mirror of
https://github.com/classilla/tenfourfox.git
synced 2025-01-17 08:30:05 +00:00
1895 lines
66 KiB
C++
1895 lines
66 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
// vim:cindent:ts=2:et:sw=2:
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsCSSRenderingBorders.h"
|
|
|
|
#include "gfxUtils.h"
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/gfx/2D.h"
|
|
#include "mozilla/gfx/Helpers.h"
|
|
#include "mozilla/gfx/PathHelpers.h"
|
|
#include "nsLayoutUtils.h"
|
|
#include "nsStyleConsts.h"
|
|
#include "nsCSSColorUtils.h"
|
|
#include "GeckoProfiler.h"
|
|
#include "nsExpirationTracker.h"
|
|
#include "RoundedRect.h"
|
|
#include "nsClassHashtable.h"
|
|
#include "nsStyleStruct.h"
|
|
#include "mozilla/gfx/2D.h"
|
|
#include "gfx2DGlue.h"
|
|
#include "gfxGradientCache.h"
|
|
#include <algorithm>
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::gfx;
|
|
|
|
/**
|
|
* nsCSSRendering::PaintBorder
|
|
* nsCSSRendering::PaintOutline
|
|
* -> DrawBorders
|
|
*
|
|
* DrawBorders
|
|
* -> Ability to use specialized approach?
|
|
* |- Draw using specialized function
|
|
* |- separate corners?
|
|
* |- dashed side mask
|
|
* |
|
|
* -> can border be drawn in 1 pass? (e.g., solid border same color all around)
|
|
* |- DrawBorderSides with all 4 sides
|
|
* -> more than 1 pass?
|
|
* |- for each corner
|
|
* |- clip to DoCornerClipSubPath
|
|
* |- for each side adjacent to corner
|
|
* |- clip to GetSideClipSubPath
|
|
* |- DrawBorderSides with one side
|
|
* |- for each side
|
|
* |- GetSideClipWithoutCornersRect
|
|
* |- DrawDashedSide || DrawBorderSides with one side
|
|
*/
|
|
|
|
static void ComputeBorderCornerDimensions(const Rect& aOuterRect,
|
|
const Rect& aInnerRect,
|
|
const RectCornerRadii& aRadii,
|
|
RectCornerRadii *aDimsResult);
|
|
|
|
// given a side index, get the previous and next side index
|
|
#define NEXT_SIDE(_s) mozilla::css::Side(((_s) + 1) & 3)
|
|
#define PREV_SIDE(_s) mozilla::css::Side(((_s) + 3) & 3)
|
|
|
|
// from the given base color and the background color, turn
|
|
// color into a color for the given border pattern style
|
|
static Color MakeBorderColor(nscolor aColor,
|
|
nscolor aBackgroundColor,
|
|
BorderColorStyle aBorderColorStyle);
|
|
|
|
|
|
// Given a line index (an index starting from the outside of the
|
|
// border going inwards) and an array of line styles, calculate the
|
|
// color that that stripe of the border should be rendered in.
|
|
static Color ComputeColorForLine(uint32_t aLineIndex,
|
|
const BorderColorStyle* aBorderColorStyle,
|
|
uint32_t aBorderColorStyleCount,
|
|
nscolor aBorderColor,
|
|
nscolor aBackgroundColor);
|
|
|
|
static Color ComputeCompositeColorForLine(uint32_t aLineIndex,
|
|
const nsBorderColors* aBorderColors);
|
|
|
|
// little helper function to check if the array of 4 floats given are
|
|
// equal to the given value
|
|
static bool
|
|
CheckFourFloatsEqual(const Float *vals, Float k)
|
|
{
|
|
return (vals[0] == k &&
|
|
vals[1] == k &&
|
|
vals[2] == k &&
|
|
vals[3] == k);
|
|
}
|
|
|
|
static bool
|
|
IsZeroSize(const Size& sz) {
|
|
return sz.width == 0.0 || sz.height == 0.0;
|
|
}
|
|
|
|
static bool
|
|
AllCornersZeroSize(const RectCornerRadii& corners) {
|
|
return IsZeroSize(corners[NS_CORNER_TOP_LEFT]) &&
|
|
IsZeroSize(corners[NS_CORNER_TOP_RIGHT]) &&
|
|
IsZeroSize(corners[NS_CORNER_BOTTOM_RIGHT]) &&
|
|
IsZeroSize(corners[NS_CORNER_BOTTOM_LEFT]);
|
|
}
|
|
|
|
typedef enum {
|
|
// Normal solid square corner. Will be rectangular, the size of the
|
|
// adjacent sides. If the corner has a border radius, the corner
|
|
// will always be solid, since we don't do dotted/dashed etc.
|
|
CORNER_NORMAL,
|
|
|
|
// Paint the corner in whatever style is not dotted/dashed of the
|
|
// adjacent corners.
|
|
CORNER_SOLID,
|
|
|
|
// Paint the corner as a dot, the size of the bigger of the adjacent
|
|
// sides.
|
|
CORNER_DOT
|
|
} CornerStyle;
|
|
|
|
nsCSSBorderRenderer::nsCSSBorderRenderer(nsPresContext::nsPresContextType aPresContextType,
|
|
DrawTarget* aDrawTarget,
|
|
Rect& aOuterRect,
|
|
const uint8_t* aBorderStyles,
|
|
const Float* aBorderWidths,
|
|
RectCornerRadii& aBorderRadii,
|
|
const nscolor* aBorderColors,
|
|
nsBorderColors* const* aCompositeColors,
|
|
nscolor aBackgroundColor)
|
|
: mPresContextType(aPresContextType),
|
|
mDrawTarget(aDrawTarget),
|
|
mOuterRect(aOuterRect),
|
|
mBorderStyles(aBorderStyles),
|
|
mBorderWidths(aBorderWidths),
|
|
mBorderRadii(aBorderRadii),
|
|
mBorderColors(aBorderColors),
|
|
mCompositeColors(aCompositeColors),
|
|
mBackgroundColor(aBackgroundColor)
|
|
{
|
|
if (!mCompositeColors) {
|
|
static nsBorderColors * const noColors[4] = { nullptr };
|
|
mCompositeColors = &noColors[0];
|
|
}
|
|
|
|
mInnerRect = mOuterRect;
|
|
mInnerRect.Deflate(
|
|
Margin(mBorderStyles[0] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[0] : 0,
|
|
mBorderStyles[1] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[1] : 0,
|
|
mBorderStyles[2] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[2] : 0,
|
|
mBorderStyles[3] != NS_STYLE_BORDER_STYLE_NONE ? mBorderWidths[3] : 0));
|
|
|
|
ComputeBorderCornerDimensions(mOuterRect, mInnerRect,
|
|
mBorderRadii, &mBorderCornerDimensions);
|
|
|
|
mOneUnitBorder = CheckFourFloatsEqual(mBorderWidths, 1.0);
|
|
mNoBorderRadius = AllCornersZeroSize(mBorderRadii);
|
|
mAvoidStroke = false;
|
|
}
|
|
|
|
/* static */ void
|
|
nsCSSBorderRenderer::ComputeInnerRadii(const RectCornerRadii& aRadii,
|
|
const Float* aBorderSizes,
|
|
RectCornerRadii* aInnerRadiiRet)
|
|
{
|
|
RectCornerRadii& iRadii = *aInnerRadiiRet;
|
|
|
|
iRadii[C_TL].width = std::max(0.f, aRadii[C_TL].width - aBorderSizes[NS_SIDE_LEFT]);
|
|
iRadii[C_TL].height = std::max(0.f, aRadii[C_TL].height - aBorderSizes[NS_SIDE_TOP]);
|
|
|
|
iRadii[C_TR].width = std::max(0.f, aRadii[C_TR].width - aBorderSizes[NS_SIDE_RIGHT]);
|
|
iRadii[C_TR].height = std::max(0.f, aRadii[C_TR].height - aBorderSizes[NS_SIDE_TOP]);
|
|
|
|
iRadii[C_BR].width = std::max(0.f, aRadii[C_BR].width - aBorderSizes[NS_SIDE_RIGHT]);
|
|
iRadii[C_BR].height = std::max(0.f, aRadii[C_BR].height - aBorderSizes[NS_SIDE_BOTTOM]);
|
|
|
|
iRadii[C_BL].width = std::max(0.f, aRadii[C_BL].width - aBorderSizes[NS_SIDE_LEFT]);
|
|
iRadii[C_BL].height = std::max(0.f, aRadii[C_BL].height - aBorderSizes[NS_SIDE_BOTTOM]);
|
|
}
|
|
|
|
/* static */ void
|
|
nsCSSBorderRenderer::ComputeOuterRadii(const RectCornerRadii& aRadii,
|
|
const Float* aBorderSizes,
|
|
RectCornerRadii* aOuterRadiiRet)
|
|
{
|
|
RectCornerRadii& oRadii = *aOuterRadiiRet;
|
|
|
|
// default all corners to sharp corners
|
|
oRadii = RectCornerRadii(0.f);
|
|
|
|
// round the edges that have radii > 0.0 to start with
|
|
if (aRadii[C_TL].width > 0.f && aRadii[C_TL].height > 0.f) {
|
|
oRadii[C_TL].width = std::max(0.f, aRadii[C_TL].width + aBorderSizes[NS_SIDE_LEFT]);
|
|
oRadii[C_TL].height = std::max(0.f, aRadii[C_TL].height + aBorderSizes[NS_SIDE_TOP]);
|
|
}
|
|
|
|
if (aRadii[C_TR].width > 0.f && aRadii[C_TR].height > 0.f) {
|
|
oRadii[C_TR].width = std::max(0.f, aRadii[C_TR].width + aBorderSizes[NS_SIDE_RIGHT]);
|
|
oRadii[C_TR].height = std::max(0.f, aRadii[C_TR].height + aBorderSizes[NS_SIDE_TOP]);
|
|
}
|
|
|
|
if (aRadii[C_BR].width > 0.f && aRadii[C_BR].height > 0.f) {
|
|
oRadii[C_BR].width = std::max(0.f, aRadii[C_BR].width + aBorderSizes[NS_SIDE_RIGHT]);
|
|
oRadii[C_BR].height = std::max(0.f, aRadii[C_BR].height + aBorderSizes[NS_SIDE_BOTTOM]);
|
|
}
|
|
|
|
if (aRadii[C_BL].width > 0.f && aRadii[C_BL].height > 0.f) {
|
|
oRadii[C_BL].width = std::max(0.f, aRadii[C_BL].width + aBorderSizes[NS_SIDE_LEFT]);
|
|
oRadii[C_BL].height = std::max(0.f, aRadii[C_BL].height + aBorderSizes[NS_SIDE_BOTTOM]);
|
|
}
|
|
}
|
|
|
|
/*static*/ void
|
|
ComputeBorderCornerDimensions(const Rect& aOuterRect,
|
|
const Rect& aInnerRect,
|
|
const RectCornerRadii& aRadii,
|
|
RectCornerRadii* aDimsRet)
|
|
{
|
|
Float leftWidth = aInnerRect.X() - aOuterRect.X();
|
|
Float topWidth = aInnerRect.Y() - aOuterRect.Y();
|
|
Float rightWidth = aOuterRect.Width() - aInnerRect.Width() - leftWidth;
|
|
Float bottomWidth = aOuterRect.Height() - aInnerRect.Height() - topWidth;
|
|
|
|
if (AllCornersZeroSize(aRadii)) {
|
|
// These will always be in pixel units from CSS
|
|
(*aDimsRet)[C_TL] = Size(leftWidth, topWidth);
|
|
(*aDimsRet)[C_TR] = Size(rightWidth, topWidth);
|
|
(*aDimsRet)[C_BR] = Size(rightWidth, bottomWidth);
|
|
(*aDimsRet)[C_BL] = Size(leftWidth, bottomWidth);
|
|
} else {
|
|
// Always round up to whole pixels for the corners; it's safe to
|
|
// make the corners bigger than necessary, and this way we ensure
|
|
// that we avoid seams.
|
|
(*aDimsRet)[C_TL] = Size(ceil(std::max(leftWidth, aRadii[C_TL].width)),
|
|
ceil(std::max(topWidth, aRadii[C_TL].height)));
|
|
(*aDimsRet)[C_TR] = Size(ceil(std::max(rightWidth, aRadii[C_TR].width)),
|
|
ceil(std::max(topWidth, aRadii[C_TR].height)));
|
|
(*aDimsRet)[C_BR] = Size(ceil(std::max(rightWidth, aRadii[C_BR].width)),
|
|
ceil(std::max(bottomWidth, aRadii[C_BR].height)));
|
|
(*aDimsRet)[C_BL] = Size(ceil(std::max(leftWidth, aRadii[C_BL].width)),
|
|
ceil(std::max(bottomWidth, aRadii[C_BL].height)));
|
|
}
|
|
}
|
|
|
|
bool
|
|
nsCSSBorderRenderer::AreBorderSideFinalStylesSame(uint8_t aSides)
|
|
{
|
|
NS_ASSERTION(aSides != 0 && (aSides & ~SIDE_BITS_ALL) == 0,
|
|
"AreBorderSidesSame: invalid whichSides!");
|
|
|
|
/* First check if the specified styles and colors are the same for all sides */
|
|
int firstStyle = 0;
|
|
NS_FOR_CSS_SIDES (i) {
|
|
if (firstStyle == i) {
|
|
if (((1 << i) & aSides) == 0)
|
|
firstStyle++;
|
|
continue;
|
|
}
|
|
|
|
if (((1 << i) & aSides) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (mBorderStyles[firstStyle] != mBorderStyles[i] ||
|
|
mBorderColors[firstStyle] != mBorderColors[i] ||
|
|
!nsBorderColors::Equal(mCompositeColors[firstStyle],
|
|
mCompositeColors[i]))
|
|
return false;
|
|
}
|
|
|
|
/* Then if it's one of the two-tone styles and we're not
|
|
* just comparing the TL or BR sides */
|
|
switch (mBorderStyles[firstStyle]) {
|
|
case NS_STYLE_BORDER_STYLE_GROOVE:
|
|
case NS_STYLE_BORDER_STYLE_RIDGE:
|
|
case NS_STYLE_BORDER_STYLE_INSET:
|
|
case NS_STYLE_BORDER_STYLE_OUTSET:
|
|
return ((aSides & ~(SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0 ||
|
|
(aSides & ~(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
nsCSSBorderRenderer::IsSolidCornerStyle(uint8_t aStyle, mozilla::css::Corner aCorner)
|
|
{
|
|
switch (aStyle) {
|
|
case NS_STYLE_BORDER_STYLE_DOTTED:
|
|
case NS_STYLE_BORDER_STYLE_DASHED:
|
|
case NS_STYLE_BORDER_STYLE_SOLID:
|
|
return true;
|
|
|
|
case NS_STYLE_BORDER_STYLE_INSET:
|
|
case NS_STYLE_BORDER_STYLE_OUTSET:
|
|
return (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT);
|
|
|
|
case NS_STYLE_BORDER_STYLE_GROOVE:
|
|
case NS_STYLE_BORDER_STYLE_RIDGE:
|
|
return mOneUnitBorder && (aCorner == NS_CORNER_TOP_LEFT || aCorner == NS_CORNER_BOTTOM_RIGHT);
|
|
|
|
case NS_STYLE_BORDER_STYLE_DOUBLE:
|
|
return mOneUnitBorder;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
BorderColorStyle
|
|
nsCSSBorderRenderer::BorderColorStyleForSolidCorner(uint8_t aStyle, mozilla::css::Corner aCorner)
|
|
{
|
|
// note that this function assumes that the corner is already solid,
|
|
// as per the earlier function
|
|
switch (aStyle) {
|
|
case NS_STYLE_BORDER_STYLE_DOTTED:
|
|
case NS_STYLE_BORDER_STYLE_DASHED:
|
|
case NS_STYLE_BORDER_STYLE_SOLID:
|
|
case NS_STYLE_BORDER_STYLE_DOUBLE:
|
|
return BorderColorStyleSolid;
|
|
|
|
case NS_STYLE_BORDER_STYLE_INSET:
|
|
case NS_STYLE_BORDER_STYLE_GROOVE:
|
|
if (aCorner == NS_CORNER_TOP_LEFT)
|
|
return BorderColorStyleDark;
|
|
else if (aCorner == NS_CORNER_BOTTOM_RIGHT)
|
|
return BorderColorStyleLight;
|
|
break;
|
|
|
|
case NS_STYLE_BORDER_STYLE_OUTSET:
|
|
case NS_STYLE_BORDER_STYLE_RIDGE:
|
|
if (aCorner == NS_CORNER_TOP_LEFT)
|
|
return BorderColorStyleLight;
|
|
else if (aCorner == NS_CORNER_BOTTOM_RIGHT)
|
|
return BorderColorStyleDark;
|
|
break;
|
|
}
|
|
|
|
return BorderColorStyleNone;
|
|
}
|
|
|
|
Rect
|
|
nsCSSBorderRenderer::GetCornerRect(mozilla::css::Corner aCorner)
|
|
{
|
|
Point offset(0.f, 0.f);
|
|
|
|
if (aCorner == C_TR || aCorner == C_BR)
|
|
offset.x = mOuterRect.Width() - mBorderCornerDimensions[aCorner].width;
|
|
if (aCorner == C_BR || aCorner == C_BL)
|
|
offset.y = mOuterRect.Height() - mBorderCornerDimensions[aCorner].height;
|
|
|
|
return Rect(mOuterRect.TopLeft() + offset,
|
|
mBorderCornerDimensions[aCorner]);
|
|
}
|
|
|
|
Rect
|
|
nsCSSBorderRenderer::GetSideClipWithoutCornersRect(mozilla::css::Side aSide)
|
|
{
|
|
Point offset(0.f, 0.f);
|
|
|
|
// The offset from the outside rect to the start of this side's
|
|
// box. For the top and bottom sides, the height of the box
|
|
// must be the border height; the x start must take into account
|
|
// the corner size (which may be bigger than the right or left
|
|
// side's width). The same applies to the right and left sides.
|
|
if (aSide == NS_SIDE_TOP) {
|
|
offset.x = mBorderCornerDimensions[C_TL].width;
|
|
} else if (aSide == NS_SIDE_RIGHT) {
|
|
offset.x = mOuterRect.Width() - mBorderWidths[NS_SIDE_RIGHT];
|
|
offset.y = mBorderCornerDimensions[C_TR].height;
|
|
} else if (aSide == NS_SIDE_BOTTOM) {
|
|
offset.x = mBorderCornerDimensions[C_BL].width;
|
|
offset.y = mOuterRect.Height() - mBorderWidths[NS_SIDE_BOTTOM];
|
|
} else if (aSide == NS_SIDE_LEFT) {
|
|
offset.y = mBorderCornerDimensions[C_TL].height;
|
|
}
|
|
|
|
// The sum of the width & height of the corners adjacent to the
|
|
// side. This relies on the relationship between side indexing and
|
|
// corner indexing; that is, 0 == SIDE_TOP and 0 == CORNER_TOP_LEFT,
|
|
// with both proceeding clockwise.
|
|
Size sideCornerSum = mBorderCornerDimensions[mozilla::css::Corner(aSide)]
|
|
+ mBorderCornerDimensions[mozilla::css::Corner(NEXT_SIDE(aSide))];
|
|
Rect rect(mOuterRect.TopLeft() + offset,
|
|
mOuterRect.Size() - sideCornerSum);
|
|
|
|
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
|
|
rect.height = mBorderWidths[aSide];
|
|
else
|
|
rect.width = mBorderWidths[aSide];
|
|
|
|
return rect;
|
|
}
|
|
|
|
// The side border type and the adjacent border types are
|
|
// examined and one of the different types of clipping (listed
|
|
// below) is selected.
|
|
|
|
typedef enum {
|
|
// clip to the trapezoid formed by the corners of the
|
|
// inner and outer rectangles for the given side
|
|
SIDE_CLIP_TRAPEZOID,
|
|
|
|
// clip to the trapezoid formed by the outer rectangle
|
|
// corners and the center of the region, making sure
|
|
// that diagonal lines all go directly from the outside
|
|
// corner to the inside corner, but that they then continue on
|
|
// to the middle.
|
|
//
|
|
// This is needed for correctly clipping rounded borders,
|
|
// which might extend past the SIDE_CLIP_TRAPEZOID trap.
|
|
SIDE_CLIP_TRAPEZOID_FULL,
|
|
|
|
// clip to the rectangle formed by the given side; a specific
|
|
// overlap algorithm is used; see the function for details.
|
|
// this is currently used for dashing.
|
|
SIDE_CLIP_RECTANGLE
|
|
} SideClipType;
|
|
|
|
// Given three points, p0, p1, and midPoint, move p1 further in to the
|
|
// rectangle (of which aMidPoint is the center) so that it reaches the
|
|
// closer of the horizontal or vertical lines intersecting the midpoint,
|
|
// while maintaing the slope of the line. If p0 and p1 are the same,
|
|
// just move p1 to midPoint (since there's no slope to maintain).
|
|
// FIXME: Extending only to the midpoint isn't actually sufficient for
|
|
// boxes with asymmetric radii.
|
|
static void
|
|
MaybeMoveToMidPoint(Point& aP0, Point& aP1, const Point& aMidPoint)
|
|
{
|
|
Point ps = aP1 - aP0;
|
|
|
|
if (ps.x == 0.0) {
|
|
if (ps.y == 0.0) {
|
|
aP1 = aMidPoint;
|
|
} else {
|
|
aP1.y = aMidPoint.y;
|
|
}
|
|
} else {
|
|
if (ps.y == 0.0) {
|
|
aP1.x = aMidPoint.x;
|
|
} else {
|
|
Float k = std::min((aMidPoint.x - aP0.x) / ps.x,
|
|
(aMidPoint.y - aP0.y) / ps.y);
|
|
aP1 = aP0 + ps * k;
|
|
}
|
|
}
|
|
}
|
|
|
|
already_AddRefed<Path>
|
|
nsCSSBorderRenderer::GetSideClipSubPath(mozilla::css::Side aSide)
|
|
{
|
|
// the clip proceeds clockwise from the top left corner;
|
|
// so "start" in each case is the start of the region from that side.
|
|
//
|
|
// the final path will be formed like:
|
|
// s0 ------- e0
|
|
// | /
|
|
// s1 ----- e1
|
|
//
|
|
// that is, the second point will always be on the inside
|
|
|
|
Point start[2];
|
|
Point end[2];
|
|
|
|
#define IS_DASHED_OR_DOTTED(_s) ((_s) == NS_STYLE_BORDER_STYLE_DASHED || (_s) == NS_STYLE_BORDER_STYLE_DOTTED)
|
|
bool isDashed = IS_DASHED_OR_DOTTED(mBorderStyles[aSide]);
|
|
bool startIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[PREV_SIDE(aSide)]);
|
|
bool endIsDashed = IS_DASHED_OR_DOTTED(mBorderStyles[NEXT_SIDE(aSide)]);
|
|
#undef IS_DASHED_OR_DOTTED
|
|
|
|
SideClipType startType = SIDE_CLIP_TRAPEZOID;
|
|
SideClipType endType = SIDE_CLIP_TRAPEZOID;
|
|
|
|
if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(aSide)]))
|
|
startType = SIDE_CLIP_TRAPEZOID_FULL;
|
|
else if (startIsDashed && isDashed)
|
|
startType = SIDE_CLIP_RECTANGLE;
|
|
|
|
if (!IsZeroSize(mBorderRadii[mozilla::css::Corner(NEXT_SIDE(aSide))]))
|
|
endType = SIDE_CLIP_TRAPEZOID_FULL;
|
|
else if (endIsDashed && isDashed)
|
|
endType = SIDE_CLIP_RECTANGLE;
|
|
|
|
Point midPoint = mInnerRect.Center();
|
|
|
|
start[0] = mOuterRect.CCWCorner(aSide);
|
|
start[1] = mInnerRect.CCWCorner(aSide);
|
|
|
|
end[0] = mOuterRect.CWCorner(aSide);
|
|
end[1] = mInnerRect.CWCorner(aSide);
|
|
|
|
if (startType == SIDE_CLIP_TRAPEZOID_FULL) {
|
|
MaybeMoveToMidPoint(start[0], start[1], midPoint);
|
|
} else if (startType == SIDE_CLIP_RECTANGLE) {
|
|
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
|
|
start[1] = Point(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y);
|
|
else
|
|
start[1] = Point(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y);
|
|
}
|
|
|
|
if (endType == SIDE_CLIP_TRAPEZOID_FULL) {
|
|
MaybeMoveToMidPoint(end[0], end[1], midPoint);
|
|
} else if (endType == SIDE_CLIP_RECTANGLE) {
|
|
if (aSide == NS_SIDE_TOP || aSide == NS_SIDE_BOTTOM)
|
|
end[0] = Point(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y);
|
|
else
|
|
end[0] = Point(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y);
|
|
}
|
|
|
|
RefPtr<PathBuilder> builder = mDrawTarget->CreatePathBuilder();
|
|
builder->MoveTo(start[0]);
|
|
builder->LineTo(end[0]);
|
|
builder->LineTo(end[1]);
|
|
builder->LineTo(start[1]);
|
|
builder->Close();
|
|
return builder->Finish();
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::FillSolidBorder(const Rect& aOuterRect,
|
|
const Rect& aInnerRect,
|
|
const RectCornerRadii& aBorderRadii,
|
|
const Float* aBorderSizes,
|
|
int aSides,
|
|
const ColorPattern& aColor)
|
|
{
|
|
// Note that this function is allowed to draw more than just the
|
|
// requested sides.
|
|
|
|
// If we have a border radius, do full rounded rectangles
|
|
// and fill, regardless of what sides we're asked to draw.
|
|
if (!AllCornersZeroSize(aBorderRadii)) {
|
|
RefPtr<PathBuilder> builder = mDrawTarget->CreatePathBuilder();
|
|
|
|
RectCornerRadii innerRadii;
|
|
ComputeInnerRadii(aBorderRadii, aBorderSizes, &innerRadii);
|
|
|
|
// do the outer border
|
|
AppendRoundedRectToPath(builder, aOuterRect, aBorderRadii, true);
|
|
|
|
// then do the inner border CCW
|
|
AppendRoundedRectToPath(builder, aInnerRect, innerRadii, false);
|
|
|
|
RefPtr<Path> path = builder->Finish();
|
|
|
|
mDrawTarget->Fill(path, aColor);
|
|
return;
|
|
}
|
|
|
|
// If we're asked to draw all sides of an equal-sized border,
|
|
// stroking is fastest. This is a fairly common path, but partial
|
|
// sides is probably second in the list -- there are a bunch of
|
|
// common border styles, such as inset and outset, that are
|
|
// top-left/bottom-right split.
|
|
if (aSides == SIDE_BITS_ALL &&
|
|
CheckFourFloatsEqual(aBorderSizes, aBorderSizes[0]) &&
|
|
!mAvoidStroke)
|
|
{
|
|
Float strokeWidth = aBorderSizes[0];
|
|
Rect r(aOuterRect);
|
|
r.Deflate(strokeWidth / 2.f);
|
|
mDrawTarget->StrokeRect(r, aColor, StrokeOptions(strokeWidth));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we have unequal sized borders or we're only
|
|
// drawing some sides; create rectangles for each side
|
|
// and fill them.
|
|
|
|
Rect r[4];
|
|
|
|
// compute base rects for each side
|
|
if (aSides & SIDE_BIT_TOP) {
|
|
r[NS_SIDE_TOP] =
|
|
Rect(aOuterRect.X(), aOuterRect.Y(),
|
|
aOuterRect.Width(), aBorderSizes[NS_SIDE_TOP]);
|
|
}
|
|
|
|
if (aSides & SIDE_BIT_BOTTOM) {
|
|
r[NS_SIDE_BOTTOM] =
|
|
Rect(aOuterRect.X(), aOuterRect.YMost() - aBorderSizes[NS_SIDE_BOTTOM],
|
|
aOuterRect.Width(), aBorderSizes[NS_SIDE_BOTTOM]);
|
|
}
|
|
|
|
if (aSides & SIDE_BIT_LEFT) {
|
|
r[NS_SIDE_LEFT] =
|
|
Rect(aOuterRect.X(), aOuterRect.Y(),
|
|
aBorderSizes[NS_SIDE_LEFT], aOuterRect.Height());
|
|
}
|
|
|
|
if (aSides & SIDE_BIT_RIGHT) {
|
|
r[NS_SIDE_RIGHT] =
|
|
Rect(aOuterRect.XMost() - aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Y(),
|
|
aBorderSizes[NS_SIDE_RIGHT], aOuterRect.Height());
|
|
}
|
|
|
|
// If two sides meet at a corner that we're rendering, then
|
|
// make sure that we adjust one of the sides to avoid overlap.
|
|
// This is especially important in the case of colors with
|
|
// an alpha channel.
|
|
|
|
if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) {
|
|
// adjust the left's top down a bit
|
|
r[NS_SIDE_LEFT].y += aBorderSizes[NS_SIDE_TOP];
|
|
r[NS_SIDE_LEFT].height -= aBorderSizes[NS_SIDE_TOP];
|
|
}
|
|
|
|
if ((aSides & (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) == (SIDE_BIT_TOP | SIDE_BIT_RIGHT)) {
|
|
// adjust the top's left a bit
|
|
r[NS_SIDE_TOP].width -= aBorderSizes[NS_SIDE_RIGHT];
|
|
}
|
|
|
|
if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) {
|
|
// adjust the right's bottom a bit
|
|
r[NS_SIDE_RIGHT].height -= aBorderSizes[NS_SIDE_BOTTOM];
|
|
}
|
|
|
|
if ((aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) == (SIDE_BIT_BOTTOM | SIDE_BIT_LEFT)) {
|
|
// adjust the bottom's left a bit
|
|
r[NS_SIDE_BOTTOM].x += aBorderSizes[NS_SIDE_LEFT];
|
|
r[NS_SIDE_BOTTOM].width -= aBorderSizes[NS_SIDE_LEFT];
|
|
}
|
|
|
|
// Filling these one by one is faster than filling them all at once.
|
|
for (uint32_t i = 0; i < 4; i++) {
|
|
if (aSides & (1 << i)) {
|
|
MaybeSnapToDevicePixels(r[i], *mDrawTarget, true);
|
|
mDrawTarget->FillRect(r[i], aColor);
|
|
}
|
|
}
|
|
}
|
|
|
|
Color
|
|
MakeBorderColor(nscolor aColor, nscolor aBackgroundColor,
|
|
BorderColorStyle aBorderColorStyle)
|
|
{
|
|
nscolor colors[2];
|
|
int k = 0;
|
|
|
|
switch (aBorderColorStyle) {
|
|
case BorderColorStyleNone:
|
|
return Color(0.f, 0.f, 0.f, 0.f); // transparent black
|
|
|
|
case BorderColorStyleLight:
|
|
k = 1;
|
|
/* fall through */
|
|
case BorderColorStyleDark:
|
|
NS_GetSpecial3DColors(colors, aBackgroundColor, aColor);
|
|
return Color::FromABGR(colors[k]);
|
|
|
|
case BorderColorStyleSolid:
|
|
default:
|
|
return Color::FromABGR(aColor);
|
|
}
|
|
}
|
|
|
|
Color
|
|
ComputeColorForLine(uint32_t aLineIndex,
|
|
const BorderColorStyle* aBorderColorStyle,
|
|
uint32_t aBorderColorStyleCount,
|
|
nscolor aBorderColor,
|
|
nscolor aBackgroundColor)
|
|
{
|
|
NS_ASSERTION(aLineIndex < aBorderColorStyleCount, "Invalid lineIndex given");
|
|
|
|
return MakeBorderColor(aBorderColor, aBackgroundColor,
|
|
aBorderColorStyle[aLineIndex]);
|
|
}
|
|
|
|
Color
|
|
ComputeCompositeColorForLine(uint32_t aLineIndex,
|
|
const nsBorderColors* aBorderColors)
|
|
{
|
|
while (aLineIndex-- && aBorderColors->mNext)
|
|
aBorderColors = aBorderColors->mNext;
|
|
|
|
return Color::FromABGR(aBorderColors->mColor);
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawBorderSidesCompositeColors(int aSides, const nsBorderColors *aCompositeColors)
|
|
{
|
|
RectCornerRadii radii = mBorderRadii;
|
|
|
|
// the generic composite colors path; each border is 1px in size
|
|
Rect soRect = mOuterRect;
|
|
Float maxBorderWidth = 0;
|
|
NS_FOR_CSS_SIDES (i) {
|
|
maxBorderWidth = std::max(maxBorderWidth, Float(mBorderWidths[i]));
|
|
}
|
|
|
|
Float fakeBorderSizes[4];
|
|
|
|
Point itl = mInnerRect.TopLeft();
|
|
Point ibr = mInnerRect.BottomRight();
|
|
|
|
for (uint32_t i = 0; i < uint32_t(maxBorderWidth); i++) {
|
|
ColorPattern color(ToDeviceColor(
|
|
ComputeCompositeColorForLine(i, aCompositeColors)));
|
|
|
|
Rect siRect = soRect;
|
|
siRect.Deflate(1.0);
|
|
|
|
// now cap the rects to the real mInnerRect
|
|
Point tl = siRect.TopLeft();
|
|
Point br = siRect.BottomRight();
|
|
|
|
tl.x = std::min(tl.x, itl.x);
|
|
tl.y = std::min(tl.y, itl.y);
|
|
|
|
br.x = std::max(br.x, ibr.x);
|
|
br.y = std::max(br.y, ibr.y);
|
|
|
|
siRect = Rect(tl.x, tl.y, br.x - tl.x , br.y - tl.y);
|
|
|
|
fakeBorderSizes[NS_SIDE_TOP] = siRect.TopLeft().y - soRect.TopLeft().y;
|
|
fakeBorderSizes[NS_SIDE_RIGHT] = soRect.TopRight().x - siRect.TopRight().x;
|
|
fakeBorderSizes[NS_SIDE_BOTTOM] = soRect.BottomRight().y - siRect.BottomRight().y;
|
|
fakeBorderSizes[NS_SIDE_LEFT] = siRect.BottomLeft().x - soRect.BottomLeft().x;
|
|
|
|
FillSolidBorder(soRect, siRect, radii, fakeBorderSizes, aSides, color);
|
|
|
|
soRect = siRect;
|
|
|
|
ComputeInnerRadii(radii, fakeBorderSizes, &radii);
|
|
}
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawBorderSides(int aSides)
|
|
{
|
|
if (aSides == 0 || (aSides & ~SIDE_BITS_ALL) != 0) {
|
|
NS_WARNING("DrawBorderSides: invalid sides!");
|
|
return;
|
|
}
|
|
|
|
uint8_t borderRenderStyle = NS_STYLE_BORDER_STYLE_NONE;
|
|
nscolor borderRenderColor;
|
|
const nsBorderColors *compositeColors = nullptr;
|
|
|
|
uint32_t borderColorStyleCount = 0;
|
|
BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3];
|
|
BorderColorStyle *borderColorStyle = nullptr;
|
|
|
|
NS_FOR_CSS_SIDES (i) {
|
|
if ((aSides & (1 << i)) == 0)
|
|
continue;
|
|
borderRenderStyle = mBorderStyles[i];
|
|
borderRenderColor = mBorderColors[i];
|
|
compositeColors = mCompositeColors[i];
|
|
break;
|
|
}
|
|
|
|
if (borderRenderStyle == NS_STYLE_BORDER_STYLE_NONE ||
|
|
borderRenderStyle == NS_STYLE_BORDER_STYLE_HIDDEN)
|
|
return;
|
|
|
|
// -moz-border-colors is a hack; if we have it for a border, then
|
|
// it's always drawn solid, and each color is given 1px. The last
|
|
// color is used for the remainder of the border's size. Just
|
|
// hand off to another function to do all that.
|
|
if (compositeColors) {
|
|
DrawBorderSidesCompositeColors(aSides, compositeColors);
|
|
return;
|
|
}
|
|
|
|
// We're not doing compositeColors, so we can calculate the
|
|
// borderColorStyle based on the specified style. The
|
|
// borderColorStyle array goes from the outer to the inner style.
|
|
//
|
|
// If the border width is 1, we need to change the borderRenderStyle
|
|
// a bit to make sure that we get the right colors -- e.g. 'ridge'
|
|
// with a 1px border needs to look like solid, not like 'outset'.
|
|
if (mOneUnitBorder &&
|
|
(borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE ||
|
|
borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE ||
|
|
borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE))
|
|
borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID;
|
|
|
|
switch (borderRenderStyle) {
|
|
case NS_STYLE_BORDER_STYLE_SOLID:
|
|
case NS_STYLE_BORDER_STYLE_DASHED:
|
|
case NS_STYLE_BORDER_STYLE_DOTTED:
|
|
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
|
|
|
|
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
|
|
|
|
borderColorStyleCount = 1;
|
|
break;
|
|
|
|
case NS_STYLE_BORDER_STYLE_GROOVE:
|
|
borderColorStyleTopLeft[0] = BorderColorStyleDark;
|
|
borderColorStyleTopLeft[1] = BorderColorStyleLight;
|
|
|
|
borderColorStyleBottomRight[0] = BorderColorStyleLight;
|
|
borderColorStyleBottomRight[1] = BorderColorStyleDark;
|
|
|
|
borderColorStyleCount = 2;
|
|
break;
|
|
|
|
case NS_STYLE_BORDER_STYLE_RIDGE:
|
|
borderColorStyleTopLeft[0] = BorderColorStyleLight;
|
|
borderColorStyleTopLeft[1] = BorderColorStyleDark;
|
|
|
|
borderColorStyleBottomRight[0] = BorderColorStyleDark;
|
|
borderColorStyleBottomRight[1] = BorderColorStyleLight;
|
|
|
|
borderColorStyleCount = 2;
|
|
break;
|
|
|
|
case NS_STYLE_BORDER_STYLE_DOUBLE:
|
|
borderColorStyleTopLeft[0] = BorderColorStyleSolid;
|
|
borderColorStyleTopLeft[1] = BorderColorStyleNone;
|
|
borderColorStyleTopLeft[2] = BorderColorStyleSolid;
|
|
|
|
borderColorStyleBottomRight[0] = BorderColorStyleSolid;
|
|
borderColorStyleBottomRight[1] = BorderColorStyleNone;
|
|
borderColorStyleBottomRight[2] = BorderColorStyleSolid;
|
|
|
|
borderColorStyleCount = 3;
|
|
break;
|
|
|
|
case NS_STYLE_BORDER_STYLE_INSET:
|
|
borderColorStyleTopLeft[0] = BorderColorStyleDark;
|
|
borderColorStyleBottomRight[0] = BorderColorStyleLight;
|
|
|
|
borderColorStyleCount = 1;
|
|
break;
|
|
|
|
case NS_STYLE_BORDER_STYLE_OUTSET:
|
|
borderColorStyleTopLeft[0] = BorderColorStyleLight;
|
|
borderColorStyleBottomRight[0] = BorderColorStyleDark;
|
|
|
|
borderColorStyleCount = 1;
|
|
break;
|
|
|
|
default:
|
|
NS_NOTREACHED("Unhandled border style!!");
|
|
break;
|
|
}
|
|
|
|
// The only way to get to here is by having a
|
|
// borderColorStyleCount < 1 or > 3; this should never happen,
|
|
// since -moz-border-colors doesn't get handled here.
|
|
NS_ASSERTION(borderColorStyleCount > 0 && borderColorStyleCount < 4,
|
|
"Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?");
|
|
|
|
// The caller should never give us anything with a mix
|
|
// of TL/BR if the border style would require a
|
|
// TL/BR split.
|
|
if (aSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT))
|
|
borderColorStyle = borderColorStyleBottomRight;
|
|
else
|
|
borderColorStyle = borderColorStyleTopLeft;
|
|
|
|
// Distribute the border across the available space.
|
|
Float borderWidths[3][4];
|
|
|
|
if (borderColorStyleCount == 1) {
|
|
NS_FOR_CSS_SIDES (i) {
|
|
borderWidths[0][i] = mBorderWidths[i];
|
|
}
|
|
} else if (borderColorStyleCount == 2) {
|
|
// with 2 color styles, any extra pixel goes to the outside
|
|
NS_FOR_CSS_SIDES (i) {
|
|
borderWidths[0][i] = int32_t(mBorderWidths[i]) / 2 + int32_t(mBorderWidths[i]) % 2;
|
|
borderWidths[1][i] = int32_t(mBorderWidths[i]) / 2;
|
|
}
|
|
} else if (borderColorStyleCount == 3) {
|
|
// with 3 color styles, any extra pixel (or lack of extra pixel)
|
|
// goes to the middle
|
|
NS_FOR_CSS_SIDES (i) {
|
|
if (mBorderWidths[i] == 1.0) {
|
|
borderWidths[0][i] = 1.f;
|
|
borderWidths[1][i] = borderWidths[2][i] = 0.f;
|
|
} else {
|
|
int32_t rest = int32_t(mBorderWidths[i]) % 3;
|
|
borderWidths[0][i] = borderWidths[2][i] = borderWidths[1][i] = (int32_t(mBorderWidths[i]) - rest) / 3;
|
|
|
|
if (rest == 1) {
|
|
borderWidths[1][i] += 1.f;
|
|
} else if (rest == 2) {
|
|
borderWidths[0][i] += 1.f;
|
|
borderWidths[2][i] += 1.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// make a copy that we can modify
|
|
RectCornerRadii radii = mBorderRadii;
|
|
|
|
Rect soRect(mOuterRect);
|
|
Rect siRect(mOuterRect);
|
|
|
|
for (unsigned int i = 0; i < borderColorStyleCount; i++) {
|
|
// walk siRect inwards at the start of the loop to get the
|
|
// correct inner rect.
|
|
siRect.Deflate(Margin(borderWidths[i][0], borderWidths[i][1],
|
|
borderWidths[i][2], borderWidths[i][3]));
|
|
|
|
if (borderColorStyle[i] != BorderColorStyleNone) {
|
|
Color c = ComputeColorForLine(i, borderColorStyle, borderColorStyleCount,
|
|
borderRenderColor, mBackgroundColor);
|
|
ColorPattern color(ToDeviceColor(c));
|
|
|
|
FillSolidBorder(soRect, siRect, radii, borderWidths[i], aSides, color);
|
|
}
|
|
|
|
ComputeInnerRadii(radii, borderWidths[i], &radii);
|
|
|
|
// And now soRect is the same as siRect, for the next line in.
|
|
soRect = siRect;
|
|
}
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawDashedSide(mozilla::css::Side aSide)
|
|
{
|
|
Float dashWidth;
|
|
Float dash[2];
|
|
|
|
uint8_t style = mBorderStyles[aSide];
|
|
Float borderWidth = mBorderWidths[aSide];
|
|
nscolor borderColor = mBorderColors[aSide];
|
|
|
|
if (borderWidth == 0.0)
|
|
return;
|
|
|
|
if (style == NS_STYLE_BORDER_STYLE_NONE ||
|
|
style == NS_STYLE_BORDER_STYLE_HIDDEN)
|
|
return;
|
|
|
|
StrokeOptions strokeOptions(borderWidth);
|
|
|
|
if (style == NS_STYLE_BORDER_STYLE_DASHED) {
|
|
dashWidth = Float(borderWidth * DOT_LENGTH * DASH_LENGTH);
|
|
|
|
dash[0] = dashWidth;
|
|
dash[1] = dashWidth;
|
|
} else if (style == NS_STYLE_BORDER_STYLE_DOTTED) {
|
|
dashWidth = Float(borderWidth * DOT_LENGTH);
|
|
|
|
if (borderWidth > 2.0) {
|
|
dash[0] = 0.0;
|
|
dash[1] = dashWidth * 2.0;
|
|
strokeOptions.mLineCap = CapStyle::ROUND;
|
|
} else {
|
|
dash[0] = dashWidth;
|
|
dash[1] = dashWidth;
|
|
}
|
|
} else {
|
|
PrintAsFormatString("DrawDashedSide: style: %d!!\n", style);
|
|
NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice");
|
|
return;
|
|
}
|
|
|
|
PrintAsFormatString("dash: %f %f\n", dash[0], dash[1]);
|
|
|
|
strokeOptions.mDashPattern = dash;
|
|
strokeOptions.mDashLength = MOZ_ARRAY_LENGTH(dash);
|
|
|
|
Point start = mOuterRect.CCWCorner(aSide);
|
|
Point end = mOuterRect.CWCorner(aSide);
|
|
|
|
if (aSide == NS_SIDE_TOP) {
|
|
start.x += mBorderCornerDimensions[C_TL].width;
|
|
end.x -= mBorderCornerDimensions[C_TR].width;
|
|
|
|
start.y += borderWidth / 2.0;
|
|
end.y += borderWidth / 2.0;
|
|
} else if (aSide == NS_SIDE_RIGHT) {
|
|
start.x -= borderWidth / 2.0;
|
|
end.x -= borderWidth / 2.0;
|
|
|
|
start.y += mBorderCornerDimensions[C_TR].height;
|
|
end.y -= mBorderCornerDimensions[C_BR].height;
|
|
} else if (aSide == NS_SIDE_BOTTOM) {
|
|
start.x -= mBorderCornerDimensions[C_BR].width;
|
|
end.x += mBorderCornerDimensions[C_BL].width;
|
|
|
|
start.y -= borderWidth / 2.0;
|
|
end.y -= borderWidth / 2.0;
|
|
} else if (aSide == NS_SIDE_LEFT) {
|
|
start.x += borderWidth / 2.0;
|
|
end.x += borderWidth / 2.0;
|
|
|
|
start.y -= mBorderCornerDimensions[C_BL].height;
|
|
end.y += mBorderCornerDimensions[C_TL].height;
|
|
}
|
|
|
|
mDrawTarget->StrokeLine(start, end, ColorPattern(ToDeviceColor(borderColor)),
|
|
strokeOptions);
|
|
}
|
|
|
|
bool
|
|
nsCSSBorderRenderer::AllBordersSameWidth()
|
|
{
|
|
if (mBorderWidths[0] == mBorderWidths[1] &&
|
|
mBorderWidths[0] == mBorderWidths[2] &&
|
|
mBorderWidths[0] == mBorderWidths[3])
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
nsCSSBorderRenderer::AllBordersSolid(bool *aHasCompositeColors)
|
|
{
|
|
*aHasCompositeColors = false;
|
|
NS_FOR_CSS_SIDES(i) {
|
|
if (mCompositeColors[i] != nullptr) {
|
|
*aHasCompositeColors = true;
|
|
}
|
|
if (mBorderStyles[i] == NS_STYLE_BORDER_STYLE_SOLID ||
|
|
mBorderStyles[i] == NS_STYLE_BORDER_STYLE_NONE ||
|
|
mBorderStyles[i] == NS_STYLE_BORDER_STYLE_HIDDEN)
|
|
{
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IsVisible(int aStyle)
|
|
{
|
|
if (aStyle != NS_STYLE_BORDER_STYLE_NONE &&
|
|
aStyle != NS_STYLE_BORDER_STYLE_HIDDEN) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct twoFloats
|
|
{
|
|
Float a, b;
|
|
|
|
twoFloats operator*(const Size& aSize) const {
|
|
return { a * aSize.width, b * aSize.height };
|
|
}
|
|
|
|
twoFloats operator*(Float aScale) const {
|
|
return { a * aScale, b * aScale };
|
|
}
|
|
|
|
twoFloats operator+(const Point& aPoint) const {
|
|
return { a + aPoint.x, b + aPoint.y };
|
|
}
|
|
|
|
operator Point() const {
|
|
return Point(a, b);
|
|
}
|
|
};
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawSingleWidthSolidBorder()
|
|
{
|
|
// Easy enough to deal with.
|
|
Rect rect = mOuterRect;
|
|
rect.Deflate(0.5);
|
|
|
|
const twoFloats cornerAdjusts[4] = { { +0.5, 0 },
|
|
{ 0, +0.5 },
|
|
{ -0.5, 0 },
|
|
{ 0, -0.5 } };
|
|
NS_FOR_CSS_SIDES(side) {
|
|
Point firstCorner = rect.CCWCorner(side) + cornerAdjusts[side];
|
|
Point secondCorner = rect.CWCorner(side) + cornerAdjusts[side];
|
|
|
|
ColorPattern color(ToDeviceColor(mBorderColors[side]));
|
|
|
|
mDrawTarget->StrokeLine(firstCorner, secondCorner, color);
|
|
}
|
|
}
|
|
|
|
// Intersect a ray from the inner corner to the outer corner
|
|
// with the border radius, yielding the intersection point.
|
|
static Point
|
|
IntersectBorderRadius(const Point& aCenter, const Size& aRadius,
|
|
const Point& aInnerCorner,
|
|
const Point& aCornerDirection)
|
|
{
|
|
Point toCorner = aCornerDirection;
|
|
// transform to-corner ray to unit-circle space
|
|
toCorner.x /= aRadius.width;
|
|
toCorner.y /= aRadius.height;
|
|
// normalize to-corner ray
|
|
Float cornerDist = toCorner.Length();
|
|
if (cornerDist < 1.0e-6f) {
|
|
return aInnerCorner;
|
|
}
|
|
toCorner = toCorner / cornerDist;
|
|
// ray from inner corner to border radius center
|
|
Point toCenter = aCenter - aInnerCorner;
|
|
// transform to-center ray to unit-circle space
|
|
toCenter.x /= aRadius.width;
|
|
toCenter.y /= aRadius.height;
|
|
// compute offset of intersection with border radius unit circle
|
|
Float offset = toCenter.DotProduct(toCorner);
|
|
// compute discriminant to check for intersections
|
|
Float discrim = 1.0f - toCenter.DotProduct(toCenter) + offset * offset;
|
|
// choose farthest intersection
|
|
offset += sqrtf(std::max(discrim, 0.0f));
|
|
// transform to-corner ray back out of unit-circle space
|
|
toCorner.x *= aRadius.width;
|
|
toCorner.y *= aRadius.height;
|
|
return aInnerCorner + toCorner * offset;
|
|
}
|
|
|
|
// Calculate the split point and split angle for a border radius with
|
|
// differing sides.
|
|
static inline void
|
|
SplitBorderRadius(const Point& aCenter, const Size& aRadius,
|
|
const Point& aOuterCorner, const Point& aInnerCorner,
|
|
const twoFloats& aCornerMults, Float aStartAngle,
|
|
Point& aSplit, Float& aSplitAngle)
|
|
{
|
|
Point cornerDir = aOuterCorner - aInnerCorner;
|
|
if (cornerDir.x == cornerDir.y && aRadius.IsSquare()) {
|
|
// optimize 45-degree intersection with circle since we can assume
|
|
// the circle center lies along the intersection edge
|
|
aSplit = aCenter - aCornerMults * (aRadius * Float(1.0f / M_SQRT2));
|
|
aSplitAngle = aStartAngle + 0.5f * M_PI / 2.0f;
|
|
} else {
|
|
aSplit = IntersectBorderRadius(aCenter, aRadius, aInnerCorner, cornerDir);
|
|
aSplitAngle =
|
|
atan2f((aSplit.y - aCenter.y) / aRadius.height,
|
|
(aSplit.x - aCenter.x) / aRadius.width);
|
|
}
|
|
}
|
|
|
|
// Compute the size of the skirt needed, given the color alphas
|
|
// of each corner side and the slope between them.
|
|
static void
|
|
ComputeCornerSkirtSize(Float aAlpha1, Float aAlpha2,
|
|
Float aSlopeY, Float aSlopeX,
|
|
Float& aSizeResult, Float& aSlopeResult)
|
|
{
|
|
// If either side is (almost) invisible or there is no diagonal edge,
|
|
// then don't try to render a skirt.
|
|
if (aAlpha1 < 0.01f || aAlpha2 < 0.01f) {
|
|
return;
|
|
}
|
|
aSlopeX = fabs(aSlopeX);
|
|
aSlopeY = fabs(aSlopeY);
|
|
if (aSlopeX < 1.0e-6f || aSlopeY < 1.0e-6f) {
|
|
return;
|
|
}
|
|
|
|
// If first and second color don't match, we need to split the corner in
|
|
// half. The diagonal edges created may not have full pixel coverage given
|
|
// anti-aliasing, so we need to compute a small subpixel skirt edge. This
|
|
// assumes each half has half coverage to start with, and that coverage
|
|
// increases as the skirt is pushed over, with the end result that we want
|
|
// to roughly preserve the alpha value along this edge.
|
|
// Given slope m, alphas a and A, use quadratic formula to solve for S in:
|
|
// a*(1 - 0.5*(1-S)*(1-mS))*(1 - 0.5*A) + 0.5*A = A
|
|
// yielding:
|
|
// S = ((1+m) - sqrt((1+m)*(1+m) + 4*m*(1 - A/(a*(1-0.5*A))))) / (2*m)
|
|
// and substitute k = (1+m)/(2*m):
|
|
// S = k - sqrt(k*k + (1 - A/(a*(1-0.5*A)))/m)
|
|
Float slope = aSlopeY / aSlopeX;
|
|
Float slopeScale = (1.0f + slope) / (2.0f * slope);
|
|
Float discrim =
|
|
slopeScale*slopeScale +
|
|
(1 - aAlpha2 / (aAlpha1 * (1.0f - 0.49f * aAlpha2))) / slope;
|
|
if (discrim >= 0) {
|
|
aSizeResult = slopeScale - sqrtf(discrim);
|
|
aSlopeResult = slope;
|
|
}
|
|
}
|
|
|
|
// Draws a border radius with possibly different sides.
|
|
// A skirt is drawn underneath the corner intersection to hide possible
|
|
// seams when anti-aliased drawing is used.
|
|
static void
|
|
DrawBorderRadius(DrawTarget* aDrawTarget,
|
|
mozilla::css::Corner c,
|
|
const Point& aOuterCorner, const Point& aInnerCorner,
|
|
const twoFloats& aCornerMultPrev, const twoFloats& aCornerMultNext,
|
|
const Size& aCornerDims,
|
|
const Size& aOuterRadius, const Size& aInnerRadius,
|
|
const Color& aFirstColor, const Color& aSecondColor,
|
|
Float aSkirtSize, Float aSkirtSlope)
|
|
{
|
|
// Connect edge to outer arc start point
|
|
Point outerCornerStart = aOuterCorner + aCornerMultPrev * aCornerDims;
|
|
// Connect edge to outer arc end point
|
|
Point outerCornerEnd = aOuterCorner + aCornerMultNext * aCornerDims;
|
|
// Connect edge to inner arc start point
|
|
Point innerCornerStart =
|
|
outerCornerStart +
|
|
aCornerMultNext * (aCornerDims - aInnerRadius);
|
|
// Connect edge to inner arc end point
|
|
Point innerCornerEnd =
|
|
outerCornerEnd +
|
|
aCornerMultPrev * (aCornerDims - aInnerRadius);
|
|
|
|
// Outer arc start point
|
|
Point outerArcStart = aOuterCorner + aCornerMultPrev * aOuterRadius;
|
|
// Outer arc end point
|
|
Point outerArcEnd = aOuterCorner + aCornerMultNext * aOuterRadius;
|
|
// Inner arc start point
|
|
Point innerArcStart = aInnerCorner + aCornerMultPrev * aInnerRadius;
|
|
// Inner arc end point
|
|
Point innerArcEnd = aInnerCorner + aCornerMultNext * aInnerRadius;
|
|
|
|
// Outer radius center
|
|
Point outerCenter = aOuterCorner + (aCornerMultPrev + aCornerMultNext) * aOuterRadius;
|
|
// Inner radius center
|
|
Point innerCenter = aInnerCorner + (aCornerMultPrev + aCornerMultNext) * aInnerRadius;
|
|
|
|
RefPtr<PathBuilder> builder;
|
|
RefPtr<Path> path;
|
|
|
|
if (aFirstColor.a > 0) {
|
|
builder = aDrawTarget->CreatePathBuilder();
|
|
builder->MoveTo(outerCornerStart);
|
|
}
|
|
|
|
if (aFirstColor != aSecondColor) {
|
|
// Start and end angles of corner quadrant
|
|
Float startAngle = (c * M_PI) / 2.0f - M_PI,
|
|
endAngle = startAngle + M_PI / 2.0f,
|
|
outerSplitAngle, innerSplitAngle;
|
|
Point outerSplit, innerSplit;
|
|
|
|
// Outer half-way point
|
|
SplitBorderRadius(outerCenter, aOuterRadius, aOuterCorner, aInnerCorner,
|
|
aCornerMultPrev + aCornerMultNext, startAngle,
|
|
outerSplit, outerSplitAngle);
|
|
// Inner half-way point
|
|
if (aInnerRadius.IsEmpty()) {
|
|
innerSplit = aInnerCorner;
|
|
innerSplitAngle = endAngle;
|
|
} else {
|
|
SplitBorderRadius(innerCenter, aInnerRadius, aOuterCorner, aInnerCorner,
|
|
aCornerMultPrev + aCornerMultNext, startAngle,
|
|
innerSplit, innerSplitAngle);
|
|
}
|
|
|
|
// Draw first half with first color
|
|
if (aFirstColor.a > 0) {
|
|
AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius,
|
|
outerArcStart, outerSplit, startAngle, outerSplitAngle);
|
|
// Draw skirt as part of first half
|
|
if (aSkirtSize > 0) {
|
|
builder->LineTo(outerSplit + aCornerMultNext * aSkirtSize);
|
|
builder->LineTo(innerSplit - aCornerMultPrev * (aSkirtSize * aSkirtSlope));
|
|
}
|
|
AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius,
|
|
innerSplit, innerArcStart, innerSplitAngle, startAngle);
|
|
if ((innerCornerStart - innerArcStart).DotProduct(aCornerMultPrev) > 0) {
|
|
builder->LineTo(innerCornerStart);
|
|
}
|
|
builder->Close();
|
|
path = builder->Finish();
|
|
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
|
|
}
|
|
|
|
// Draw second half with second color
|
|
if (aSecondColor.a > 0) {
|
|
builder = aDrawTarget->CreatePathBuilder();
|
|
builder->MoveTo(outerCornerEnd);
|
|
if ((innerArcEnd - innerCornerEnd).DotProduct(aCornerMultNext) < 0) {
|
|
builder->LineTo(innerCornerEnd);
|
|
}
|
|
AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius,
|
|
innerArcEnd, innerSplit, endAngle, innerSplitAngle);
|
|
AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius,
|
|
outerSplit, outerArcEnd, outerSplitAngle, endAngle);
|
|
builder->Close();
|
|
path = builder->Finish();
|
|
aDrawTarget->Fill(path, ColorPattern(aSecondColor));
|
|
}
|
|
} else if (aFirstColor.a > 0) {
|
|
// Draw corner with single color
|
|
AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius,
|
|
outerArcStart, outerArcEnd);
|
|
builder->LineTo(outerCornerEnd);
|
|
if ((innerArcEnd - innerCornerEnd).DotProduct(aCornerMultNext) < 0) {
|
|
builder->LineTo(innerCornerEnd);
|
|
}
|
|
AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius,
|
|
innerArcEnd, innerArcStart, -kKappaFactor);
|
|
if ((innerCornerStart - innerArcStart).DotProduct(aCornerMultPrev) > 0) {
|
|
builder->LineTo(innerCornerStart);
|
|
}
|
|
builder->Close();
|
|
path = builder->Finish();
|
|
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
|
|
}
|
|
}
|
|
|
|
// Draw a corner with possibly different sides.
|
|
// A skirt is drawn underneath the corner intersection to hide possible
|
|
// seams when anti-aliased drawing is used.
|
|
static void
|
|
DrawCorner(DrawTarget* aDrawTarget,
|
|
mozilla::css::Corner c,
|
|
const Point& aOuterCorner, const Point& aInnerCorner,
|
|
const twoFloats& aCornerMultPrev, const twoFloats& aCornerMultNext,
|
|
const Size& aCornerDims,
|
|
const Color& aFirstColor, const Color& aSecondColor,
|
|
Float aSkirtSize, Float aSkirtSlope)
|
|
{
|
|
// Corner box start point
|
|
Point cornerStart = aOuterCorner + aCornerMultPrev * aCornerDims;
|
|
// Corner box end point
|
|
Point cornerEnd = aOuterCorner + aCornerMultNext * aCornerDims;
|
|
|
|
RefPtr<PathBuilder> builder;
|
|
RefPtr<Path> path;
|
|
|
|
if (aFirstColor.a > 0) {
|
|
builder = aDrawTarget->CreatePathBuilder();
|
|
builder->MoveTo(cornerStart);
|
|
}
|
|
|
|
if (aFirstColor != aSecondColor) {
|
|
// Draw first half with first color
|
|
if (aFirstColor.a > 0) {
|
|
builder->LineTo(aOuterCorner);
|
|
// Draw skirt as part of first half
|
|
if (aSkirtSize > 0) {
|
|
builder->LineTo(aOuterCorner + aCornerMultNext * aSkirtSize);
|
|
builder->LineTo(aInnerCorner - aCornerMultPrev * (aSkirtSize * aSkirtSlope));
|
|
}
|
|
builder->LineTo(aInnerCorner);
|
|
builder->Close();
|
|
path = builder->Finish();
|
|
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
|
|
}
|
|
|
|
// Draw second half with second color
|
|
if (aSecondColor.a > 0) {
|
|
builder = aDrawTarget->CreatePathBuilder();
|
|
builder->MoveTo(cornerEnd);
|
|
builder->LineTo(aInnerCorner);
|
|
builder->LineTo(aOuterCorner);
|
|
builder->Close();
|
|
path = builder->Finish();
|
|
aDrawTarget->Fill(path, ColorPattern(aSecondColor));
|
|
}
|
|
} else if (aFirstColor.a > 0) {
|
|
// Draw corner with single color
|
|
builder->LineTo(aOuterCorner);
|
|
builder->LineTo(cornerEnd);
|
|
builder->LineTo(aInnerCorner);
|
|
builder->Close();
|
|
path = builder->Finish();
|
|
aDrawTarget->Fill(path, ColorPattern(aFirstColor));
|
|
}
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawNoCompositeColorSolidBorder()
|
|
{
|
|
const twoFloats cornerMults[4] = { { -1, 0 },
|
|
{ 0, -1 },
|
|
{ +1, 0 },
|
|
{ 0, +1 } };
|
|
|
|
const twoFloats centerAdjusts[4] = { { 0, +0.5 },
|
|
{ -0.5, 0 },
|
|
{ 0, -0.5 },
|
|
{ +0.5, 0 } };
|
|
|
|
RectCornerRadii innerRadii;
|
|
ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii);
|
|
|
|
Rect strokeRect = mOuterRect;
|
|
strokeRect.Deflate(Margin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0,
|
|
mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0));
|
|
|
|
NS_FOR_CSS_SIDES(i) {
|
|
// We now draw the current side and the CW corner following it.
|
|
// The CCW corner of this side was already drawn in the previous iteration.
|
|
// The side will be drawn as an explicit stroke, and the CW corner will be
|
|
// filled separately.
|
|
// If the next side does not have a matching color, then we split the
|
|
// corner into two halves, one of each side's color and draw both.
|
|
// Thus, the CCW corner of the next side will end up drawn here.
|
|
|
|
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
|
|
mozilla::css::Corner c = mozilla::css::Corner((i+1) % 4);
|
|
mozilla::css::Corner prevCorner = mozilla::css::Corner(i);
|
|
|
|
// i+2 and i+3 respectively. These are used to index into the corner
|
|
// multiplier table, and were deduced by calculating out the long form
|
|
// of each corner and finding a pattern in the signs and values.
|
|
int i1 = (i+1) % 4;
|
|
int i2 = (i+2) % 4;
|
|
int i3 = (i+3) % 4;
|
|
|
|
Float sideWidth = 0.0f;
|
|
Color firstColor, secondColor;
|
|
if (IsVisible(mBorderStyles[i]) && mBorderWidths[i]) {
|
|
// draw the side since it is visible
|
|
sideWidth = mBorderWidths[i];
|
|
firstColor = ToDeviceColor(mBorderColors[i]);
|
|
// if the next side is visible, use its color for corner
|
|
secondColor =
|
|
IsVisible(mBorderStyles[i1]) && mBorderWidths[i1] ?
|
|
ToDeviceColor(mBorderColors[i1]) :
|
|
firstColor;
|
|
} else if (IsVisible(mBorderStyles[i1]) && mBorderWidths[i1]) {
|
|
// assign next side's color to both corner sides
|
|
firstColor = ToDeviceColor(mBorderColors[i1]);
|
|
secondColor = firstColor;
|
|
} else {
|
|
// neither side is visible, so nothing to do
|
|
continue;
|
|
}
|
|
|
|
Point outerCorner = mOuterRect.AtCorner(c);
|
|
Point innerCorner = mInnerRect.AtCorner(c);
|
|
|
|
// start and end points of border side stroke between corners
|
|
Point sideStart =
|
|
mOuterRect.AtCorner(prevCorner) +
|
|
cornerMults[i2] * mBorderCornerDimensions[prevCorner];
|
|
Point sideEnd = outerCorner + cornerMults[i] * mBorderCornerDimensions[c];
|
|
// check if the side is visible and not inverted
|
|
if (sideWidth > 0 && firstColor.a > 0 &&
|
|
-(sideEnd - sideStart).DotProduct(cornerMults[i]) > 0) {
|
|
mDrawTarget->StrokeLine(sideStart + centerAdjusts[i] * sideWidth,
|
|
sideEnd + centerAdjusts[i] * sideWidth,
|
|
ColorPattern(firstColor),
|
|
StrokeOptions(sideWidth));
|
|
}
|
|
|
|
Float skirtSize = 0.0f, skirtSlope = 0.0f;
|
|
// the sides don't match, so compute a skirt
|
|
if (firstColor != secondColor &&
|
|
mPresContextType != nsPresContext::eContext_Print) {
|
|
Point cornerDir = outerCorner - innerCorner;
|
|
ComputeCornerSkirtSize(firstColor.a, secondColor.a,
|
|
cornerDir.DotProduct(cornerMults[i]),
|
|
cornerDir.DotProduct(cornerMults[i3]),
|
|
skirtSize, skirtSlope);
|
|
}
|
|
|
|
if (!mBorderRadii[c].IsEmpty()) {
|
|
// the corner has a border radius
|
|
DrawBorderRadius(mDrawTarget,
|
|
c, outerCorner, innerCorner,
|
|
cornerMults[i], cornerMults[i3],
|
|
mBorderCornerDimensions[c],
|
|
mBorderRadii[c], innerRadii[c],
|
|
firstColor, secondColor, skirtSize, skirtSlope);
|
|
} else if (!mBorderCornerDimensions[c].IsEmpty()) {
|
|
// a corner with no border radius
|
|
DrawCorner(mDrawTarget,
|
|
c, outerCorner, innerCorner,
|
|
cornerMults[i], cornerMults[i3],
|
|
mBorderCornerDimensions[c],
|
|
firstColor, secondColor, skirtSize, skirtSlope);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawRectangularCompositeColors()
|
|
{
|
|
nsBorderColors *currentColors[4];
|
|
memcpy(currentColors, mCompositeColors, sizeof(nsBorderColors*) * 4);
|
|
Rect rect = mOuterRect;
|
|
rect.Deflate(0.5);
|
|
|
|
const twoFloats cornerAdjusts[4] = { { +0.5, 0 },
|
|
{ 0, +0.5 },
|
|
{ -0.5, 0 },
|
|
{ 0, -0.5 } };
|
|
|
|
for (int i = 0; i < mBorderWidths[0]; i++) {
|
|
NS_FOR_CSS_SIDES(side) {
|
|
int sideNext = (side + 1) % 4;
|
|
|
|
Point firstCorner = rect.CCWCorner(side) + cornerAdjusts[side];
|
|
Point secondCorner = rect.CWCorner(side) - cornerAdjusts[side];
|
|
|
|
Color currentColor = Color::FromABGR(
|
|
currentColors[side] ? currentColors[side]->mColor
|
|
: mBorderColors[side]);
|
|
|
|
mDrawTarget->StrokeLine(firstCorner, secondCorner,
|
|
ColorPattern(ToDeviceColor(currentColor)));
|
|
|
|
Point cornerTopLeft = rect.CWCorner(side) - Point(0.5, 0.5);
|
|
Color nextColor = Color::FromABGR(
|
|
currentColors[sideNext] ? currentColors[sideNext]->mColor
|
|
: mBorderColors[sideNext]);
|
|
|
|
Color cornerColor((currentColor.r + nextColor.r) / 2.f,
|
|
(currentColor.g + nextColor.g) / 2.f,
|
|
(currentColor.b + nextColor.b) / 2.f,
|
|
(currentColor.a + nextColor.a) / 2.f);
|
|
mDrawTarget->FillRect(Rect(cornerTopLeft, Size(1, 1)),
|
|
ColorPattern(ToDeviceColor(cornerColor)));
|
|
|
|
if (side != 0) {
|
|
// We'll have to keep side 0 for the color averaging on side 3.
|
|
if (currentColors[side] && currentColors[side]->mNext) {
|
|
currentColors[side] = currentColors[side]->mNext;
|
|
}
|
|
}
|
|
}
|
|
// Now advance the color for side 0.
|
|
if (currentColors[0] && currentColors[0]->mNext) {
|
|
currentColors[0] = currentColors[0]->mNext;
|
|
}
|
|
rect.Deflate(1);
|
|
}
|
|
}
|
|
|
|
void
|
|
nsCSSBorderRenderer::DrawBorders()
|
|
{
|
|
bool forceSeparateCorners = false;
|
|
|
|
// Examine the border style to figure out if we can draw it in one
|
|
// go or not.
|
|
bool tlBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_TOP | SIDE_BIT_LEFT);
|
|
bool brBordersSame = AreBorderSideFinalStylesSame(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
|
|
bool allBordersSame = AreBorderSideFinalStylesSame(SIDE_BITS_ALL);
|
|
if (allBordersSame &&
|
|
((mCompositeColors[0] == nullptr &&
|
|
(mBorderStyles[0] == NS_STYLE_BORDER_STYLE_NONE ||
|
|
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_HIDDEN ||
|
|
mBorderColors[0] == NS_RGBA(0,0,0,0))) ||
|
|
(mCompositeColors[0] &&
|
|
(mCompositeColors[0]->mColor == NS_RGBA(0,0,0,0) &&
|
|
!mCompositeColors[0]->mNext))))
|
|
{
|
|
// All borders are the same style, and the style is either none or hidden, or the color
|
|
// is transparent.
|
|
// This also checks if the first composite color is transparent, and there are
|
|
// no others. It doesn't check if there are subsequent transparent ones, because
|
|
// that would be very silly.
|
|
return;
|
|
}
|
|
|
|
AutoRestoreTransform autoRestoreTransform;
|
|
Matrix mat = mDrawTarget->GetTransform();
|
|
|
|
// Clamp the CTM to be pixel-aligned; we do this only
|
|
// for translation-only matrices now, but we could do it
|
|
// if the matrix has just a scale as well. We should not
|
|
// do it if there's a rotation.
|
|
if (mat.HasNonTranslation()) {
|
|
if (!mat.HasNonAxisAlignedTransform()) {
|
|
// Scale + transform. Avoid stroke fast-paths so that we have a chance
|
|
// of snapping to pixel boundaries.
|
|
mAvoidStroke = true;
|
|
}
|
|
} else {
|
|
mat._31 = floor(mat._31 + 0.5);
|
|
mat._32 = floor(mat._32 + 0.5);
|
|
autoRestoreTransform.Init(mDrawTarget);
|
|
mDrawTarget->SetTransform(mat);
|
|
|
|
// round mOuterRect and mInnerRect; they're already an integer
|
|
// number of pixels apart and should stay that way after
|
|
// rounding. We don't do this if there's a scale in the current transform
|
|
// since this loses information that might be relevant when we're scaling.
|
|
mOuterRect.Round();
|
|
mInnerRect.Round();
|
|
}
|
|
|
|
bool allBordersSameWidth = AllBordersSameWidth();
|
|
|
|
if (allBordersSameWidth && mBorderWidths[0] == 0.0) {
|
|
// Some of the allBordersSameWidth codepaths depend on the border
|
|
// width being greater than zero.
|
|
return;
|
|
}
|
|
|
|
// Initial values only used when the border colors/widths are all the same:
|
|
ColorPattern color(ToDeviceColor(mBorderColors[NS_SIDE_TOP]));
|
|
StrokeOptions strokeOptions(mBorderWidths[NS_SIDE_TOP]); // stroke width
|
|
|
|
bool allBordersSolid;
|
|
|
|
// First there's a couple of 'special cases' that have specifically optimized
|
|
// drawing paths, when none of these can be used we move on to the generalized
|
|
// border drawing code.
|
|
if (allBordersSame &&
|
|
mCompositeColors[0] == nullptr &&
|
|
allBordersSameWidth &&
|
|
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID &&
|
|
mNoBorderRadius &&
|
|
!mAvoidStroke)
|
|
{
|
|
// Very simple case.
|
|
Rect rect = mOuterRect;
|
|
rect.Deflate(mBorderWidths[0] / 2.0);
|
|
mDrawTarget->StrokeRect(rect, color, strokeOptions);
|
|
return;
|
|
}
|
|
|
|
if (allBordersSame &&
|
|
mCompositeColors[0] == nullptr &&
|
|
allBordersSameWidth &&
|
|
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_DOTTED &&
|
|
mBorderWidths[0] < 3 &&
|
|
mNoBorderRadius &&
|
|
!mAvoidStroke)
|
|
{
|
|
// Very simple case. We draw this rectangular dotted borner without
|
|
// antialiasing. The dots should be pixel aligned.
|
|
Rect rect = mOuterRect;
|
|
rect.Deflate(mBorderWidths[0] / 2.0);
|
|
Float dash = mBorderWidths[0];
|
|
strokeOptions.mDashPattern = ‐
|
|
strokeOptions.mDashLength = 1;
|
|
strokeOptions.mDashOffset = 0.5f;
|
|
DrawOptions drawOptions;
|
|
drawOptions.mAntialiasMode = AntialiasMode::NONE;
|
|
mDrawTarget->StrokeRect(rect, color, strokeOptions, drawOptions);
|
|
return;
|
|
}
|
|
|
|
|
|
if (allBordersSame &&
|
|
mCompositeColors[0] == nullptr &&
|
|
mBorderStyles[0] == NS_STYLE_BORDER_STYLE_SOLID &&
|
|
!mAvoidStroke &&
|
|
!mNoBorderRadius)
|
|
{
|
|
// Relatively simple case.
|
|
gfxRect outerRect = ThebesRect(mOuterRect);
|
|
RoundedRect borderInnerRect(outerRect, mBorderRadii);
|
|
borderInnerRect.Deflate(mBorderWidths[NS_SIDE_TOP],
|
|
mBorderWidths[NS_SIDE_BOTTOM],
|
|
mBorderWidths[NS_SIDE_LEFT],
|
|
mBorderWidths[NS_SIDE_RIGHT]);
|
|
|
|
// Instead of stroking we just use two paths: an inner and an outer.
|
|
// This allows us to draw borders that we couldn't when stroking. For example,
|
|
// borders with a border width >= the border radius. (i.e. when there are
|
|
// square corners on the inside)
|
|
//
|
|
// Further, this approach can be more efficient because the backend
|
|
// doesn't need to compute an offset curve to stroke the path. We know that
|
|
// the rounded parts are elipses we can offset exactly and can just compute
|
|
// a new cubic approximation.
|
|
RefPtr<PathBuilder> builder = mDrawTarget->CreatePathBuilder();
|
|
AppendRoundedRectToPath(builder, mOuterRect, mBorderRadii, true);
|
|
AppendRoundedRectToPath(builder, ToRect(borderInnerRect.rect), borderInnerRect.corners, false);
|
|
RefPtr<Path> path = builder->Finish();
|
|
mDrawTarget->Fill(path, color);
|
|
return;
|
|
}
|
|
|
|
bool hasCompositeColors;
|
|
|
|
allBordersSolid = AllBordersSolid(&hasCompositeColors);
|
|
// This leaves the border corners non-interpolated for single width borders.
|
|
// Doing this is slightly faster and shouldn't be a problem visually.
|
|
if (allBordersSolid &&
|
|
allBordersSameWidth &&
|
|
mCompositeColors[0] == nullptr &&
|
|
mBorderWidths[0] == 1 &&
|
|
mNoBorderRadius &&
|
|
!mAvoidStroke)
|
|
{
|
|
DrawSingleWidthSolidBorder();
|
|
return;
|
|
}
|
|
|
|
if (allBordersSolid && !hasCompositeColors &&
|
|
!mAvoidStroke)
|
|
{
|
|
DrawNoCompositeColorSolidBorder();
|
|
return;
|
|
}
|
|
|
|
if (allBordersSolid &&
|
|
allBordersSameWidth &&
|
|
mNoBorderRadius &&
|
|
!mAvoidStroke)
|
|
{
|
|
// Easy enough to deal with.
|
|
DrawRectangularCompositeColors();
|
|
return;
|
|
}
|
|
|
|
// If we have composite colors -and- border radius,
|
|
// then use separate corners so we get OP_ADD for the corners.
|
|
// Otherwise, we'll get artifacts as we draw stacked 1px-wide curves.
|
|
if (allBordersSame && mCompositeColors[0] != nullptr && !mNoBorderRadius)
|
|
forceSeparateCorners = true;
|
|
|
|
PrintAsString(" mOuterRect: "), PrintAsString(mOuterRect), PrintAsStringNewline();
|
|
PrintAsString(" mInnerRect: "), PrintAsString(mInnerRect), PrintAsStringNewline();
|
|
PrintAsFormatString(" mBorderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", mBorderColors[0], mBorderColors[1], mBorderColors[2], mBorderColors[3]);
|
|
|
|
// if conditioning the outside rect failed, then bail -- the outside
|
|
// rect is supposed to enclose the entire border
|
|
{
|
|
gfxRect outerRect = ThebesRect(mOuterRect);
|
|
outerRect.Condition();
|
|
if (outerRect.IsEmpty())
|
|
return;
|
|
mOuterRect = ToRect(outerRect);
|
|
|
|
gfxRect innerRect = ThebesRect(mInnerRect);
|
|
innerRect.Condition();
|
|
mInnerRect = ToRect(innerRect);
|
|
}
|
|
|
|
int dashedSides = 0;
|
|
|
|
NS_FOR_CSS_SIDES(i) {
|
|
uint8_t style = mBorderStyles[i];
|
|
if (style == NS_STYLE_BORDER_STYLE_DASHED ||
|
|
style == NS_STYLE_BORDER_STYLE_DOTTED)
|
|
{
|
|
// pretend that all borders aren't the same; we need to draw
|
|
// things separately for dashed/dotting
|
|
allBordersSame = false;
|
|
dashedSides |= (1 << i);
|
|
}
|
|
}
|
|
|
|
PrintAsFormatString(" allBordersSame: %d dashedSides: 0x%02x\n", allBordersSame, dashedSides);
|
|
|
|
if (allBordersSame && !forceSeparateCorners) {
|
|
/* Draw everything in one go */
|
|
DrawBorderSides(SIDE_BITS_ALL);
|
|
PrintAsStringNewline("---------------- (1)");
|
|
} else {
|
|
PROFILER_LABEL("nsCSSBorderRenderer", "DrawBorders::multipass",
|
|
js::ProfileEntry::Category::GRAPHICS);
|
|
|
|
/* We have more than one pass to go. Draw the corners separately from the sides. */
|
|
|
|
/*
|
|
* If we have a 1px-wide border, the corners are going to be
|
|
* negligible, so don't bother doing anything fancy. Just extend
|
|
* the top and bottom borders to the right 1px and the left border
|
|
* to the bottom 1px. We do this by twiddling the corner dimensions,
|
|
* which causes the right to happen later on. Only do this if we have
|
|
* a 1.0 unit border all around and no border radius.
|
|
*/
|
|
|
|
NS_FOR_CSS_CORNERS(corner) {
|
|
const mozilla::css::Side sides[2] = { mozilla::css::Side(corner), PREV_SIDE(corner) };
|
|
|
|
if (!IsZeroSize(mBorderRadii[corner]))
|
|
continue;
|
|
|
|
if (mBorderWidths[sides[0]] == 1.0 && mBorderWidths[sides[1]] == 1.0) {
|
|
if (corner == NS_CORNER_TOP_LEFT || corner == NS_CORNER_TOP_RIGHT)
|
|
mBorderCornerDimensions[corner].width = 0.0;
|
|
else
|
|
mBorderCornerDimensions[corner].height = 0.0;
|
|
}
|
|
}
|
|
|
|
// First, the corners
|
|
NS_FOR_CSS_CORNERS(corner) {
|
|
// if there's no corner, don't do all this work for it
|
|
if (IsZeroSize(mBorderCornerDimensions[corner]))
|
|
continue;
|
|
|
|
const int sides[2] = { corner, PREV_SIDE(corner) };
|
|
int sideBits = (1 << sides[0]) | (1 << sides[1]);
|
|
|
|
bool simpleCornerStyle = mCompositeColors[sides[0]] == nullptr &&
|
|
mCompositeColors[sides[1]] == nullptr &&
|
|
AreBorderSideFinalStylesSame(sideBits);
|
|
|
|
// If we don't have anything complex going on in this corner,
|
|
// then we can just fill the corner with a solid color, and avoid
|
|
// the potentially expensive clip.
|
|
if (simpleCornerStyle &&
|
|
IsZeroSize(mBorderRadii[corner]) &&
|
|
IsSolidCornerStyle(mBorderStyles[sides[0]], corner))
|
|
{
|
|
Color color = MakeBorderColor(mBorderColors[sides[0]],
|
|
mBackgroundColor,
|
|
BorderColorStyleForSolidCorner(mBorderStyles[sides[0]], corner));
|
|
mDrawTarget->FillRect(GetCornerRect(corner),
|
|
ColorPattern(ToDeviceColor(color)));
|
|
continue;
|
|
}
|
|
|
|
// clip to the corner
|
|
mDrawTarget->PushClipRect(GetCornerRect(corner));
|
|
|
|
if (simpleCornerStyle) {
|
|
// we don't need a group for this corner, the sides are the same,
|
|
// but we weren't able to render just a solid block for the corner.
|
|
DrawBorderSides(sideBits);
|
|
} else {
|
|
// Sides are different. We could draw using OP_ADD to
|
|
// get correct color blending behaviour at the seam. We'd need
|
|
// to do it in an offscreen surface to ensure that we're
|
|
// always compositing on transparent black. If the colors
|
|
// don't have transparency and the current destination surface
|
|
// has an alpha channel, we could just clear the region and
|
|
// avoid the temporary, but that situation doesn't happen all
|
|
// that often in practice (we double buffer to no-alpha
|
|
// surfaces). We choose just to seam though, as the performance
|
|
// advantages outway the modest easthetic improvement.
|
|
|
|
for (int cornerSide = 0; cornerSide < 2; cornerSide++) {
|
|
mozilla::css::Side side = mozilla::css::Side(sides[cornerSide]);
|
|
uint8_t style = mBorderStyles[side];
|
|
|
|
PrintAsFormatString("corner: %d cornerSide: %d side: %d style: %d\n", corner, cornerSide, side, style);
|
|
|
|
RefPtr<Path> path = GetSideClipSubPath(side);
|
|
mDrawTarget->PushClip(path);
|
|
|
|
DrawBorderSides(1 << side);
|
|
|
|
mDrawTarget->PopClip();
|
|
}
|
|
}
|
|
|
|
mDrawTarget->PopClip();
|
|
|
|
PrintAsStringNewline();
|
|
}
|
|
|
|
// in the case of a single-unit border, we already munged the
|
|
// corners up above; so we can just draw the top left and bottom
|
|
// right sides separately, if they're the same.
|
|
//
|
|
// We need to check for mNoBorderRadius, because when there is
|
|
// one, FillSolidBorder always draws the full rounded rectangle
|
|
// and expects there to be a clip in place.
|
|
int alreadyDrawnSides = 0;
|
|
if (mOneUnitBorder &&
|
|
mNoBorderRadius &&
|
|
(dashedSides & (SIDE_BIT_TOP | SIDE_BIT_LEFT)) == 0)
|
|
{
|
|
if (tlBordersSame) {
|
|
DrawBorderSides(SIDE_BIT_TOP | SIDE_BIT_LEFT);
|
|
alreadyDrawnSides |= (SIDE_BIT_TOP | SIDE_BIT_LEFT);
|
|
}
|
|
|
|
if (brBordersSame && (dashedSides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) == 0) {
|
|
DrawBorderSides(SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
|
|
alreadyDrawnSides |= (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT);
|
|
}
|
|
}
|
|
|
|
// We're done with the corners, now draw the sides.
|
|
NS_FOR_CSS_SIDES (side) {
|
|
// if we drew it above, skip it
|
|
if (alreadyDrawnSides & (1 << side))
|
|
continue;
|
|
|
|
// If there's no border on this side, skip it
|
|
if (mBorderWidths[side] == 0.0 ||
|
|
mBorderStyles[side] == NS_STYLE_BORDER_STYLE_HIDDEN ||
|
|
mBorderStyles[side] == NS_STYLE_BORDER_STYLE_NONE)
|
|
continue;
|
|
|
|
|
|
if (dashedSides & (1 << side)) {
|
|
// Dashed sides will always draw just the part ignoring the
|
|
// corners for the side, so no need to clip.
|
|
DrawDashedSide (side);
|
|
|
|
PrintAsStringNewline("---------------- (d)");
|
|
continue;
|
|
}
|
|
|
|
// Undashed sides will currently draw the entire side,
|
|
// including parts that would normally be covered by a corner,
|
|
// so we need to clip.
|
|
//
|
|
// XXX Optimization -- it would be good to make this work like
|
|
// DrawDashedSide, and have a DrawOneSide function that just
|
|
// draws one side and not the corners, because then we can
|
|
// avoid the potentially expensive clip.
|
|
mDrawTarget->PushClipRect(GetSideClipWithoutCornersRect(side));
|
|
|
|
DrawBorderSides(1 << side);
|
|
|
|
mDrawTarget->PopClip();
|
|
|
|
PrintAsStringNewline("---------------- (*)");
|
|
}
|
|
}
|
|
}
|