tenfourfox/widget/gonk/nativewindow/GonkBufferQueueJB.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

1035 lines
34 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* Copyright (C) 2012 The Android Open Source Project
* Copyright (C) 2013 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "GonkBufferQueue"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#define LOG_NDEBUG 0
#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES
#include <utils/Log.h>
#include "mozilla/layers/GrallocTextureClient.h"
#include "mozilla/layers/ImageBridgeChild.h"
#include "GonkBufferQueueJB.h"
// Macros for including the GonkBufferQueue name in log messages
#define ST_LOGV(...) __android_log_print(ANDROID_LOG_VERBOSE, LOG_TAG, __VA_ARGS__)
#define ST_LOGD(...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#define ST_LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
#define ST_LOGW(...) __android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__)
#define ST_LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)
#define ATRACE_BUFFER_INDEX(index)
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::layers;
namespace android {
// Get an ID that's unique within this process.
static int32_t createProcessUniqueId() {
static volatile int32_t globalCounter = 0;
return android_atomic_inc(&globalCounter);
}
static const char* scalingModeName(int scalingMode) {
switch (scalingMode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE: return "FREEZE";
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: return "SCALE_TO_WINDOW";
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: return "SCALE_CROP";
default: return "Unknown";
}
}
GonkBufferQueue::GonkBufferQueue(bool allowSynchronousMode,
const sp<IGraphicBufferAlloc>& allocator) :
mDefaultWidth(1),
mDefaultHeight(1),
mMaxAcquiredBufferCount(1),
mDefaultMaxBufferCount(2),
mOverrideMaxBufferCount(0),
mSynchronousMode(true),
mAllowSynchronousMode(allowSynchronousMode),
mConnectedApi(NO_CONNECTED_API),
mAbandoned(false),
mFrameCounter(0),
mBufferHasBeenQueued(false),
mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888),
mConsumerUsageBits(0),
mTransformHint(0)
{
// Choose a name using the PID and a process-unique ID.
mConsumerName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId());
ST_LOGV("GonkBufferQueue");
}
GonkBufferQueue::~GonkBufferQueue() {
ST_LOGV("~GonkBufferQueue");
}
status_t GonkBufferQueue::setDefaultMaxBufferCountLocked(int count) {
if (count < 2 || count > NUM_BUFFER_SLOTS)
return BAD_VALUE;
mDefaultMaxBufferCount = count;
mDequeueCondition.broadcast();
return NO_ERROR;
}
bool GonkBufferQueue::isSynchronousMode() const {
Mutex::Autolock lock(mMutex);
return mSynchronousMode;
}
void GonkBufferQueue::setConsumerName(const String8& name) {
Mutex::Autolock lock(mMutex);
mConsumerName = name;
}
status_t GonkBufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) {
Mutex::Autolock lock(mMutex);
mDefaultBufferFormat = defaultFormat;
return NO_ERROR;
}
status_t GonkBufferQueue::setConsumerUsageBits(uint32_t usage) {
Mutex::Autolock lock(mMutex);
mConsumerUsageBits = usage;
return NO_ERROR;
}
status_t GonkBufferQueue::setTransformHint(uint32_t hint) {
ST_LOGV("setTransformHint: %02x", hint);
Mutex::Autolock lock(mMutex);
mTransformHint = hint;
return NO_ERROR;
}
already_AddRefed<TextureClient>
GonkBufferQueue::getTextureClientFromBuffer(ANativeWindowBuffer* buffer)
{
Mutex::Autolock _l(mMutex);
if (buffer == NULL) {
ST_LOGE("getSlotFromBufferLocked: encountered NULL buffer");
return nullptr;
}
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mGraphicBuffer != NULL && mSlots[i].mGraphicBuffer->handle == buffer->handle) {
RefPtr<TextureClient> client(mSlots[i].mTextureClient);
return client.forget();
}
}
ST_LOGE("getSlotFromBufferLocked: unknown buffer: %p", buffer->handle);
return nullptr;
}
int GonkBufferQueue::getSlotFromTextureClientLocked(
TextureClient* client) const
{
if (client == NULL) {
ST_LOGE("getSlotFromBufferLocked: encountered NULL buffer");
return BAD_VALUE;
}
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mTextureClient == client) {
return i;
}
}
ST_LOGE("getSlotFromBufferLocked: unknown TextureClient: %p", client);
return BAD_VALUE;
}
status_t GonkBufferQueue::setBufferCount(int bufferCount) {
ST_LOGV("setBufferCount: count=%d", bufferCount);
sp<ConsumerListener> listener;
{
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("setBufferCount: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (bufferCount > NUM_BUFFER_SLOTS) {
ST_LOGE("setBufferCount: bufferCount too large (max %d)",
NUM_BUFFER_SLOTS);
return BAD_VALUE;
}
// Error out if the user has dequeued buffers
int maxBufferCount = getMaxBufferCountLocked();
for (int i=0 ; i<maxBufferCount; i++) {
if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) {
ST_LOGE("setBufferCount: client owns some buffers");
return -EINVAL;
}
}
const int minBufferSlots = getMinMaxBufferCountLocked();
if (bufferCount == 0) {
mOverrideMaxBufferCount = 0;
mDequeueCondition.broadcast();
return NO_ERROR;
}
if (bufferCount < minBufferSlots) {
ST_LOGE("setBufferCount: requested buffer count (%d) is less than "
"minimum (%d)", bufferCount, minBufferSlots);
return BAD_VALUE;
}
// here we're guaranteed that the client doesn't have dequeued buffers
// and will release all of its buffer references.
//
// XXX: Should this use drainQueueAndFreeBuffersLocked instead?
freeAllBuffersLocked();
mOverrideMaxBufferCount = bufferCount;
mBufferHasBeenQueued = false;
mDequeueCondition.broadcast();
listener = mConsumerListener;
} // scope for lock
if (listener != NULL) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
int GonkBufferQueue::query(int what, int* outValue)
{
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("query: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
int value;
switch (what) {
case NATIVE_WINDOW_WIDTH:
value = mDefaultWidth;
break;
case NATIVE_WINDOW_HEIGHT:
value = mDefaultHeight;
break;
case NATIVE_WINDOW_FORMAT:
value = mDefaultBufferFormat;
break;
case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
value = getMinUndequeuedBufferCountLocked();
break;
case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND:
value = (mQueue.size() >= 2);
break;
default:
return BAD_VALUE;
}
outValue[0] = value;
return NO_ERROR;
}
status_t GonkBufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
ST_LOGV("requestBuffer: slot=%d", slot);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("requestBuffer: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
int maxBufferCount = getMaxBufferCountLocked();
if (slot < 0 || maxBufferCount <= slot) {
ST_LOGE("requestBuffer: slot index out of range [0, %d]: %d",
maxBufferCount, slot);
return BAD_VALUE;
} else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
// XXX: I vaguely recall there was some reason this can be valid, but
// for the life of me I can't recall under what circumstances that's
// the case.
ST_LOGE("requestBuffer: slot %d is not owned by the client (state=%d)",
slot, mSlots[slot].mBufferState);
return BAD_VALUE;
}
mSlots[slot].mRequestBufferCalled = true;
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
status_t GonkBufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence,
uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
ST_LOGV("dequeueBuffer: w=%d h=%d fmt=%#x usage=%#x", w, h, format, usage);
if ((w && !h) || (!w && h)) {
ST_LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h);
return BAD_VALUE;
}
status_t returnFlags(OK);
int buf = INVALID_BUFFER_SLOT;
{ // Scope for the lock
Mutex::Autolock lock(mMutex);
if (format == 0) {
format = mDefaultBufferFormat;
}
// turn on usage bits the consumer requested
usage |= mConsumerUsageBits;
int found = -1;
int dequeuedCount = 0;
bool tryAgain = true;
while (tryAgain) {
if (mAbandoned) {
ST_LOGE("dequeueBuffer: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
const int maxBufferCount = getMaxBufferCountLocked();
// Free up any buffers that are in slots beyond the max buffer
// count.
//for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) {
// assert(mSlots[i].mBufferState == BufferSlot::FREE);
// if (mSlots[i].mGraphicBuffer != NULL) {
// freeBufferLocked(i);
// returnFlags |= IGraphicBufferProducer::RELEASE_ALL_BUFFERS;
// }
//}
// look for a free buffer to give to the client
found = INVALID_BUFFER_SLOT;
dequeuedCount = 0;
for (int i = 0; i < maxBufferCount; i++) {
const int state = mSlots[i].mBufferState;
if (state == BufferSlot::DEQUEUED) {
dequeuedCount++;
}
if (state == BufferSlot::FREE) {
/* We return the oldest of the free buffers to avoid
* stalling the producer if possible. This is because
* the consumer may still have pending reads of the
* buffers in flight.
*/
if ((found < 0) ||
mSlots[i].mFrameNumber < mSlots[found].mFrameNumber) {
found = i;
}
}
}
// clients are not allowed to dequeue more than one buffer
// if they didn't set a buffer count.
if (!mOverrideMaxBufferCount && dequeuedCount) {
ST_LOGE("dequeueBuffer: can't dequeue multiple buffers without "
"setting the buffer count");
return -EINVAL;
}
// See whether a buffer has been queued since the last
// setBufferCount so we know whether to perform the min undequeued
// buffers check below.
if (mBufferHasBeenQueued) {
// make sure the client is not trying to dequeue more buffers
// than allowed.
const int newUndequeuedCount = maxBufferCount - (dequeuedCount+1);
const int minUndequeuedCount = getMinUndequeuedBufferCountLocked();
if (newUndequeuedCount < minUndequeuedCount) {
ST_LOGE("dequeueBuffer: min undequeued buffer count (%d) "
"exceeded (dequeued=%d undequeudCount=%d)",
minUndequeuedCount, dequeuedCount,
newUndequeuedCount);
return -EBUSY;
}
}
// If no buffer is found, wait for a buffer to be released or for
// the max buffer count to change.
tryAgain = found == INVALID_BUFFER_SLOT;
if (tryAgain) {
mDequeueCondition.wait(mMutex);
}
}
if (found == INVALID_BUFFER_SLOT) {
// This should not happen.
ST_LOGE("dequeueBuffer: no available buffer slots");
return -EBUSY;
}
buf = found;
*outBuf = found;
const bool useDefaultSize = !w && !h;
if (useDefaultSize) {
// use the default size
w = mDefaultWidth;
h = mDefaultHeight;
}
mSlots[buf].mBufferState = BufferSlot::DEQUEUED;
const sp<GraphicBuffer>& buffer(mSlots[buf].mGraphicBuffer);
if ((buffer == NULL) ||
(uint32_t(buffer->width) != w) ||
(uint32_t(buffer->height) != h) ||
(uint32_t(buffer->format) != format) ||
((uint32_t(buffer->usage) & usage) != usage))
{
mSlots[buf].mAcquireCalled = false;
mSlots[buf].mGraphicBuffer = NULL;
mSlots[buf].mRequestBufferCalled = false;
mSlots[buf].mFence = Fence::NO_FENCE;
if (mSlots[buf].mTextureClient) {
mSlots[buf].mTextureClient->ClearRecycleCallback();
// release TextureClient in ImageBridge thread
TextureClientReleaseTask* task = new TextureClientReleaseTask(mSlots[buf].mTextureClient);
mSlots[buf].mTextureClient = NULL;
ImageBridgeChild::GetSingleton()->GetMessageLoop()->PostTask(FROM_HERE, task);
}
returnFlags |= IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION;
}
*outFence = mSlots[buf].mFence;
mSlots[buf].mFence = Fence::NO_FENCE;
} // end lock scope
sp<GraphicBuffer> graphicBuffer;
if (returnFlags & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) {
usage |= GraphicBuffer::USAGE_HW_TEXTURE;
ISurfaceAllocator* allocator = ImageBridgeChild::GetSingleton();
GrallocTextureData* texData = GrallocTextureData::Create(IntSize(w,h), format,
gfx::BackendType::NONE, usage,
allocator);
if (!texData) {
ST_LOGE("dequeueBuffer: failed to alloc gralloc buffer");
return -ENOMEM;
}
RefPtr<TextureClient> textureClient = new TextureClient(texData, TextureFlags::DEALLOCATE_CLIENT, allocator);
sp<GraphicBuffer> graphicBuffer = texData->GetGraphicBuffer();
{ // Scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("dequeueBuffer: SurfaceTexture has been abandoned!");
return NO_INIT;
}
mSlots[buf].mGraphicBuffer = graphicBuffer;
mSlots[buf].mTextureClient = textureClient;
ST_LOGD("dequeueBuffer: returning slot=%d buf=%p ", buf,
mSlots[buf].mGraphicBuffer->handle);
//mSlots[*outBuf].mGraphicBuffer = graphicBuffer;
}
}
ST_LOGV("dequeueBuffer: returning slot=%d buf=%p flags=%#x", *outBuf,
mSlots[*outBuf].mGraphicBuffer->handle, returnFlags);
return returnFlags;
}
status_t GonkBufferQueue::setSynchronousMode(bool enabled) {
ST_LOGV("setSynchronousMode: enabled=%d", enabled);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("setSynchronousMode: BufferQueue has been abandoned!");
return NO_INIT;
}
if (mSynchronousMode != enabled) {
mSynchronousMode = enabled;
mDequeueCondition.broadcast();
}
return OK;
}
status_t GonkBufferQueue::queueBuffer(int buf,
const QueueBufferInput& input, QueueBufferOutput* output) {
Rect crop;
uint32_t transform;
int scalingMode;
int64_t timestamp;
sp<Fence> fence;
input.deflate(&timestamp, &crop, &scalingMode, &transform, &fence);
#if ANDROID_VERSION >= 18
if (fence == NULL) {
ST_LOGE("queueBuffer: fence is NULL");
return BAD_VALUE;
}
#endif
ST_LOGV("queueBuffer: slot=%d time=%#llx crop=[%d,%d,%d,%d] tr=%#x "
"scale=%s",
buf, timestamp, crop.left, crop.top, crop.right, crop.bottom,
transform, scalingModeName(scalingMode));
sp<ConsumerListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("queueBuffer: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
int maxBufferCount = getMaxBufferCountLocked();
if (buf < 0 || buf >= maxBufferCount) {
ST_LOGE("queueBuffer: slot index out of range [0, %d]: %d",
maxBufferCount, buf);
return -EINVAL;
} else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
ST_LOGE("queueBuffer: slot %d is not owned by the client "
"(state=%d)", buf, mSlots[buf].mBufferState);
return -EINVAL;
} else if (!mSlots[buf].mRequestBufferCalled) {
ST_LOGE("queueBuffer: slot %d was enqueued without requesting a "
"buffer", buf);
return -EINVAL;
}
const sp<GraphicBuffer>& graphicBuffer(mSlots[buf].mGraphicBuffer);
Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight());
Rect croppedCrop;
crop.intersect(bufferRect, &croppedCrop);
if (croppedCrop != crop) {
ST_LOGE("queueBuffer: crop rect is not contained within the "
"buffer in slot %d", buf);
return -EINVAL;
}
if (mSynchronousMode) {
// In synchronous mode we queue all buffers in a FIFO.
mQueue.push_back(buf);
} else {
// In asynchronous mode we only keep the most recent buffer.
if (mQueue.empty()) {
mQueue.push_back(buf);
} else {
Fifo::iterator front(mQueue.begin());
// buffer currently queued is freed
mSlots[*front].mBufferState = BufferSlot::FREE;
// and we record the new buffer index in the queued list
*front = buf;
}
}
// always signals that an additional frame should be consumed
// to handle max acquired buffer count reached case.
listener = mConsumerListener;
mSlots[buf].mTimestamp = timestamp;
mSlots[buf].mCrop = crop;
mSlots[buf].mTransform = transform;
mSlots[buf].mFence = fence;
switch (scalingMode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
break;
default:
ST_LOGE("unknown scaling mode: %d (ignoring)", scalingMode);
scalingMode = mSlots[buf].mScalingMode;
break;
}
mSlots[buf].mBufferState = BufferSlot::QUEUED;
mSlots[buf].mScalingMode = scalingMode;
mFrameCounter++;
mSlots[buf].mFrameNumber = mFrameCounter;
mBufferHasBeenQueued = true;
mDequeueCondition.broadcast();
output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint,
mQueue.size());
} // scope for the lock
// call back without lock held
if (listener != 0) {
listener->onFrameAvailable();
}
return NO_ERROR;
}
#if ANDROID_VERSION == 17
void GonkBufferQueue::cancelBuffer(int buf, sp<Fence> fence) {
#else
void GonkBufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) {
#endif
ST_LOGV("cancelBuffer: slot=%d", buf);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGW("cancelBuffer: GonkBufferQueue has been abandoned!");
return;
}
int maxBufferCount = getMaxBufferCountLocked();
if (buf < 0 || buf >= maxBufferCount) {
ST_LOGE("cancelBuffer: slot index out of range [0, %d]: %d",
maxBufferCount, buf);
return;
} else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
ST_LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)",
buf, mSlots[buf].mBufferState);
return;
#if ANDROID_VERSION >= 18
} else if (fence == NULL) {
ST_LOGE("cancelBuffer: fence is NULL");
return;
#endif
}
mSlots[buf].mBufferState = BufferSlot::FREE;
mSlots[buf].mFrameNumber = 0;
mSlots[buf].mFence = fence;
mDequeueCondition.broadcast();
}
status_t GonkBufferQueue::connect(int api, QueueBufferOutput* output) {
ST_LOGV("connect: api=%d", api);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("connect: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (mConsumerListener == NULL) {
ST_LOGE("connect: GonkBufferQueue has no consumer!");
return NO_INIT;
}
int err = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mConnectedApi != NO_CONNECTED_API) {
ST_LOGE("connect: already connected (cur=%d, req=%d)",
mConnectedApi, api);
err = -EINVAL;
} else {
mConnectedApi = api;
output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint,
mQueue.size());
}
break;
default:
err = -EINVAL;
break;
}
mBufferHasBeenQueued = false;
return err;
}
status_t GonkBufferQueue::disconnect(int api) {
ST_LOGV("disconnect: api=%d", api);
int err = NO_ERROR;
sp<ConsumerListener> listener;
{ // Scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
// it is not really an error to disconnect after the surface
// has been abandoned, it should just be a no-op.
return NO_ERROR;
}
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mConnectedApi == api) {
freeAllBuffersLocked();
mConnectedApi = NO_CONNECTED_API;
mDequeueCondition.broadcast();
listener = mConsumerListener;
} else {
ST_LOGE("disconnect: connected to another api (cur=%d, req=%d)",
mConnectedApi, api);
err = -EINVAL;
}
break;
default:
ST_LOGE("disconnect: unknown API %d", api);
err = -EINVAL;
break;
}
}
if (listener != NULL) {
listener->onBuffersReleased();
}
return err;
}
void GonkBufferQueue::dumpToString(String8& result) const
{
char buffer[1024];
GonkBufferQueue::dumpToString(result, "", buffer, 1024);
}
void GonkBufferQueue::dumpToString(String8& result, const char* prefix,
char* buffer, size_t SIZE) const
{
Mutex::Autolock _l(mMutex);
String8 fifo;
int fifoSize = 0;
Fifo::const_iterator i(mQueue.begin());
while (i != mQueue.end()) {
snprintf(buffer, SIZE, "%02d ", *i++);
fifoSize++;
fifo.append(buffer);
}
int maxBufferCount = getMaxBufferCountLocked();
snprintf(buffer, SIZE,
"%s-BufferQueue maxBufferCount=%d, mSynchronousMode=%d, default-size=[%dx%d], "
"default-format=%d, transform-hint=%02x, FIFO(%d)={%s}\n",
prefix, maxBufferCount, mSynchronousMode, mDefaultWidth,
mDefaultHeight, mDefaultBufferFormat, mTransformHint,
fifoSize, fifo.string());
result.append(buffer);
struct {
const char * operator()(int state) const {
switch (state) {
case BufferSlot::DEQUEUED: return "DEQUEUED";
case BufferSlot::QUEUED: return "QUEUED";
case BufferSlot::FREE: return "FREE";
case BufferSlot::ACQUIRED: return "ACQUIRED";
default: return "Unknown";
}
}
} stateName;
for (int i=0 ; i<maxBufferCount ; i++) {
const BufferSlot& slot(mSlots[i]);
snprintf(buffer, SIZE,
"%s%s[%02d] "
"state=%-8s, crop=[%d,%d,%d,%d], "
"xform=0x%02x, time=%#llx, scale=%s",
prefix, (slot.mBufferState == BufferSlot::ACQUIRED)?">":" ", i,
stateName(slot.mBufferState),
slot.mCrop.left, slot.mCrop.top, slot.mCrop.right,
slot.mCrop.bottom, slot.mTransform, slot.mTimestamp,
scalingModeName(slot.mScalingMode)
);
result.append(buffer);
const sp<GraphicBuffer>& buf(slot.mGraphicBuffer);
if (buf != NULL) {
snprintf(buffer, SIZE,
", %p [%4ux%4u:%4u,%3X]",
buf->handle, buf->width, buf->height, buf->stride,
buf->format);
result.append(buffer);
}
result.append("\n");
}
}
void GonkBufferQueue::freeAllBuffersLocked()
{
ALOGW_IF(!mQueue.isEmpty(),
"freeAllBuffersLocked called but mQueue is not empty");
mQueue.clear();
mBufferHasBeenQueued = false;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
mSlots[i].mGraphicBuffer = 0;
if (mSlots[i].mTextureClient) {
mSlots[i].mTextureClient->ClearRecycleCallback();
// release TextureClient in ImageBridge thread
TextureClientReleaseTask* task = new TextureClientReleaseTask(mSlots[i].mTextureClient);
mSlots[i].mTextureClient = NULL;
ImageBridgeChild::GetSingleton()->GetMessageLoop()->PostTask(FROM_HERE, task);
}
if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) {
mSlots[i].mNeedsCleanupOnRelease = true;
}
mSlots[i].mBufferState = BufferSlot::FREE;
mSlots[i].mFrameNumber = 0;
mSlots[i].mAcquireCalled = false;
// destroy fence as GonkBufferQueue now takes ownership
mSlots[i].mFence = Fence::NO_FENCE;
}
}
status_t GonkBufferQueue::acquireBuffer(BufferItem *buffer) {
Mutex::Autolock _l(mMutex);
// Check that the consumer doesn't currently have the maximum number of
// buffers acquired. We allow the max buffer count to be exceeded by one
// buffer, so that the consumer can successfully set up the newly acquired
// buffer before releasing the old one.
int numAcquiredBuffers = 0;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) {
numAcquiredBuffers++;
}
}
if (numAcquiredBuffers >= mMaxAcquiredBufferCount+1) {
ST_LOGE("acquireBuffer: max acquired buffer count reached: %d (max=%d)",
numAcquiredBuffers, mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
// check if queue is empty
// In asynchronous mode the list is guaranteed to be one buffer
// deep, while in synchronous mode we use the oldest buffer.
if (!mQueue.empty()) {
Fifo::iterator front(mQueue.begin());
int buf = *front;
// In android, when the buffer is aquired by BufferConsumer,
// BufferQueue releases a reference to the buffer and
// it's ownership moves to the BufferConsumer.
// In b2g, GonkBufferQueue continues to have a buffer ownership.
// It is necessary to free buffer via ImageBridgeChild.
//if (mSlots[buf].mAcquireCalled) {
// buffer->mGraphicBuffer = NULL;
//} else {
// buffer->mGraphicBuffer = mSlots[buf].mGraphicBuffer;
//}
buffer->mGraphicBuffer = mSlots[buf].mGraphicBuffer;
buffer->mCrop = mSlots[buf].mCrop;
buffer->mTransform = mSlots[buf].mTransform;
buffer->mScalingMode = mSlots[buf].mScalingMode;
buffer->mFrameNumber = mSlots[buf].mFrameNumber;
buffer->mTimestamp = mSlots[buf].mTimestamp;
buffer->mBuf = buf;
buffer->mFence = mSlots[buf].mFence;
mSlots[buf].mAcquireCalled = true;
mSlots[buf].mNeedsCleanupOnRelease = false;
mSlots[buf].mBufferState = BufferSlot::ACQUIRED;
mSlots[buf].mFence = Fence::NO_FENCE;
mQueue.erase(front);
mDequeueCondition.broadcast();
} else {
return NO_BUFFER_AVAILABLE;
}
return NO_ERROR;
}
status_t GonkBufferQueue::releaseBuffer(int buf, const sp<Fence>& fence) {
Mutex::Autolock _l(mMutex);
#if ANDROID_VERSION == 17
if (buf == INVALID_BUFFER_SLOT) {
#else
if (buf == INVALID_BUFFER_SLOT || fence == NULL) {
#endif
return BAD_VALUE;
}
mSlots[buf].mFence = fence;
// The buffer can now only be released if its in the acquired state
if (mSlots[buf].mBufferState == BufferSlot::ACQUIRED) {
mSlots[buf].mBufferState = BufferSlot::FREE;
} else if (mSlots[buf].mNeedsCleanupOnRelease) {
ST_LOGV("releasing a stale buf %d its state was %d", buf, mSlots[buf].mBufferState);
mSlots[buf].mNeedsCleanupOnRelease = false;
return STALE_BUFFER_SLOT;
} else {
ST_LOGE("attempted to release buf %d but its state was %d", buf, mSlots[buf].mBufferState);
return -EINVAL;
}
mDequeueCondition.broadcast();
return NO_ERROR;
}
status_t GonkBufferQueue::consumerConnect(const sp<ConsumerListener>& consumerListener) {
ST_LOGV("consumerConnect");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("consumerConnect: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
if (consumerListener == NULL) {
ST_LOGE("consumerConnect: consumerListener may not be NULL");
return BAD_VALUE;
}
mConsumerListener = consumerListener;
return NO_ERROR;
}
status_t GonkBufferQueue::consumerDisconnect() {
ST_LOGV("consumerDisconnect");
Mutex::Autolock lock(mMutex);
if (mConsumerListener == NULL) {
ST_LOGE("consumerDisconnect: No consumer is connected!");
return -EINVAL;
}
mAbandoned = true;
mConsumerListener = NULL;
mQueue.clear();
freeAllBuffersLocked();
mDequeueCondition.broadcast();
return NO_ERROR;
}
status_t GonkBufferQueue::getReleasedBuffers(uint32_t* slotMask) {
ST_LOGV("getReleasedBuffers");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("getReleasedBuffers: GonkBufferQueue has been abandoned!");
return NO_INIT;
}
uint32_t mask = 0;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (!mSlots[i].mAcquireCalled) {
mask |= 1 << i;
}
}
*slotMask = mask;
ST_LOGV("getReleasedBuffers: returning mask %#x", mask);
return NO_ERROR;
}
status_t GonkBufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h)
{
ST_LOGV("setDefaultBufferSize: w=%d, h=%d", w, h);
if (!w || !h) {
ST_LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)",
w, h);
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
mDefaultWidth = w;
mDefaultHeight = h;
return NO_ERROR;
}
status_t GonkBufferQueue::setDefaultMaxBufferCount(int bufferCount) {
Mutex::Autolock lock(mMutex);
return setDefaultMaxBufferCountLocked(bufferCount);
}
status_t GonkBufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) {
Mutex::Autolock lock(mMutex);
if (maxAcquiredBuffers < 1 || maxAcquiredBuffers > MAX_MAX_ACQUIRED_BUFFERS) {
ST_LOGE("setMaxAcquiredBufferCount: invalid count specified: %d",
maxAcquiredBuffers);
return BAD_VALUE;
}
if (mConnectedApi != NO_CONNECTED_API) {
return INVALID_OPERATION;
}
mMaxAcquiredBufferCount = maxAcquiredBuffers;
return NO_ERROR;
}
int GonkBufferQueue::getMinMaxBufferCountLocked() const {
return getMinUndequeuedBufferCountLocked() + 1;
}
int GonkBufferQueue::getMinUndequeuedBufferCountLocked() const {
return mSynchronousMode ? mMaxAcquiredBufferCount :
mMaxAcquiredBufferCount + 1;
}
int GonkBufferQueue::getMaxBufferCountLocked() const {
int minMaxBufferCount = getMinMaxBufferCountLocked();
int maxBufferCount = mDefaultMaxBufferCount;
if (maxBufferCount < minMaxBufferCount) {
maxBufferCount = minMaxBufferCount;
}
if (mOverrideMaxBufferCount != 0) {
assert(mOverrideMaxBufferCount >= minMaxBufferCount);
maxBufferCount = mOverrideMaxBufferCount;
}
// Any buffers that are dequeued by the producer or sitting in the queue
// waiting to be consumed need to have their slots preserved. Such
// buffers will temporarily keep the max buffer count up until the slots
// no longer need to be preserved.
for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) {
BufferSlot::BufferState state = mSlots[i].mBufferState;
if (state == BufferSlot::QUEUED || state == BufferSlot::DEQUEUED) {
maxBufferCount = i + 1;
}
}
return maxBufferCount;
}
GonkBufferQueue::ProxyConsumerListener::ProxyConsumerListener(
const wp<GonkBufferQueue::ConsumerListener>& consumerListener):
mConsumerListener(consumerListener) {}
GonkBufferQueue::ProxyConsumerListener::~ProxyConsumerListener() {}
void GonkBufferQueue::ProxyConsumerListener::onFrameAvailable() {
sp<GonkBufferQueue::ConsumerListener> listener(mConsumerListener.promote());
if (listener != NULL) {
listener->onFrameAvailable();
}
}
void GonkBufferQueue::ProxyConsumerListener::onBuffersReleased() {
sp<GonkBufferQueue::ConsumerListener> listener(mConsumerListener.promote());
if (listener != NULL) {
listener->onBuffersReleased();
}
}
}; // namespace android