mirror of
https://github.com/classilla/tenfourfox.git
synced 2025-01-08 07:31:32 +00:00
540 lines
16 KiB
C++
540 lines
16 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
||
|
||
#include "2D.h"
|
||
#include "PathAnalysis.h"
|
||
#include "PathHelpers.h"
|
||
|
||
namespace mozilla {
|
||
namespace gfx {
|
||
|
||
static float CubicRoot(float aValue) {
|
||
if (aValue < 0.0) {
|
||
return -CubicRoot(-aValue);
|
||
}
|
||
else {
|
||
return powf(aValue, 1.0f / 3.0f);
|
||
}
|
||
}
|
||
|
||
struct BezierControlPoints
|
||
{
|
||
BezierControlPoints() {}
|
||
BezierControlPoints(const Point &aCP1, const Point &aCP2,
|
||
const Point &aCP3, const Point &aCP4)
|
||
: mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4)
|
||
{
|
||
}
|
||
|
||
Point mCP1, mCP2, mCP3, mCP4;
|
||
};
|
||
|
||
void
|
||
FlattenBezier(const BezierControlPoints &aPoints,
|
||
PathSink *aSink, Float aTolerance);
|
||
|
||
|
||
Path::Path()
|
||
{
|
||
}
|
||
|
||
Path::~Path()
|
||
{
|
||
}
|
||
|
||
Float
|
||
Path::ComputeLength()
|
||
{
|
||
EnsureFlattenedPath();
|
||
return mFlattenedPath->ComputeLength();
|
||
}
|
||
|
||
Point
|
||
Path::ComputePointAtLength(Float aLength, Point* aTangent)
|
||
{
|
||
EnsureFlattenedPath();
|
||
return mFlattenedPath->ComputePointAtLength(aLength, aTangent);
|
||
}
|
||
|
||
void
|
||
Path::EnsureFlattenedPath()
|
||
{
|
||
if (!mFlattenedPath) {
|
||
mFlattenedPath = new FlattenedPath();
|
||
StreamToSink(mFlattenedPath);
|
||
}
|
||
}
|
||
|
||
// This is the maximum deviation we allow (with an additional ~20% margin of
|
||
// error) of the approximation from the actual Bezier curve.
|
||
const Float kFlatteningTolerance = 0.0001f;
|
||
|
||
void
|
||
FlattenedPath::MoveTo(const Point &aPoint)
|
||
{
|
||
MOZ_ASSERT(!mCalculatedLength);
|
||
FlatPathOp op;
|
||
op.mType = FlatPathOp::OP_MOVETO;
|
||
op.mPoint = aPoint;
|
||
mPathOps.push_back(op);
|
||
|
||
mLastMove = aPoint;
|
||
}
|
||
|
||
void
|
||
FlattenedPath::LineTo(const Point &aPoint)
|
||
{
|
||
MOZ_ASSERT(!mCalculatedLength);
|
||
FlatPathOp op;
|
||
op.mType = FlatPathOp::OP_LINETO;
|
||
op.mPoint = aPoint;
|
||
mPathOps.push_back(op);
|
||
}
|
||
|
||
void
|
||
FlattenedPath::BezierTo(const Point &aCP1,
|
||
const Point &aCP2,
|
||
const Point &aCP3)
|
||
{
|
||
MOZ_ASSERT(!mCalculatedLength);
|
||
FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this, kFlatteningTolerance);
|
||
}
|
||
|
||
void
|
||
FlattenedPath::QuadraticBezierTo(const Point &aCP1,
|
||
const Point &aCP2)
|
||
{
|
||
MOZ_ASSERT(!mCalculatedLength);
|
||
// We need to elevate the degree of this quadratic B<>zier to cubic, so we're
|
||
// going to add an intermediate control point, and recompute control point 1.
|
||
// The first and last control points remain the same.
|
||
// This formula can be found on http://fontforge.sourceforge.net/bezier.html
|
||
Point CP0 = CurrentPoint();
|
||
Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
|
||
Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
|
||
Point CP3 = aCP2;
|
||
|
||
BezierTo(CP1, CP2, CP3);
|
||
}
|
||
|
||
void
|
||
FlattenedPath::Close()
|
||
{
|
||
MOZ_ASSERT(!mCalculatedLength);
|
||
LineTo(mLastMove);
|
||
}
|
||
|
||
void
|
||
FlattenedPath::Arc(const Point &aOrigin, float aRadius, float aStartAngle,
|
||
float aEndAngle, bool aAntiClockwise)
|
||
{
|
||
ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise);
|
||
}
|
||
|
||
Float
|
||
FlattenedPath::ComputeLength()
|
||
{
|
||
if (!mCalculatedLength) {
|
||
Point currentPoint;
|
||
|
||
for (uint32_t i = 0; i < mPathOps.size(); i++) {
|
||
if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
|
||
currentPoint = mPathOps[i].mPoint;
|
||
} else {
|
||
mCachedLength += Distance(currentPoint, mPathOps[i].mPoint);
|
||
currentPoint = mPathOps[i].mPoint;
|
||
}
|
||
}
|
||
|
||
mCalculatedLength = true;
|
||
}
|
||
|
||
return mCachedLength;
|
||
}
|
||
|
||
Point
|
||
FlattenedPath::ComputePointAtLength(Float aLength, Point *aTangent)
|
||
{
|
||
// We track the last point that -wasn't- in the same place as the current
|
||
// point so if we pass the edge of the path with a bunch of zero length
|
||
// paths we still get the correct tangent vector.
|
||
Point lastPointSinceMove;
|
||
Point currentPoint;
|
||
for (uint32_t i = 0; i < mPathOps.size(); i++) {
|
||
if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
|
||
if (Distance(currentPoint, mPathOps[i].mPoint)) {
|
||
lastPointSinceMove = currentPoint;
|
||
}
|
||
currentPoint = mPathOps[i].mPoint;
|
||
} else {
|
||
Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint);
|
||
|
||
if (segmentLength) {
|
||
lastPointSinceMove = currentPoint;
|
||
if (segmentLength > aLength) {
|
||
Point currentVector = mPathOps[i].mPoint - currentPoint;
|
||
Point tangent = currentVector / segmentLength;
|
||
if (aTangent) {
|
||
*aTangent = tangent;
|
||
}
|
||
return currentPoint + tangent * aLength;
|
||
}
|
||
}
|
||
|
||
aLength -= segmentLength;
|
||
currentPoint = mPathOps[i].mPoint;
|
||
}
|
||
}
|
||
|
||
Point currentVector = currentPoint - lastPointSinceMove;
|
||
if (aTangent) {
|
||
if (hypotf(currentVector.x, currentVector.y)) {
|
||
*aTangent = currentVector / hypotf(currentVector.x, currentVector.y);
|
||
} else {
|
||
*aTangent = Point();
|
||
}
|
||
}
|
||
return currentPoint;
|
||
}
|
||
|
||
// This function explicitly permits aControlPoints to refer to the same object
|
||
// as either of the other arguments.
|
||
static void
|
||
SplitBezier(const BezierControlPoints &aControlPoints,
|
||
BezierControlPoints *aFirstSegmentControlPoints,
|
||
BezierControlPoints *aSecondSegmentControlPoints,
|
||
Float t)
|
||
{
|
||
MOZ_ASSERT(aSecondSegmentControlPoints);
|
||
|
||
*aSecondSegmentControlPoints = aControlPoints;
|
||
|
||
Point cp1a = aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t;
|
||
Point cp2a = aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t;
|
||
Point cp1aa = cp1a + (cp2a - cp1a) * t;
|
||
Point cp3a = aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t;
|
||
Point cp2aa = cp2a + (cp3a - cp2a) * t;
|
||
Point cp1aaa = cp1aa + (cp2aa - cp1aa) * t;
|
||
aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4;
|
||
|
||
if(aFirstSegmentControlPoints) {
|
||
aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1;
|
||
aFirstSegmentControlPoints->mCP2 = cp1a;
|
||
aFirstSegmentControlPoints->mCP3 = cp1aa;
|
||
aFirstSegmentControlPoints->mCP4 = cp1aaa;
|
||
}
|
||
aSecondSegmentControlPoints->mCP1 = cp1aaa;
|
||
aSecondSegmentControlPoints->mCP2 = cp2aa;
|
||
aSecondSegmentControlPoints->mCP3 = cp3a;
|
||
}
|
||
|
||
static void
|
||
FlattenBezierCurveSegment(const BezierControlPoints &aControlPoints,
|
||
PathSink *aSink,
|
||
Float aTolerance)
|
||
{
|
||
/* The algorithm implemented here is based on:
|
||
* http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf
|
||
*
|
||
* The basic premise is that for a small t the third order term in the
|
||
* equation of a cubic bezier curve is insignificantly small. This can
|
||
* then be approximated by a quadratic equation for which the maximum
|
||
* difference from a linear approximation can be much more easily determined.
|
||
*/
|
||
BezierControlPoints currentCP = aControlPoints;
|
||
|
||
Float t = 0;
|
||
while (t < 1.0f) {
|
||
Point cp21 = currentCP.mCP2 - currentCP.mCP3;
|
||
Point cp31 = currentCP.mCP3 - currentCP.mCP1;
|
||
|
||
/* To remove divisions and check for divide-by-zero, this is optimized from:
|
||
* Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y);
|
||
* t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3))));
|
||
*/
|
||
Float cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x;
|
||
Float h = hypotf(cp21.x, cp21.y);
|
||
if (cp21x31 * h == 0) {
|
||
break;
|
||
}
|
||
|
||
Float s3inv = h / cp21x31;
|
||
t = 2 * Float(sqrt(aTolerance * std::abs(s3inv) / 3.));
|
||
if (t >= 1.0f) {
|
||
break;
|
||
}
|
||
|
||
Point prevCP2, prevCP3, nextCP1, nextCP2, nextCP3;
|
||
SplitBezier(currentCP, nullptr, ¤tCP, t);
|
||
|
||
aSink->LineTo(currentCP.mCP1);
|
||
}
|
||
|
||
aSink->LineTo(currentCP.mCP4);
|
||
}
|
||
|
||
static inline void
|
||
FindInflectionApproximationRange(BezierControlPoints aControlPoints,
|
||
Float *aMin, Float *aMax, Float aT,
|
||
Float aTolerance)
|
||
{
|
||
SplitBezier(aControlPoints, nullptr, &aControlPoints, aT);
|
||
|
||
Point cp21 = aControlPoints.mCP2 - aControlPoints.mCP1;
|
||
Point cp41 = aControlPoints.mCP4 - aControlPoints.mCP1;
|
||
|
||
if (cp21.x == 0.f && cp21.y == 0.f) {
|
||
// In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n = cp41.x - cp41.y.
|
||
|
||
// Use the absolute value so that Min and Max will correspond with the
|
||
// minimum and maximum of the range.
|
||
*aMin = aT - CubicRoot(std::abs(aTolerance / (cp41.x - cp41.y)));
|
||
*aMax = aT + CubicRoot(std::abs(aTolerance / (cp41.x - cp41.y)));
|
||
return;
|
||
}
|
||
|
||
Float s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypotf(cp21.x, cp21.y);
|
||
|
||
if (s3 == 0) {
|
||
// This means within the precision we have it can be approximated
|
||
// infinitely by a linear segment. Deal with this by specifying the
|
||
// approximation range as extending beyond the entire curve.
|
||
*aMin = -1.0f;
|
||
*aMax = 2.0f;
|
||
return;
|
||
}
|
||
|
||
Float tf = CubicRoot(std::abs(aTolerance / s3));
|
||
|
||
*aMin = aT - tf * (1 - aT);
|
||
*aMax = aT + tf * (1 - aT);
|
||
}
|
||
|
||
/* Find the inflection points of a bezier curve. Will return false if the
|
||
* curve is degenerate in such a way that it is best approximated by a straight
|
||
* line.
|
||
*
|
||
* The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>, explanation follows:
|
||
*
|
||
* The lower inflection point is returned in aT1, the higher one in aT2. In the
|
||
* case of a single inflection point this will be in aT1.
|
||
*
|
||
* The method is inspired by the algorithm in "analysis of in?ection points for planar cubic bezier curve"
|
||
*
|
||
* Here are some differences between this algorithm and versions discussed elsewhere in the literature:
|
||
*
|
||
* zhang et. al compute a0, d0 and e0 incrementally using the follow formula:
|
||
*
|
||
* Point a0 = CP2 - CP1
|
||
* Point a1 = CP3 - CP2
|
||
* Point a2 = CP4 - CP1
|
||
*
|
||
* Point d0 = a1 - a0
|
||
* Point d1 = a2 - a1
|
||
|
||
* Point e0 = d1 - d0
|
||
*
|
||
* this avoids any multiplications and may or may not be faster than the approach take below.
|
||
*
|
||
* "fast, precise flattening of cubic bezier path and ofset curves" by hain et. al
|
||
* Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4
|
||
* Point b = 3 * CP1 - 6 * CP2 + 3 * CP3
|
||
* Point c = -3 * CP1 + 3 * CP2
|
||
* Point d = CP1
|
||
* the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as:
|
||
* c = 3 * a0
|
||
* b = 3 * d0
|
||
* a = e0
|
||
*
|
||
*
|
||
* a = 3a = a.y * b.x - a.x * b.y
|
||
* b = 3b = a.y * c.x - a.x * c.y
|
||
* c = 9c = b.y * c.x - b.x * c.y
|
||
*
|
||
* The additional multiples of 3 cancel each other out as show below:
|
||
*
|
||
* x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
|
||
* x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a)
|
||
* x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a)
|
||
* x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
|
||
*
|
||
* I haven't looked into whether the formulation of the quadratic formula in
|
||
* hain has any numerical advantages over the one used below.
|
||
*/
|
||
static inline void
|
||
FindInflectionPoints(const BezierControlPoints &aControlPoints,
|
||
Float *aT1, Float *aT2, uint32_t *aCount)
|
||
{
|
||
// Find inflection points.
|
||
// See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
|
||
// of this approach.
|
||
Point A = aControlPoints.mCP2 - aControlPoints.mCP1;
|
||
Point B = aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1;
|
||
Point C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) + (aControlPoints.mCP2 * 3) - aControlPoints.mCP1;
|
||
|
||
Float a = Float(B.x) * C.y - Float(B.y) * C.x;
|
||
Float b = Float(A.x) * C.y - Float(A.y) * C.x;
|
||
Float c = Float(A.x) * B.y - Float(A.y) * B.x;
|
||
|
||
if (a == 0) {
|
||
// Not a quadratic equation.
|
||
if (b == 0) {
|
||
// Instead of a linear acceleration change we have a constant
|
||
// acceleration change. This means the equation has no solution
|
||
// and there are no inflection points, unless the constant is 0.
|
||
// In that case the curve is a straight line, essentially that means
|
||
// the easiest way to deal with is is by saying there's an inflection
|
||
// point at t == 0. The inflection point approximation range found will
|
||
// automatically extend into infinity.
|
||
if (c == 0) {
|
||
*aCount = 1;
|
||
*aT1 = 0;
|
||
return;
|
||
}
|
||
*aCount = 0;
|
||
return;
|
||
}
|
||
*aT1 = -c / b;
|
||
*aCount = 1;
|
||
return;
|
||
} else {
|
||
Float discriminant = b * b - 4 * a * c;
|
||
|
||
if (discriminant < 0) {
|
||
// No inflection points.
|
||
*aCount = 0;
|
||
} else if (discriminant == 0) {
|
||
*aCount = 1;
|
||
*aT1 = -b / (2 * a);
|
||
} else {
|
||
/* Use the following formula for computing the roots:
|
||
*
|
||
* q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac))
|
||
* t1 = q / a
|
||
* t2 = c / q
|
||
*/
|
||
Float q = sqrtf(discriminant);
|
||
if (b < 0) {
|
||
q = b - q;
|
||
} else {
|
||
q = b + q;
|
||
}
|
||
q *= Float(-1./2);
|
||
|
||
*aT1 = q / a;
|
||
*aT2 = c / q;
|
||
if (*aT1 > *aT2) {
|
||
std::swap(*aT1, *aT2);
|
||
}
|
||
*aCount = 2;
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
void
|
||
FlattenBezier(const BezierControlPoints &aControlPoints,
|
||
PathSink *aSink, Float aTolerance)
|
||
{
|
||
Float t1;
|
||
Float t2;
|
||
uint32_t count;
|
||
|
||
FindInflectionPoints(aControlPoints, &t1, &t2, &count);
|
||
|
||
// Check that at least one of the inflection points is inside [0..1]
|
||
if (count == 0 || ((t1 < 0 || t1 > 1.0) && (count == 1 || (t2 < 0 || t2 > 1.0))) ) {
|
||
FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance);
|
||
return;
|
||
}
|
||
|
||
Float t1min = t1, t1max = t1, t2min = t2, t2max = t2;
|
||
|
||
BezierControlPoints remainingCP = aControlPoints;
|
||
|
||
// For both inflection points, calulate the range where they can be linearly
|
||
// approximated if they are positioned within [0,1]
|
||
if (count > 0 && t1 >= 0 && t1 < 1.0) {
|
||
FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1, aTolerance);
|
||
}
|
||
if (count > 1 && t2 >= 0 && t2 < 1.0) {
|
||
FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2, aTolerance);
|
||
}
|
||
BezierControlPoints nextCPs = aControlPoints;
|
||
BezierControlPoints prevCPs;
|
||
|
||
// Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line
|
||
// segments.
|
||
if (count == 1 && t1min <= 0 && t1max >= 1.0) {
|
||
// The whole range can be approximated by a line segment.
|
||
aSink->LineTo(aControlPoints.mCP4);
|
||
return;
|
||
}
|
||
|
||
if (t1min > 0) {
|
||
// Flatten the Bezier up until the first inflection point's approximation
|
||
// point.
|
||
SplitBezier(aControlPoints, &prevCPs,
|
||
&remainingCP, t1min);
|
||
FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
|
||
}
|
||
if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) {
|
||
// The second inflection point's approximation range begins after the end
|
||
// of the first, approximate the first inflection point by a line and
|
||
// subsequently flatten up until the end or the next inflection point.
|
||
SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
|
||
|
||
aSink->LineTo(nextCPs.mCP1);
|
||
|
||
if (count == 1 || (count > 1 && t2min >= 1.0)) {
|
||
// No more inflection points to deal with, flatten the rest of the curve.
|
||
FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
|
||
}
|
||
} else if (count > 1 && t2min > 1.0) {
|
||
// We've already concluded t2min <= t1max, so if this is true the
|
||
// approximation range for the first inflection point runs past the
|
||
// end of the curve, draw a line to the end and we're done.
|
||
aSink->LineTo(aControlPoints.mCP4);
|
||
return;
|
||
}
|
||
|
||
if (count > 1 && t2min < 1.0 && t2max > 0) {
|
||
if (t2min > 0 && t2min < t1max) {
|
||
// In this case the t2 approximation range starts inside the t1
|
||
// approximation range.
|
||
SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
|
||
aSink->LineTo(nextCPs.mCP1);
|
||
} else if (t2min > 0 && t1max > 0) {
|
||
SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
|
||
|
||
// Find a control points describing the portion of the curve between t1max and t2min.
|
||
Float t2mina = (t2min - t1max) / (1 - t1max);
|
||
SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina);
|
||
FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
|
||
} else if (t2min > 0) {
|
||
// We have nothing interesting before t2min, find that bit and flatten it.
|
||
SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min);
|
||
FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
|
||
}
|
||
if (t2max < 1.0) {
|
||
// Flatten the portion of the curve after t2max
|
||
SplitBezier(aControlPoints, nullptr, &nextCPs, t2max);
|
||
|
||
// Draw a line to the start, this is the approximation between t2min and
|
||
// t2max.
|
||
aSink->LineTo(nextCPs.mCP1);
|
||
FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
|
||
} else {
|
||
// Our approximation range extends beyond the end of the curve.
|
||
aSink->LineTo(aControlPoints.mCP4);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
} // namespace gfx
|
||
} // namespace mozilla
|