadyToConsume() > 0);
AudioChunk front = mBufferList.front();
mBufferList.pop_front();
return front;
}
// Empties the buffer queue.
void Clear()
{
mMutex.AssertCurrentThreadOwns();
mBufferList.clear();
}
private:
typedef std::deque<AudioChunk> BufferList;
// Synchronizes access to mBufferList. Note that it's the responsibility
// of the callers to perform the required locking, and we assert that every
// time we access mBufferList.
Mutex mMutex;
// The list representing the queue.
BufferList mBufferList;
};
public:
explicit SharedBuffers(float aSampleRate)
: mOutputQueue("SharedBuffers::outputQueue")
, mDelaySoFar(STREAM_TIME_MAX)
, mSampleRate(aSampleRate)
, mLatency(0.0)
, mDroppingBuffers(false)
{
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = aMallocSizeOf(this);
{
MutexAutoLock lock(mOutputQueue.Lock());
amount += mOutputQueue.SizeOfExcludingThis(aMallocSizeOf);
}
return amount;
}
// main thread
void FinishProducingOutputBuffer(ThreadSharedFloatArrayBufferList* aBuffer,
uint32_t aBufferSize)
{
MOZ_ASSERT(NS_IsMainThread());
TimeStamp now = TimeStamp::Now();
if (mLastEventTime.IsNull()) {
mLastEventTime = now;
} else {
// When main thread blocking has built up enough so
// |mLatency > MAX_LATENCY_S|, frame dropping starts. It continues until
// the output buffer is completely empty, at which point the accumulated
// latency is also reset to 0.
// It could happen that the output queue becomes empty before the input
// node has fully caught up. In this case there will be events where
// |(now - mLastEventTime)| is very short, making mLatency negative.
// As this happens and the size of |mLatency| becomes greater than
// MAX_LATENCY_S, frame dropping starts again to maintain an as short
// output queue as possible.
float latency = (now - mLastEventTime).ToSeconds();
float bufferDuration = aBufferSize / mSampleRate;
mLatency += latency - bufferDuration;
mLastEventTime = now;
if (fabs(mLatency) > MAX_LATENCY_S) {
mDroppingBuffers = true;
}
}
MutexAutoLock lock(mOutputQueue.Lock());
if (mDroppingBuffers) {
if (mOutputQueue.ReadyToConsume()) {
return;
}
mDroppingBuffers = false;
mLatency = 0;
}
for (uint32_t offset = 0; offset < aBufferSize; offset += WEBAUDIO_BLOCK_SIZE) {
AudioChunk& chunk = mOutputQueue.Produce();
if (aBuffer) {
chunk.mDuration = WEBAUDIO_BLOCK_SIZE;
chunk.mBuffer = aBuffer;
chunk.mChannelData.SetLength(aBuffer->GetChannels());
for (uint32_t i = 0; i < aBuffer->GetChannels(); ++i) {
chunk.mChannelData[i] = aBuffer->GetData(i) + offset;
}
chunk.mVolume = 1.0f;
chunk.mBufferFormat = AUDIO_FORMAT_FLOAT32;
} else {
chunk.SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
}
// graph thread
AudioChunk GetOutputBuffer()
{
MOZ_ASSERT(!NS_IsMainThread());
AudioChunk buffer;
{
MutexAutoLock lock(mOutputQueue.Lock());
if (mOutputQueue.ReadyToConsume() > 0) {
if (mDelaySoFar == STREAM_TIME_MAX) {
mDelaySoFar = 0;
}
buffer = mOutputQueue.Consume();
} else {
// If we're out of buffers to consume, just output silence
buffer.SetNull(WEBAUDIO_BLOCK_SIZE);
if (mDelaySoFar != STREAM_TIME_MAX) {
// Remember the delay that we just hit
mDelaySoFar += WEBAUDIO_BLOCK_SIZE;
}
}
}
return buffer;
}
StreamTime DelaySoFar() const
{
MOZ_ASSERT(!NS_IsMainThread());
return mDelaySoFar == STREAM_TIME_MAX ? 0 : mDelaySoFar;
}
void Reset()
{
MOZ_ASSERT(!NS_IsMainThread());
mDelaySoFar = STREAM_TIME_MAX;
mLatency = 0.0f;
{
MutexAutoLock lock(mOutputQueue.Lock());
mOutputQueue.Clear();
}
mLastEventTime = TimeStamp();
}
private:
OutputQueue mOutputQueue;
// How much delay we've seen so far. This measures the amount of delay
// caused by the main thread lagging behind in producing output buffers.
// STREAM_TIME_MAX means that we have not received our first buffer yet.
StreamTime mDelaySoFar;
// The samplerate of the context.
float mSampleRate;
// This is the latency caused by the buffering. If this grows too high, we
// will drop buffers until it is acceptable.
float mLatency;
// This is the time at which we last produced a buffer, to detect if the main
// thread has been blocked.
TimeStamp mLastEventTime;
// True if we should be dropping buffers.
bool mDroppingBuffers;
};
class ScriptProcessorNodeEngine final : public AudioNodeEngine
{
public:
ScriptProcessorNodeEngine(ScriptProcessorNode* aNode,
AudioDestinationNode* aDestination,
uint32_t aBufferSize,
uint32_t aNumberOfInputChannels)
: AudioNodeEngine(aNode)
, mDestination(aDestination->Stream())
, mSharedBuffers(new SharedBuffers(mDestination->SampleRate()))
, mBufferSize(aBufferSize)
, mInputChannelCount(aNumberOfInputChannels)
, mInputWriteIndex(0)
{
}
SharedBuffers* GetSharedBuffers() const
{
return mSharedBuffers;
}
enum {
IS_CONNECTED,
};
virtual void SetInt32Parameter(uint32_t aIndex, int32_t aParam) override
{
switch (aIndex) {
case IS_CONNECTED:
mIsConnected = aParam;
break;
default:
NS_ERROR("Bad Int32Parameter");
} // End index switch.
}
virtual void ProcessBlock(AudioNodeStream* aStream,
GraphTime aFrom,
const AudioBlock& aInput,
AudioBlock* aOutput,
bool* aFinished) override
{
// This node is not connected to anything. Per spec, we don't fire the
// onaudioprocess event. We also want to clear out the input and output
// buffer queue, and output a null buffer.
if (!mIsConnected) {
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
mSharedBuffers->Reset();
mInputWriteIndex = 0;
return;
}
// The input buffer is allocated lazily when non-null input is received.
if (!aInput.IsNull() && !mInputBuffer) {
mInputBuffer = ThreadSharedFloatArrayBufferList::
Create(mInputChannelCount, mBufferSize, fallible);
if (mInputBuffer && mInputWriteIndex) {
// Zero leading for null chunks that were skipped.
for (uint32_t i = 0; i < mInputChannelCount; ++i) {
float* channelData = mInputBuffer->GetDataForWrite(i);
PodZero(channelData, mInputWriteIndex);
}
}
}
// First, record our input buffer, if its allocation succeeded.
uint32_t inputChannelCount = mInputBuffer ? mInputBuffer->GetChannels() : 0;
for (uint32_t i = 0; i < inputChannelCount; ++i) {
float* writeData = mInputBuffer->GetDataForWrite(i) + mInputWriteIndex;
if (aInput.IsNull()) {
PodZero(writeData, aInput.GetDuration());
} else {
MOZ_ASSERT(aInput.GetDuration() == WEBAUDIO_BLOCK_SIZE, "sanity check");
MOZ_ASSERT(aInput.ChannelCount() == inputChannelCount);
AudioBlockCopyChannelWithScale(static_cast<const float*>(aInput.mChannelData[i]),
aInput.mVolume, writeData);
}
}
mInputWriteIndex += aInput.GetDuration();
// Now, see if we have data to output
// Note that we need to do this before sending the buffer to the main
// thread so that our delay time is updated.
*aOutput = mSharedBuffers->GetOutputBuffer();
if (mInputWriteIndex >= mBufferSize) {
SendBuffersToMainThread(aStream, aFrom);
mInputWriteIndex -= mBufferSize;
}
}
virtual bool IsActive() const override
{
// Could return false when !mIsConnected after all output chunks produced
// by main thread events calling
// SharedBuffers::FinishProducingOutputBuffer() have been processed.
return true;
}
virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override
{
// Not owned:
// - mDestination (probably)
size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf);
amount += mSharedBuffers->SizeOfIncludingThis(aMallocSizeOf);
if (mInputBuffer) {
amount += mInputBuffer->SizeOfIncludingThis(aMallocSizeOf);
}
return amount;
}
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
private:
void SendBuffersToMainThread(AudioNodeStream* aStream, GraphTime aFrom)
{
MOZ_ASSERT(!NS_IsMainThread());
// we now have a full input buffer ready to be sent to the main thread.
StreamTime playbackTick = mDestination->GraphTimeToStreamTime(aFrom);
// Add the duration of the current sample
playbackTick += WEBAUDIO_BLOCK_SIZE;
// Add the delay caused by the main thread
playbackTick += mSharedBuffers->DelaySoFar();
// Compute the playback time in the coordinate system of the destination
double playbackTime = mDestination->StreamTimeToSeconds(playbackTick);
class Command final : public nsRunnable
{
public:
Command(AudioNodeStream* aStream,
already_AddRefed<ThreadSharedFloatArrayBufferList> aInputBuffer,
double aPlaybackTime)
: mStream(aStream)
, mInputBuffer(aInputBuffer)
, mPlaybackTime(aPlaybackTime)
{
}
NS_IMETHOD Run() override
{
RefPtr<ThreadSharedFloatArrayBufferList> output;
auto engine =
static_cast<ScriptProcessorNodeEngine*>(mStream->Engine());
{
auto node = static_cast<ScriptProcessorNode*>
(engine->NodeMainThread());
if (!node) {
return NS_OK;
}
if (node->HasListenersFor(nsGkAtoms::onaudioprocess)) {
output = DispatchAudioProcessEvent(node);
}
// The node may have been destroyed during event dispatch.
}
// Append it to our output buffer queue
engine->GetSharedBuffers()->
FinishProducingOutputBuffer(output, engine->mBufferSize);
return NS_OK;
}
// Returns the output buffers if set in event handlers.
ThreadSharedFloatArrayBufferList*
DispatchAudioProcessEvent(ScriptProcessorNode* aNode)
{
AudioContext* context = aNode->Context();
if (!context) {
return nullptr;
}
AutoJSAPI jsapi;
if (NS_WARN_IF(!jsapi.Init(aNode->GetOwner()))) {
return nullptr;
}
JSContext* cx = jsapi.cx();
uint32_t inputChannelCount = aNode->ChannelCount();
// Create the input buffer
RefPtr<AudioBuffer> inputBuffer;
if (mInputBuffer) {
ErrorResult rv;
inputBuffer =
AudioBuffer::Create(context, inputChannelCount,
aNode->BufferSize(), context->SampleRate(),
mInputBuffer.forget(), cx, rv);
if (rv.Failed()) {
return nullptr;
}
}
// Ask content to produce data in the output buffer
// Note that we always avoid creating the output buffer here, and we try to
// avoid creating the input buffer as well. The AudioProcessingEvent class
// knows how to lazily create them if needed once the script tries to access
// them. Otherwise, we may be able to get away without creating them!
RefPtr<AudioProcessingEvent> event =
new AudioProcessingEvent(aNode, nullptr, nullptr);
event->InitEvent(inputBuffer, inputChannelCount, mPlaybackTime);
aNode->DispatchTrustedEvent(event);
// Steal the output buffers if they have been set.
// Don't create a buffer if it hasn't been used to return output;
// FinishProducingOutputBuffer() will optimize output = null.
// GetThreadSharedChannelsForRate() may also return null after OOM.
if (event->HasOutputBuffer()) {
ErrorResult rv;
AudioBuffer* buffer = event->GetOutputBuffer(rv);
// HasOutputBuffer() returning true means that GetOutputBuffer()
// will not fail.
MOZ_ASSERT(!rv.Failed());
return buffer->GetThreadSharedChannelsForRate(cx);
}
return nullptr;
}
private:
RefPtr<AudioNodeStream> mStream;
RefPtr<ThreadSharedFloatArrayBufferList> mInputBuffer;
double mPlaybackTime;
};
NS_DispatchToMainThread(new Command(aStream, mInputBuffer.forget(),
playbackTime));
}
friend class ScriptProcessorNode;
AudioNodeStream* mDestination;
nsAutoPtr<SharedBuffers> mSharedBuffers;
RefPtr<ThreadSharedFloatArrayBufferList> mInputBuffer;
const uint32_t mBufferSize;
const uint32_t mInputChannelCount;
// The write index into the current input buffer
uint32_t mInputWriteIndex;
bool mIsConnected = false;
};
ScriptProcessorNode::ScriptProcessorNode(AudioContext* aContext,
uint32_t aBufferSize,
uint32_t aNumberOfInputChannels,
uint32_t aNumberOfOutputChannels)
: AudioNode(aContext,
aNumberOfInputChannels,
mozilla::dom::ChannelCountMode::Explicit,
mozilla::dom::ChannelInterpretation::Speakers)
, mBufferSize(aBufferSize ?
aBufferSize : // respect what the web developer requested
4096) // choose our own buffer size -- 4KB for now
, mNumberOfOutputChannels(aNumberOfOutputChannels)
{
MOZ_ASSERT(BufferSize() % WEBAUDIO_BLOCK_SIZE == 0, "Invalid buffer size");
ScriptProcessorNodeEngine* engine =
new ScriptProcessorNodeEngine(this,
aContext->Destination(),
BufferSize(),
aNumberOfInputChannels);
mStream = AudioNodeStream::Create(aContext, engine,
AudioNodeStream::NO_STREAM_FLAGS);
}
ScriptProcessorNode::~ScriptProcessorNode()
{
}
size_t
ScriptProcessorNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t
ScriptProcessorNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
void
ScriptProcessorNode::EventListenerAdded(nsIAtom* aType)
{
AudioNode::EventListenerAdded(aType);
if (aType == nsGkAtoms::onaudioprocess) {
UpdateConnectedStatus();
}
}
void
ScriptProcessorNode::EventListenerRemoved(nsIAtom* aType)
{
AudioNode::EventListenerRemoved(aType);
if (aType == nsGkAtoms::onaudioprocess) {
UpdateConnectedStatus();
}
}
JSObject*
ScriptProcessorNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto)
{
return ScriptProcessorNodeBinding::Wrap(aCx, this, aGivenProto);
}
void
ScriptProcessorNode::UpdateConnectedStatus()
{
bool isConnected = mHasPhantomInput ||
!(OutputNodes().IsEmpty() && OutputParams().IsEmpty()
&& InputNodes().IsEmpty());
// Events are queued even when there is no listener because a listener
// may be added while events are in the queue.
SendInt32ParameterToStream(ScriptProcessorNodeEngine::IS_CONNECTED,
isConnected);
if (isConnected && HasListenersFor(nsGkAtoms::onaudioprocess)) {
MarkActive();
} else {
MarkInactive();
}
}
} // namespace dom
} // namespace mozilla