mirror of
https://github.com/classilla/tenfourfox.git
synced 2025-01-23 03:32:39 +00:00
1448 lines
60 KiB
C++
1448 lines
60 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set sw=2 ts=2 et tw=80 : */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/layers/AsyncCompositionManager.h"
|
|
#include <stdint.h> // for uint32_t
|
|
#include "apz/src/AsyncPanZoomController.h"
|
|
#include "FrameMetrics.h" // for FrameMetrics
|
|
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
|
|
#include "Layers.h" // for Layer, ContainerLayer, etc
|
|
#include "gfxPoint.h" // for gfxPoint, gfxSize
|
|
#include "gfxPrefs.h" // for gfxPrefs
|
|
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
|
|
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
|
|
#include "mozilla/dom/KeyframeEffect.h" // for KeyframeEffectReadOnly
|
|
#include "mozilla/dom/AnimationEffectReadOnlyBinding.h" // for dom::FillMode
|
|
#include "mozilla/gfx/BaseRect.h" // for BaseRect
|
|
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
|
|
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
|
|
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
|
|
#include "mozilla/layers/Compositor.h" // for Compositor
|
|
#include "mozilla/layers/CompositorParent.h" // for CompositorParent, etc
|
|
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
|
|
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
|
|
#include "nsDebug.h" // for NS_ASSERTION, etc
|
|
#include "nsDeviceContext.h" // for nsDeviceContext
|
|
#include "nsDisplayList.h" // for nsDisplayTransform, etc
|
|
#include "nsMathUtils.h" // for NS_round
|
|
#include "nsPoint.h" // for nsPoint
|
|
#include "nsRect.h" // for mozilla::gfx::IntRect
|
|
#include "nsRegion.h" // for nsIntRegion
|
|
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
|
|
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
|
|
#include "UnitTransforms.h" // for TransformTo
|
|
#include "gfxPrefs.h"
|
|
#if defined(MOZ_WIDGET_ANDROID)
|
|
# include <android/log.h>
|
|
# include "AndroidBridge.h"
|
|
#endif
|
|
#include "GeckoProfiler.h"
|
|
#include "FrameUniformityData.h"
|
|
#include "TreeTraversal.h"
|
|
|
|
struct nsCSSValueSharedList;
|
|
|
|
namespace mozilla {
|
|
namespace layers {
|
|
|
|
using namespace mozilla::gfx;
|
|
|
|
enum Op { Resolve, Detach };
|
|
|
|
static bool
|
|
IsSameDimension(dom::ScreenOrientationInternal o1, dom::ScreenOrientationInternal o2)
|
|
{
|
|
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
|
|
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
|
|
return !(isO1portrait ^ isO2portrait);
|
|
}
|
|
|
|
static bool
|
|
ContentMightReflowOnOrientationChange(const IntRect& rect)
|
|
{
|
|
return rect.width != rect.height;
|
|
}
|
|
|
|
template<Op OP>
|
|
static void
|
|
WalkTheTree(Layer* aLayer,
|
|
bool& aReady,
|
|
const TargetConfig& aTargetConfig,
|
|
CompositorParent* aCompositor,
|
|
bool& aHasRemote,
|
|
bool aWillResolvePlugins,
|
|
bool& aDidResolvePlugins)
|
|
{
|
|
if (RefLayer* ref = aLayer->AsRefLayer()) {
|
|
aHasRemote = true;
|
|
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
|
|
if (Layer* referent = state->mRoot) {
|
|
if (!ref->GetVisibleRegion().IsEmpty()) {
|
|
dom::ScreenOrientationInternal chromeOrientation = aTargetConfig.orientation();
|
|
dom::ScreenOrientationInternal contentOrientation = state->mTargetConfig.orientation();
|
|
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
|
|
ContentMightReflowOnOrientationChange(aTargetConfig.naturalBounds())) {
|
|
aReady = false;
|
|
}
|
|
}
|
|
|
|
if (OP == Resolve) {
|
|
ref->ConnectReferentLayer(referent);
|
|
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
|
|
if (aCompositor && aWillResolvePlugins) {
|
|
aDidResolvePlugins |=
|
|
aCompositor->UpdatePluginWindowState(ref->GetReferentId());
|
|
}
|
|
#endif
|
|
} else {
|
|
ref->DetachReferentLayer(referent);
|
|
WalkTheTree<OP>(referent, aReady, aTargetConfig,
|
|
aCompositor, aHasRemote, aWillResolvePlugins,
|
|
aDidResolvePlugins);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (Layer* child = aLayer->GetFirstChild();
|
|
child; child = child->GetNextSibling()) {
|
|
WalkTheTree<OP>(child, aReady, aTargetConfig,
|
|
aCompositor, aHasRemote, aWillResolvePlugins,
|
|
aDidResolvePlugins);
|
|
}
|
|
}
|
|
|
|
AsyncCompositionManager::AsyncCompositionManager(LayerManagerComposite* aManager)
|
|
: mLayerManager(aManager)
|
|
, mIsFirstPaint(true)
|
|
, mLayersUpdated(false)
|
|
, mPaintSyncId(0)
|
|
, mReadyForCompose(true)
|
|
{
|
|
}
|
|
|
|
AsyncCompositionManager::~AsyncCompositionManager()
|
|
{
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::ResolveRefLayers(CompositorParent* aCompositor,
|
|
bool* aHasRemoteContent,
|
|
bool* aResolvePlugins)
|
|
{
|
|
if (aHasRemoteContent) {
|
|
*aHasRemoteContent = false;
|
|
}
|
|
|
|
// If valid *aResolvePlugins indicates if we need to update plugin geometry
|
|
// when we walk the tree.
|
|
bool willResolvePlugins = (aResolvePlugins && *aResolvePlugins);
|
|
if (!mLayerManager->GetRoot()) {
|
|
// Updated the return value since this result controls completing composition.
|
|
if (aResolvePlugins) {
|
|
*aResolvePlugins = false;
|
|
}
|
|
return;
|
|
}
|
|
|
|
mReadyForCompose = true;
|
|
bool hasRemoteContent = false;
|
|
bool didResolvePlugins = false;
|
|
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
|
|
mReadyForCompose,
|
|
mTargetConfig,
|
|
aCompositor,
|
|
hasRemoteContent,
|
|
willResolvePlugins,
|
|
didResolvePlugins);
|
|
if (aHasRemoteContent) {
|
|
*aHasRemoteContent = hasRemoteContent;
|
|
}
|
|
if (aResolvePlugins) {
|
|
*aResolvePlugins = didResolvePlugins;
|
|
}
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::DetachRefLayers()
|
|
{
|
|
if (!mLayerManager->GetRoot()) {
|
|
return;
|
|
}
|
|
CompositorParent* dummy = nullptr;
|
|
bool ignored = false;
|
|
WalkTheTree<Detach>(mLayerManager->GetRoot(),
|
|
mReadyForCompose,
|
|
mTargetConfig,
|
|
dummy,
|
|
ignored, ignored, ignored);
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::ComputeRotation()
|
|
{
|
|
if (!mTargetConfig.naturalBounds().IsEmpty()) {
|
|
mWorldTransform =
|
|
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
|
|
mTargetConfig.rotation());
|
|
}
|
|
}
|
|
|
|
static void
|
|
GetBaseTransform(Layer* aLayer, Matrix4x4* aTransform)
|
|
{
|
|
// Start with the animated transform if there is one
|
|
*aTransform =
|
|
(aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation()
|
|
? aLayer->GetLocalTransform()
|
|
: aLayer->GetTransform());
|
|
}
|
|
|
|
static void
|
|
TransformClipRect(Layer* aLayer,
|
|
const ParentLayerToParentLayerMatrix4x4& aTransform)
|
|
{
|
|
MOZ_ASSERT(aTransform.Is2D());
|
|
const Maybe<ParentLayerIntRect>& clipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
|
|
if (clipRect) {
|
|
ParentLayerIntRect transformed = TransformBy(aTransform, *clipRect);
|
|
aLayer->AsLayerComposite()->SetShadowClipRect(Some(transformed));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set the given transform as the shadow transform on the layer, assuming
|
|
* that the given transform already has the pre- and post-scales applied.
|
|
* That is, this function cancels out the pre- and post-scales from aTransform
|
|
* before setting it as the shadow transform on the layer, so that when
|
|
* the layer's effective transform is computed, the pre- and post-scales will
|
|
* only be applied once.
|
|
*/
|
|
static void
|
|
SetShadowTransform(Layer* aLayer, Matrix4x4 aTransform)
|
|
{
|
|
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
|
aTransform.PreScale(1.0f / c->GetPreXScale(),
|
|
1.0f / c->GetPreYScale(),
|
|
1);
|
|
}
|
|
aTransform.PostScale(1.0f / aLayer->GetPostXScale(),
|
|
1.0f / aLayer->GetPostYScale(),
|
|
1);
|
|
aLayer->AsLayerComposite()->SetShadowTransform(aTransform);
|
|
}
|
|
|
|
static void
|
|
TranslateShadowLayer(Layer* aLayer,
|
|
const gfxPoint& aTranslation,
|
|
bool aAdjustClipRect)
|
|
{
|
|
// This layer might also be a scrollable layer and have an async transform.
|
|
// To make sure we don't clobber that, we start with the shadow transform.
|
|
// (i.e. GetLocalTransform() instead of GetTransform()).
|
|
// Note that the shadow transform is reset on every frame of composition so
|
|
// we don't have to worry about the adjustments compounding over successive
|
|
// frames.
|
|
Matrix4x4 layerTransform = aLayer->GetLocalTransform();
|
|
|
|
// Apply the translation to the layer transform.
|
|
layerTransform.PostTranslate(aTranslation.x, aTranslation.y, 0);
|
|
|
|
SetShadowTransform(aLayer, layerTransform);
|
|
aLayer->AsLayerComposite()->SetShadowTransformSetByAnimation(false);
|
|
|
|
if (aAdjustClipRect) {
|
|
TransformClipRect(aLayer,
|
|
ParentLayerToParentLayerMatrix4x4::Translation(aTranslation.x, aTranslation.y, 0));
|
|
|
|
// If a fixed- or sticky-position layer has a mask layer, that mask should
|
|
// move along with the layer, so apply the translation to the mask layer too.
|
|
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
|
|
TranslateShadowLayer(maskLayer, aTranslation, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
AccumulateLayerTransforms(Layer* aLayer,
|
|
Layer* aAncestor,
|
|
Matrix4x4& aMatrix)
|
|
{
|
|
// Accumulate the transforms between this layer and the subtree root layer.
|
|
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
|
|
Matrix4x4 transform;
|
|
GetBaseTransform(l, &transform);
|
|
aMatrix *= transform;
|
|
}
|
|
}
|
|
|
|
static LayerPoint
|
|
GetLayerFixedMarginsOffset(Layer* aLayer,
|
|
const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
// Work out the necessary translation, in root scrollable layer space.
|
|
// Because fixed layer margins are stored relative to the root scrollable
|
|
// layer, we can just take the difference between these values.
|
|
LayerPoint translation;
|
|
int32_t sides = aLayer->GetFixedPositionSides();
|
|
|
|
if ((sides & eSideBitsLeftRight) == eSideBitsLeftRight) {
|
|
translation.x += (aFixedLayerMargins.left - aFixedLayerMargins.right) / 2;
|
|
} else if (sides & eSideBitsRight) {
|
|
translation.x -= aFixedLayerMargins.right;
|
|
} else if (sides & eSideBitsLeft) {
|
|
translation.x += aFixedLayerMargins.left;
|
|
}
|
|
|
|
if ((sides & eSideBitsTopBottom) == eSideBitsTopBottom) {
|
|
translation.y += (aFixedLayerMargins.top - aFixedLayerMargins.bottom) / 2;
|
|
} else if (sides & eSideBitsBottom) {
|
|
translation.y -= aFixedLayerMargins.bottom;
|
|
} else if (sides & eSideBitsTop) {
|
|
translation.y += aFixedLayerMargins.top;
|
|
}
|
|
|
|
return translation;
|
|
}
|
|
|
|
static gfxFloat
|
|
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
|
|
{
|
|
// Determine the amount of overlap between the 1D vector |aTranslation|
|
|
// and the interval [aMin, aMax].
|
|
if (aTranslation > 0) {
|
|
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
|
|
} else {
|
|
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finds the metrics on |aLayer| with scroll id |aScrollId|, and returns a
|
|
* LayerMetricsWrapper representing the (layer, metrics) pair, or the null
|
|
* LayerMetricsWrapper if no matching metrics could be found.
|
|
*/
|
|
static LayerMetricsWrapper
|
|
FindMetricsWithScrollId(Layer* aLayer, FrameMetrics::ViewID aScrollId)
|
|
{
|
|
for (uint64_t i = 0; i < aLayer->GetFrameMetricsCount(); ++i) {
|
|
if (aLayer->GetFrameMetrics(i).GetScrollId() == aScrollId) {
|
|
return LayerMetricsWrapper(aLayer, i);
|
|
}
|
|
}
|
|
return LayerMetricsWrapper();
|
|
}
|
|
|
|
/**
|
|
* Checks whether the (layer, metrics) pair (aTransformedLayer, aTransformedMetrics)
|
|
* is on the path from |aFixedLayer| to the metrics with scroll id
|
|
* |aFixedWithRespectTo|, inclusive.
|
|
*/
|
|
static bool
|
|
AsyncTransformShouldBeUnapplied(Layer* aFixedLayer,
|
|
FrameMetrics::ViewID aFixedWithRespectTo,
|
|
Layer* aTransformedLayer,
|
|
FrameMetrics::ViewID aTransformedMetrics)
|
|
{
|
|
LayerMetricsWrapper transformed = FindMetricsWithScrollId(aTransformedLayer, aTransformedMetrics);
|
|
if (!transformed.IsValid()) {
|
|
return false;
|
|
}
|
|
// It's important to start at the bottom, because the fixed layer itself
|
|
// could have the transformed metrics, and they can be at the bottom.
|
|
LayerMetricsWrapper current(aFixedLayer, LayerMetricsWrapper::StartAt::BOTTOM);
|
|
bool encounteredTransformedLayer = false;
|
|
// The transformed layer is on the path from |aFixedLayer| to the fixed-to
|
|
// layer if as we walk up the (layer, metrics) tree starting from
|
|
// |aFixedLayer|, we *first* encounter the transformed layer, and *then* (or
|
|
// at the same time) the fixed-to layer.
|
|
while (current) {
|
|
if (!encounteredTransformedLayer && current == transformed) {
|
|
encounteredTransformedLayer = true;
|
|
}
|
|
if (current.Metrics().GetScrollId() == aFixedWithRespectTo) {
|
|
return encounteredTransformedLayer;
|
|
}
|
|
current = current.GetParent();
|
|
// It's possible that we reach a layers id boundary before we reach an
|
|
// ancestor with the scroll id |aFixedWithRespectTo| (this could happen
|
|
// e.g. if the scroll frame with that scroll id uses containerless
|
|
// scrolling). In such a case, stop the walk, as a new layers id could
|
|
// have a different layer with scroll id |aFixedWithRespectTo| which we
|
|
// don't intend to match.
|
|
if (current && current.AsRefLayer() != nullptr) {
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer,
|
|
Layer* aTransformedSubtreeRoot,
|
|
FrameMetrics::ViewID aTransformScrollId,
|
|
const Matrix4x4& aPreviousTransformForRoot,
|
|
const Matrix4x4& aCurrentTransformForRoot,
|
|
const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
FrameMetrics::ViewID fixedTo; // the scroll id of the scroll frame we are fixed/sticky to
|
|
bool isRootOfFixedSubtree = aLayer->GetIsFixedPosition() &&
|
|
!aLayer->GetParent()->GetIsFixedPosition();
|
|
if (isRootOfFixedSubtree) {
|
|
fixedTo = aLayer->GetFixedPositionScrollContainerId();
|
|
}
|
|
bool isSticky = aLayer->GetIsStickyPosition();
|
|
if (isSticky) {
|
|
fixedTo = aLayer->GetStickyScrollContainerId();
|
|
}
|
|
bool needsAsyncTransformUnapplied = false;
|
|
if (isRootOfFixedSubtree || isSticky) {
|
|
needsAsyncTransformUnapplied = AsyncTransformShouldBeUnapplied(aLayer,
|
|
fixedTo, aTransformedSubtreeRoot, aTransformScrollId);
|
|
}
|
|
|
|
// We want to process all the fixed and sticky descendants of
|
|
// aTransformedSubtreeRoot. Once we do encounter such a descendant, we don't
|
|
// need to recurse any deeper because the adjustment to the fixed or sticky
|
|
// layer will apply to its subtree.
|
|
if (!needsAsyncTransformUnapplied) {
|
|
for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) {
|
|
AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot, aTransformScrollId,
|
|
aPreviousTransformForRoot,
|
|
aCurrentTransformForRoot, aFixedLayerMargins);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Insert a translation so that the position of the anchor point is the same
|
|
// before and after the change to the transform of aTransformedSubtreeRoot.
|
|
|
|
// Accumulate the transforms between this layer and the subtree root layer.
|
|
Matrix4x4 ancestorTransform;
|
|
AccumulateLayerTransforms(aLayer->GetParent(), aTransformedSubtreeRoot,
|
|
ancestorTransform);
|
|
|
|
// Calculate the cumulative transforms between the subtree root with the
|
|
// old transform and the current transform.
|
|
Matrix4x4 oldCumulativeTransform = ancestorTransform * aPreviousTransformForRoot;
|
|
Matrix4x4 newCumulativeTransform = ancestorTransform * aCurrentTransformForRoot;
|
|
if (newCumulativeTransform.IsSingular()) {
|
|
return;
|
|
}
|
|
|
|
// Add in the layer's local transform, if it isn't already included in
|
|
// |aPreviousTransformForRoot| and |aCurrentTransformForRoot| (this happens
|
|
// when the fixed/sticky layer is itself the transformed subtree root).
|
|
Matrix4x4 localTransform;
|
|
GetBaseTransform(aLayer, &localTransform);
|
|
if (aLayer != aTransformedSubtreeRoot) {
|
|
oldCumulativeTransform = localTransform * oldCumulativeTransform;
|
|
newCumulativeTransform = localTransform * newCumulativeTransform;
|
|
}
|
|
|
|
// Now work out the translation necessary to make sure the layer doesn't
|
|
// move given the new sub-tree root transform.
|
|
|
|
// Get the layer's fixed anchor point, in the layer's local coordinate space
|
|
// (before any cumulative transform is applied).
|
|
LayerPoint anchor = aLayer->GetFixedPositionAnchor();
|
|
|
|
// Offset the layer's anchor point to make sure fixed position content
|
|
// respects content document fixed position margins.
|
|
LayerPoint offsetAnchor = anchor + GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins);
|
|
|
|
// Additionally transform the anchor to compensate for the change
|
|
// from the old cumulative transform to the new cumulative transform. We do
|
|
// this by using the old transform to take the offset anchor back into
|
|
// subtree root space, and then the inverse of the new cumulative transform
|
|
// to bring it back to layer space.
|
|
LayerPoint transformedAnchor = ViewAs<LayerPixel>(
|
|
newCumulativeTransform.Inverse() *
|
|
(oldCumulativeTransform * offsetAnchor.ToUnknownPoint()));
|
|
|
|
// We want to translate the layer by the difference between |transformedAnchor|
|
|
// and |anchor|. To achieve this, we will add a translation to the layer's
|
|
// transform. This translation will apply on top of the layer's local
|
|
// transform, but |anchor| and |transformedAnchor| are in a coordinate space
|
|
// where the local transform isn't applied yet, so apply it and then subtract
|
|
// to get the desired translation.
|
|
auto localTransformTyped = ViewAs<LayerToParentLayerMatrix4x4>(localTransform);
|
|
ParentLayerPoint translation = TransformBy(localTransformTyped, transformedAnchor)
|
|
- TransformBy(localTransformTyped, anchor);
|
|
|
|
if (aLayer->GetIsStickyPosition()) {
|
|
// For sticky positioned layers, the difference between the two rectangles
|
|
// defines a pair of translation intervals in each dimension through which
|
|
// the layer should not move relative to the scroll container. To
|
|
// accomplish this, we limit each dimension of the |translation| to that
|
|
// part of it which overlaps those intervals.
|
|
const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter();
|
|
const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner();
|
|
|
|
// TODO: There's a unit mismatch here, as |translation| is in ParentLayer
|
|
// space while |stickyOuter| and |stickyInner| are in Layer space.
|
|
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
|
|
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
|
|
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
|
|
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
|
|
}
|
|
|
|
// Finally, apply the translation to the layer transform. Note that in
|
|
// general we need to apply the same translation to the layer's clip rect, so
|
|
// that the effective transform on the clip rect takes it back to where it was
|
|
// originally, had there been no async scroll. In the case where the
|
|
// fixed/sticky layer is the same as aTransformedSubtreeRoot, then the clip
|
|
// rect is not affected by the scroll-induced async scroll transform anyway
|
|
// (since the clip is applied post-transform) so we don't need to make the
|
|
// adjustment. Also, some layers want async scrolling to move their clip rect
|
|
// (IsClipFixed() = false), so we don't make a compensating adjustment for
|
|
// those.
|
|
bool adjustClipRect = aLayer != aTransformedSubtreeRoot &&
|
|
aLayer->IsClipFixed();
|
|
TranslateShadowLayer(aLayer, ThebesPoint(translation.ToUnknownPoint()), adjustClipRect);
|
|
}
|
|
|
|
static void
|
|
SampleValue(float aPortion, Animation& aAnimation, StyleAnimationValue& aStart,
|
|
StyleAnimationValue& aEnd, Animatable* aValue)
|
|
{
|
|
StyleAnimationValue interpolatedValue;
|
|
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
|
|
aStart.GetUnit() == StyleAnimationValue::eUnit_None ||
|
|
aEnd.GetUnit() == StyleAnimationValue::eUnit_None,
|
|
"Must have same unit");
|
|
StyleAnimationValue::Interpolate(aAnimation.property(), aStart, aEnd,
|
|
aPortion, interpolatedValue);
|
|
if (aAnimation.property() == eCSSProperty_opacity) {
|
|
*aValue = interpolatedValue.GetFloatValue();
|
|
return;
|
|
}
|
|
|
|
nsCSSValueSharedList* interpolatedList =
|
|
interpolatedValue.GetCSSValueSharedListValue();
|
|
|
|
TransformData& data = aAnimation.data().get_TransformData();
|
|
nsPoint origin = data.origin();
|
|
// we expect all our transform data to arrive in device pixels
|
|
Point3D transformOrigin = data.transformOrigin();
|
|
Point3D perspectiveOrigin = data.perspectiveOrigin();
|
|
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
|
|
transformOrigin,
|
|
perspectiveOrigin,
|
|
data.perspective());
|
|
Matrix4x4 transform =
|
|
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
|
|
data.appUnitsPerDevPixel(),
|
|
&data.bounds());
|
|
Point3D scaledOrigin =
|
|
Point3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
|
|
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
|
|
0.0f);
|
|
|
|
transform.PreTranslate(scaledOrigin);
|
|
|
|
InfallibleTArray<TransformFunction> functions;
|
|
functions.AppendElement(TransformMatrix(transform));
|
|
*aValue = functions;
|
|
}
|
|
|
|
static bool
|
|
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
|
|
{
|
|
AnimationArray& animations = aLayer->GetAnimations();
|
|
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
|
|
|
|
bool activeAnimations = false;
|
|
|
|
// Process in order, since later animations override earlier ones.
|
|
for (size_t i = 0, iEnd = animations.Length(); i < iEnd; ++i) {
|
|
Animation& animation = animations[i];
|
|
AnimData& animData = animationData[i];
|
|
|
|
activeAnimations = true;
|
|
|
|
MOZ_ASSERT(!animation.startTime().IsNull(),
|
|
"Failed to resolve start time of pending animations");
|
|
TimeDuration elapsedDuration =
|
|
(aPoint - animation.startTime()).MultDouble(animation.playbackRate());
|
|
// Skip animations that are yet to start.
|
|
//
|
|
// Currently, this should only happen when the refresh driver is under test
|
|
// control and is made to produce a time in the past or is restored from
|
|
// test control causing it to jump backwards in time.
|
|
//
|
|
// Since activeAnimations is true, this could mean we keep compositing
|
|
// unnecessarily during the delay, but so long as this only happens while
|
|
// the refresh driver is under test control that should be ok.
|
|
if (elapsedDuration.ToSeconds() < 0) {
|
|
continue;
|
|
}
|
|
|
|
AnimationTiming timing;
|
|
timing.mIterationDuration = animation.duration();
|
|
// Currently animations run on the compositor have their delay factored
|
|
// into their start time, hence the delay is effectively zero.
|
|
timing.mDelay = TimeDuration(0);
|
|
timing.mIterationCount = animation.iterationCount();
|
|
timing.mDirection = static_cast<dom::PlaybackDirection>(animation.direction());
|
|
// Animations typically only run on the compositor during their active
|
|
// interval but if we end up sampling them outside that range (for
|
|
// example, while they are waiting to be removed) we currently just
|
|
// assume that we should fill.
|
|
timing.mFillMode = dom::FillMode::Both;
|
|
|
|
ComputedTiming computedTiming =
|
|
dom::KeyframeEffectReadOnly::GetComputedTimingAt(
|
|
Nullable<TimeDuration>(elapsedDuration), timing);
|
|
|
|
MOZ_ASSERT(!computedTiming.mProgress.IsNull() &&
|
|
0.0 <= computedTiming.mProgress.Value() &&
|
|
computedTiming.mProgress.Value() <= 1.0,
|
|
"iteration progress should be in [0-1]");
|
|
|
|
int segmentIndex = 0;
|
|
AnimationSegment* segment = animation.segments().Elements();
|
|
while (segment->endPortion() < computedTiming.mProgress.Value()) {
|
|
++segment;
|
|
++segmentIndex;
|
|
}
|
|
|
|
double positionInSegment =
|
|
(computedTiming.mProgress.Value() - segment->startPortion()) /
|
|
(segment->endPortion() - segment->startPortion());
|
|
|
|
double portion =
|
|
animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
|
|
|
|
// interpolate the property
|
|
Animatable interpolatedValue;
|
|
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
|
|
animData.mEndValues[segmentIndex], &interpolatedValue);
|
|
LayerComposite* layerComposite = aLayer->AsLayerComposite();
|
|
switch (animation.property()) {
|
|
case eCSSProperty_opacity:
|
|
{
|
|
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
|
|
break;
|
|
}
|
|
case eCSSProperty_transform:
|
|
{
|
|
Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
|
|
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
|
matrix.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1);
|
|
}
|
|
layerComposite->SetShadowTransform(matrix);
|
|
layerComposite->SetShadowTransformSetByAnimation(true);
|
|
break;
|
|
}
|
|
default:
|
|
NS_WARNING("Unhandled animated property");
|
|
}
|
|
}
|
|
|
|
for (Layer* child = aLayer->GetFirstChild(); child;
|
|
child = child->GetNextSibling()) {
|
|
activeAnimations |= SampleAnimations(child, aPoint);
|
|
}
|
|
|
|
return activeAnimations;
|
|
}
|
|
|
|
static bool
|
|
SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime)
|
|
{
|
|
bool activeAnimations = false;
|
|
for (LayerMetricsWrapper child = aLayer.GetFirstChild(); child;
|
|
child = child.GetNextSibling()) {
|
|
activeAnimations |= SampleAPZAnimations(child, aSampleTime);
|
|
}
|
|
|
|
if (AsyncPanZoomController* apzc = aLayer.GetApzc()) {
|
|
apzc->ReportCheckerboard(aSampleTime);
|
|
activeAnimations |= apzc->AdvanceAnimations(aSampleTime);
|
|
}
|
|
|
|
return activeAnimations;
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::RecordShadowTransforms(Layer* aLayer)
|
|
{
|
|
MOZ_ASSERT(gfxPrefs::CollectScrollTransforms());
|
|
MOZ_ASSERT(CompositorParent::IsInCompositorThread());
|
|
|
|
for (Layer* child = aLayer->GetFirstChild();
|
|
child; child = child->GetNextSibling()) {
|
|
RecordShadowTransforms(child);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < aLayer->GetFrameMetricsCount(); i++) {
|
|
AsyncPanZoomController* apzc = aLayer->GetAsyncPanZoomController(i);
|
|
if (!apzc) {
|
|
continue;
|
|
}
|
|
gfx::Matrix4x4 shadowTransform = aLayer->AsLayerComposite()->GetShadowTransform();
|
|
if (!shadowTransform.Is2D()) {
|
|
continue;
|
|
}
|
|
|
|
Matrix transform = shadowTransform.As2D();
|
|
if (transform.IsTranslation() && !shadowTransform.IsIdentity()) {
|
|
Point translation = transform.GetTranslation();
|
|
mLayerTransformRecorder.RecordTransform(aLayer, translation);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
Matrix4x4
|
|
AdjustForClip(const Matrix4x4& asyncTransform, Layer* aLayer)
|
|
{
|
|
Matrix4x4 result = asyncTransform;
|
|
|
|
// Container layers start at the origin, but they are clipped to where they
|
|
// actually have content on the screen. The tree transform is meant to apply
|
|
// to the clipped area. If the tree transform includes a scale component,
|
|
// then applying it to container as-is will produce incorrect results. To
|
|
// avoid this, translate the layer so that the clip rect starts at the origin,
|
|
// apply the tree transform, and translate back.
|
|
if (const Maybe<ParentLayerIntRect>& shadowClipRect = aLayer->AsLayerComposite()->GetShadowClipRect()) {
|
|
if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis
|
|
result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
ExpandRootClipRect(Layer* aLayer, const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
// For Fennec we want to expand the root scrollable layer clip rect based on
|
|
// the fixed position margins. In particular, we want this while the dynamic
|
|
// toolbar is in the process of sliding offscreen and the area of the
|
|
// LayerView visible to the user is larger than the viewport size that Gecko
|
|
// knows about (and therefore larger than the clip rect). We could also just
|
|
// clear the clip rect on aLayer entirely but this seems more precise.
|
|
Maybe<ParentLayerIntRect> rootClipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
|
|
if (rootClipRect && aFixedLayerMargins != ScreenMargin()) {
|
|
#ifndef MOZ_WIDGET_ANDROID
|
|
// We should never enter here on anything other than Fennec, since
|
|
// aFixedLayerMargins should be empty everywhere else.
|
|
MOZ_ASSERT(false);
|
|
#endif
|
|
ParentLayerRect rect(rootClipRect.value());
|
|
rect.Deflate(ViewAs<ParentLayerPixel>(aFixedLayerMargins,
|
|
PixelCastJustification::ScreenIsParentLayerForRoot));
|
|
aLayer->AsLayerComposite()->SetShadowClipRect(Some(RoundedOut(rect)));
|
|
}
|
|
}
|
|
|
|
#ifdef MOZ_ANDROID_APZ
|
|
static void
|
|
MoveScrollbarForLayerMargin(Layer* aRoot, FrameMetrics::ViewID aRootScrollId,
|
|
const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
// See bug 1223928 comment 9 - once we can detect the RCD with just the
|
|
// isRootContent flag on the metrics, we can probably move this code into
|
|
// ApplyAsyncTransformToScrollbar rather than having it as a separate
|
|
// adjustment on the layer tree.
|
|
Layer* scrollbar = BreadthFirstSearch(aRoot,
|
|
[aRootScrollId](Layer* aNode) {
|
|
return (aNode->GetScrollbarDirection() == Layer::HORIZONTAL &&
|
|
aNode->GetScrollbarTargetContainerId() == aRootScrollId);
|
|
});
|
|
if (scrollbar) {
|
|
// Shift the horizontal scrollbar down into the new space exposed by the
|
|
// dynamic toolbar hiding. Technically we should also scale the vertical
|
|
// scrollbar a bit to expand into the new space but it's not as noticeable
|
|
// and it would add a lot more complexity, so we're going with the "it's not
|
|
// worth it" justification.
|
|
TranslateShadowLayer(scrollbar, gfxPoint(0, -aFixedLayerMargins.bottom), true);
|
|
if (scrollbar->GetParent()) {
|
|
// The layer that has the HORIZONTAL direction sits inside another
|
|
// ContainerLayer. This ContainerLayer also has a clip rect that causes
|
|
// the scrollbar to get clipped. We need to expand that clip rect to
|
|
// prevent that from happening. This is kind of ugly in that we're
|
|
// assuming a particular layer tree structure but short of adding more
|
|
// flags to the layer there doesn't appear to be a good way to do this.
|
|
ExpandRootClipRect(scrollbar->GetParent(), aFixedLayerMargins);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool
|
|
AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer,
|
|
bool* aOutFoundRoot)
|
|
{
|
|
bool appliedTransform = false;
|
|
for (Layer* child = aLayer->GetFirstChild();
|
|
child; child = child->GetNextSibling()) {
|
|
appliedTransform |=
|
|
ApplyAsyncContentTransformToTree(child, aOutFoundRoot);
|
|
}
|
|
|
|
Matrix4x4 oldTransform = aLayer->GetTransform();
|
|
|
|
Matrix4x4 combinedAsyncTransform;
|
|
bool hasAsyncTransform = false;
|
|
ScreenMargin fixedLayerMargins;
|
|
|
|
// Each layer has multiple clips. Its local clip, which must move with async
|
|
// transforms, and its scrollframe clips, which are the clips between each
|
|
// scrollframe and its ancestor scrollframe. Scrollframe clips include the
|
|
// composition bounds and any other clips induced by layout.
|
|
//
|
|
// The final clip for the layer is the intersection of these clips.
|
|
Maybe<ParentLayerIntRect> asyncClip = aLayer->GetClipRect();
|
|
|
|
// The transform of a mask layer is relative to the masked layer's parent
|
|
// layer. So whenever we apply an async transform to a layer, we need to
|
|
// apply that same transform to the layer's own mask layer.
|
|
// A layer can also have "ancestor" mask layers for any rounded clips from
|
|
// its ancestor scroll frames. A scroll frame mask layer only needs to be
|
|
// async transformed for async scrolls of this scroll frame's ancestor
|
|
// scroll frames, not for async scrolls of this scroll frame itself.
|
|
// In the loop below, we iterate over scroll frames from inside to outside.
|
|
// At each iteration, this array contains the layer's ancestor mask layers
|
|
// of all scroll frames inside the current one.
|
|
nsTArray<Layer*> ancestorMaskLayers;
|
|
|
|
for (uint32_t i = 0; i < aLayer->GetFrameMetricsCount(); i++) {
|
|
AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController(i);
|
|
if (!controller) {
|
|
continue;
|
|
}
|
|
|
|
hasAsyncTransform = true;
|
|
|
|
ViewTransform asyncTransformWithoutOverscroll;
|
|
ParentLayerPoint scrollOffset;
|
|
controller->SampleContentTransformForFrame(&asyncTransformWithoutOverscroll,
|
|
scrollOffset);
|
|
Matrix4x4 overscrollTransform = controller->GetOverscrollTransform();
|
|
Matrix4x4 asyncTransform =
|
|
Matrix4x4(asyncTransformWithoutOverscroll) * overscrollTransform;
|
|
|
|
if (!aLayer->IsScrollInfoLayer()) {
|
|
controller->MarkAsyncTransformAppliedToContent();
|
|
}
|
|
|
|
const FrameMetrics& metrics = aLayer->GetFrameMetrics(i);
|
|
|
|
#if defined(MOZ_ANDROID_APZ)
|
|
// If we find a metrics which is the root content doc, use that. If not, use
|
|
// the root layer. Since this function recurses on children first we should
|
|
// only end up using the root layer if the entire tree was devoid of a
|
|
// root content metrics. This is a temporary solution; in the long term we
|
|
// should not need the root content metrics at all. See bug 1201529 comment
|
|
// 6 for details.
|
|
if (!(*aOutFoundRoot)) {
|
|
*aOutFoundRoot = metrics.IsRootContent() || /* RCD */
|
|
(aLayer->GetParent() == nullptr && /* rootmost metrics */
|
|
i + 1 >= aLayer->GetFrameMetricsCount());
|
|
if (*aOutFoundRoot) {
|
|
mRootScrollableId = metrics.GetScrollId();
|
|
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
|
|
if (mIsFirstPaint) {
|
|
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
|
|
mContentRect = metrics.GetScrollableRect();
|
|
SetFirstPaintViewport(scrollOffsetLayerPixels,
|
|
geckoZoom,
|
|
mContentRect);
|
|
} else {
|
|
// Compute the painted displayport in document-relative CSS pixels.
|
|
CSSRect displayPort(metrics.GetCriticalDisplayPort().IsEmpty() ?
|
|
metrics.GetDisplayPort() :
|
|
metrics.GetCriticalDisplayPort());
|
|
displayPort += metrics.GetScrollOffset();
|
|
SyncFrameMetrics(scrollOffset,
|
|
geckoZoom * asyncTransformWithoutOverscroll.mScale,
|
|
metrics.GetScrollableRect(), displayPort, geckoZoom, mLayersUpdated,
|
|
mPaintSyncId, fixedLayerMargins);
|
|
mFixedLayerMargins = fixedLayerMargins;
|
|
mLayersUpdated = false;
|
|
}
|
|
mIsFirstPaint = false;
|
|
mPaintSyncId = 0;
|
|
}
|
|
}
|
|
#else
|
|
// Non-Android platforms still care about this flag being cleared after
|
|
// the first call to TransformShadowTree().
|
|
mIsFirstPaint = false;
|
|
#endif
|
|
|
|
// Transform the current local clip by this APZC's async transform. If we're
|
|
// using containerful scrolling, then the clip is not part of the scrolled
|
|
// frame and should not be transformed.
|
|
if (asyncClip && !metrics.UsesContainerScrolling()) {
|
|
MOZ_ASSERT(asyncTransform.Is2D());
|
|
asyncClip = Some(TransformBy(
|
|
ViewAs<ParentLayerToParentLayerMatrix4x4>(asyncTransform), *asyncClip));
|
|
}
|
|
|
|
// Combine the local clip with the ancestor scrollframe clip. This is not
|
|
// included in the async transform above, since the ancestor clip should not
|
|
// move with this APZC.
|
|
if (metrics.HasClipRect()) {
|
|
ParentLayerIntRect clip = metrics.ClipRect();
|
|
if (asyncClip) {
|
|
asyncClip = Some(clip.Intersect(*asyncClip));
|
|
} else {
|
|
asyncClip = Some(clip);
|
|
}
|
|
}
|
|
|
|
// Do the same for the ancestor mask layers: ancestorMaskLayers contains
|
|
// the ancestor mask layers for scroll frames *inside* the current scroll
|
|
// frame, so these are the ones we need to shift by our async transform.
|
|
for (Layer* ancestorMaskLayer : ancestorMaskLayers) {
|
|
SetShadowTransform(ancestorMaskLayer,
|
|
ancestorMaskLayer->GetLocalTransform() * asyncTransform);
|
|
}
|
|
|
|
// Append the ancestor mask layer for this scroll frame to ancestorMaskLayers.
|
|
if (metrics.GetMaskLayerIndex()) {
|
|
size_t maskLayerIndex = metrics.GetMaskLayerIndex().value();
|
|
Layer* ancestorMaskLayer = aLayer->GetAncestorMaskLayerAt(maskLayerIndex);
|
|
ancestorMaskLayers.AppendElement(ancestorMaskLayer);
|
|
}
|
|
|
|
combinedAsyncTransform *= asyncTransform;
|
|
|
|
// For the purpose of aligning fixed and sticky layers, we disregard
|
|
// the overscroll transform as well as any OMTA transform when computing the
|
|
// 'aCurrentTransformForRoot' parameter. This ensures that the overscroll
|
|
// and OMTA transforms are not unapplied, and therefore that the visual
|
|
// effects apply to fixed and sticky layers. We do this by using
|
|
// GetTransform() as the base transform rather than GetLocalTransform(),
|
|
// which would include those factors.
|
|
Matrix4x4 transformWithoutOverscrollOrOmta = aLayer->GetTransform() *
|
|
AdjustForClip(asyncTransformWithoutOverscroll, aLayer);
|
|
|
|
// Since fixed/sticky layers are relative to their nearest scrolling ancestor,
|
|
// we use the ViewID from the bottommost scrollable metrics here.
|
|
AlignFixedAndStickyLayers(aLayer, aLayer, metrics.GetScrollId(), oldTransform,
|
|
transformWithoutOverscrollOrOmta, fixedLayerMargins);
|
|
}
|
|
|
|
if (hasAsyncTransform) {
|
|
if (asyncClip) {
|
|
aLayer->AsLayerComposite()->SetShadowClipRect(asyncClip);
|
|
}
|
|
|
|
// Apply the APZ transform on top of GetLocalTransform() here (rather than
|
|
// GetTransform()) in case the OMTA code in SampleAnimations already set a
|
|
// shadow transform; in that case we want to apply ours on top of that one
|
|
// rather than clobber it.
|
|
SetShadowTransform(aLayer,
|
|
aLayer->GetLocalTransform() * AdjustForClip(combinedAsyncTransform, aLayer));
|
|
|
|
// Do the same for the layer's own mask layer, if it has one.
|
|
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
|
|
SetShadowTransform(maskLayer,
|
|
maskLayer->GetLocalTransform() * combinedAsyncTransform);
|
|
}
|
|
|
|
appliedTransform = true;
|
|
}
|
|
|
|
ExpandRootClipRect(aLayer, fixedLayerMargins);
|
|
|
|
if (aLayer->GetScrollbarDirection() != Layer::NONE) {
|
|
ApplyAsyncTransformToScrollbar(aLayer);
|
|
}
|
|
return appliedTransform;
|
|
}
|
|
|
|
static bool
|
|
LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar)
|
|
{
|
|
AsyncPanZoomController* apzc = aTarget.GetApzc();
|
|
if (!apzc) {
|
|
return false;
|
|
}
|
|
const FrameMetrics& metrics = aTarget.Metrics();
|
|
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
|
|
return false;
|
|
}
|
|
return !aTarget.IsScrollInfoLayer();
|
|
}
|
|
|
|
static void
|
|
ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar,
|
|
const LayerMetricsWrapper& aContent,
|
|
bool aScrollbarIsDescendant)
|
|
{
|
|
// We only apply the transform if the scroll-target layer has non-container
|
|
// children (i.e. when it has some possibly-visible content). This is to
|
|
// avoid moving scroll-bars in the situation that only a scroll information
|
|
// layer has been built for a scroll frame, as this would result in a
|
|
// disparity between scrollbars and visible content.
|
|
if (aContent.IsScrollInfoLayer()) {
|
|
return;
|
|
}
|
|
|
|
const FrameMetrics& metrics = aContent.Metrics();
|
|
AsyncPanZoomController* apzc = aContent.GetApzc();
|
|
|
|
Matrix4x4 asyncTransform = apzc->GetCurrentAsyncTransform();
|
|
|
|
// |asyncTransform| represents the amount by which we have scrolled and
|
|
// zoomed since the last paint. Because the scrollbar was sized and positioned based
|
|
// on the painted content, we need to adjust it based on asyncTransform so that
|
|
// it reflects what the user is actually seeing now.
|
|
Matrix4x4 scrollbarTransform;
|
|
if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
|
|
const ParentLayerCoord asyncScrollY = asyncTransform._42;
|
|
const float asyncZoomY = asyncTransform._22;
|
|
|
|
// The scroll thumb needs to be scaled in the direction of scrolling by the
|
|
// inverse of the async zoom. This is because zooming in decreases the
|
|
// fraction of the whole srollable rect that is in view.
|
|
const float yScale = 1.f / asyncZoomY;
|
|
|
|
// Note: |metrics.GetZoom()| doesn't yet include the async zoom.
|
|
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().yScale * asyncZoomY);
|
|
|
|
// Here we convert the scrollbar thumb ratio into a true unitless ratio by
|
|
// dividing out the conversion factor from the scrollframe's parent's space
|
|
// to the scrollframe's space.
|
|
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
|
|
(metrics.GetPresShellResolution() * asyncZoomY);
|
|
// The scroll thumb needs to be translated in opposite direction of the
|
|
// async scroll. This is because scrolling down, which translates the layer
|
|
// content up, should result in moving the scroll thumb down.
|
|
ParentLayerCoord yTranslation = -asyncScrollY * ratio;
|
|
|
|
// The scroll thumb additionally needs to be translated to compensate for
|
|
// the scale applied above. The origin with respect to which the scale is
|
|
// applied is the origin of the entire scrollbar, rather than the origin of
|
|
// the scroll thumb (meaning, for a vertical scrollbar it's at the top of
|
|
// the composition bounds). This means that empty space above the thumb
|
|
// is scaled too, effectively translating the thumb. We undo that
|
|
// translation here.
|
|
// (One can think of the adjustment being done to the translation here as
|
|
// a change of basis. We have a method to help with that,
|
|
// Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code
|
|
// cleaner in this case).
|
|
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().y * ratio);
|
|
const CSSCoord thumbOriginScaled = thumbOrigin * yScale;
|
|
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
|
|
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
|
|
yTranslation -= thumbOriginDeltaPL;
|
|
|
|
if (metrics.IsRootContent()) {
|
|
// Scrollbar for the root are painted at the same resolution as the
|
|
// content. Since the coordinate space we apply this transform in includes
|
|
// the resolution, we need to adjust for it as well here. Note that in
|
|
// another metrics.IsRootContent() hunk below we apply a
|
|
// resolution-cancelling transform which ensures the scroll thumb isn't
|
|
// actually rendered at a larger scale.
|
|
yTranslation *= metrics.GetPresShellResolution();
|
|
}
|
|
|
|
scrollbarTransform.PostScale(1.f, yScale, 1.f);
|
|
scrollbarTransform.PostTranslate(0, yTranslation, 0);
|
|
}
|
|
if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
|
|
// See detailed comments under the VERTICAL case.
|
|
|
|
const ParentLayerCoord asyncScrollX = asyncTransform._41;
|
|
const float asyncZoomX = asyncTransform._11;
|
|
|
|
const float xScale = 1.f / asyncZoomX;
|
|
|
|
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().xScale * asyncZoomX);
|
|
|
|
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
|
|
(metrics.GetPresShellResolution() * asyncZoomX);
|
|
ParentLayerCoord xTranslation = -asyncScrollX * ratio;
|
|
|
|
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().x * ratio);
|
|
const CSSCoord thumbOriginScaled = thumbOrigin * xScale;
|
|
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
|
|
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
|
|
xTranslation -= thumbOriginDeltaPL;
|
|
|
|
if (metrics.IsRootContent()) {
|
|
xTranslation *= metrics.GetPresShellResolution();
|
|
}
|
|
|
|
scrollbarTransform.PostScale(xScale, 1.f, 1.f);
|
|
scrollbarTransform.PostTranslate(xTranslation, 0, 0);
|
|
}
|
|
|
|
Matrix4x4 transform = aScrollbar->GetLocalTransform() * scrollbarTransform;
|
|
|
|
Matrix4x4 compensation;
|
|
// If the scrollbar layer is for the root then the content's resolution
|
|
// applies to the scrollbar as well. Since we don't actually want the scroll
|
|
// thumb's size to vary with the zoom (other than its length reflecting the
|
|
// fraction of the scrollable length that's in view, which is taken care of
|
|
// above), we apply a transform to cancel out this resolution.
|
|
if (metrics.IsRootContent()) {
|
|
compensation =
|
|
Matrix4x4::Scaling(metrics.GetPresShellResolution(),
|
|
metrics.GetPresShellResolution(),
|
|
1.0f).Inverse();
|
|
}
|
|
// If the scrollbar layer is a child of the content it is a scrollbar for,
|
|
// then we need to adjust for any async transform (including an overscroll
|
|
// transform) on the content. This needs to be cancelled out because layout
|
|
// positions and sizes the scrollbar on the assumption that there is no async
|
|
// transform, and without this adjustment the scrollbar will end up in the
|
|
// wrong place.
|
|
//
|
|
// Note that since the async transform is applied on top of the content's
|
|
// regular transform, we need to make sure to unapply the async transform in
|
|
// the same coordinate space. This requires applying the content transform
|
|
// and then unapplying it after unapplying the async transform.
|
|
if (aScrollbarIsDescendant) {
|
|
Matrix4x4 asyncUntransform = (asyncTransform * apzc->GetOverscrollTransform()).Inverse();
|
|
Matrix4x4 contentTransform = aContent.GetTransform();
|
|
Matrix4x4 contentUntransform = contentTransform.Inverse();
|
|
|
|
Matrix4x4 asyncCompensation = contentTransform
|
|
* asyncUntransform
|
|
* contentUntransform;
|
|
|
|
compensation = compensation * asyncCompensation;
|
|
|
|
// We also need to make a corresponding change on the clip rect of all the
|
|
// layers on the ancestor chain from the scrollbar layer up to but not
|
|
// including the layer with the async transform. Otherwise the scrollbar
|
|
// shifts but gets clipped and so appears to flicker.
|
|
for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) {
|
|
TransformClipRect(ancestor, ViewAs<ParentLayerToParentLayerMatrix4x4>(asyncCompensation));
|
|
}
|
|
}
|
|
transform = transform * compensation;
|
|
|
|
SetShadowTransform(aScrollbar, transform);
|
|
}
|
|
|
|
static LayerMetricsWrapper
|
|
FindScrolledLayerRecursive(Layer* aScrollbar, const LayerMetricsWrapper& aSubtreeRoot)
|
|
{
|
|
if (LayerIsScrollbarTarget(aSubtreeRoot, aScrollbar)) {
|
|
return aSubtreeRoot;
|
|
}
|
|
|
|
for (LayerMetricsWrapper child = aSubtreeRoot.GetFirstChild();
|
|
child;
|
|
child = child.GetNextSibling())
|
|
{
|
|
// Do not recurse into RefLayers, since our initial aSubtreeRoot is the
|
|
// root (or RefLayer root) of a single layer space to search.
|
|
if (child.AsRefLayer()) {
|
|
continue;
|
|
}
|
|
|
|
LayerMetricsWrapper target = FindScrolledLayerRecursive(aScrollbar, child);
|
|
if (target) {
|
|
return target;
|
|
}
|
|
}
|
|
return LayerMetricsWrapper();
|
|
}
|
|
|
|
static LayerMetricsWrapper
|
|
FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor)
|
|
{
|
|
// First check if the scrolled layer is an ancestor of the scrollbar layer.
|
|
LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot());
|
|
LayerMetricsWrapper prevAncestor(aScrollbar);
|
|
for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) {
|
|
// Don't walk into remote layer trees; the scrollbar will always be in
|
|
// the same layer space.
|
|
if (ancestor.AsRefLayer()) {
|
|
root = prevAncestor;
|
|
break;
|
|
}
|
|
prevAncestor = ancestor;
|
|
|
|
if (LayerIsScrollbarTarget(ancestor, aScrollbar)) {
|
|
*aOutIsAncestor = true;
|
|
return ancestor;
|
|
}
|
|
}
|
|
|
|
// Search the entire layer space of the scrollbar.
|
|
return FindScrolledLayerRecursive(aScrollbar, root);
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer)
|
|
{
|
|
// If this layer corresponds to a scrollbar, then there should be a layer that
|
|
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
|
|
// That is the content that this scrollbar is for. We pick up the transient
|
|
// async transform from that layer and use it to update the scrollbar position.
|
|
// Note that it is possible that the content layer is no longer there; in
|
|
// this case we don't need to do anything because there can't be an async
|
|
// transform on the content.
|
|
bool isAncestor = false;
|
|
const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
|
|
if (scrollTarget) {
|
|
ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor);
|
|
}
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
|
|
{
|
|
FrameMetrics metrics = LayerMetricsWrapper::TopmostScrollableMetrics(aLayer);
|
|
if (!metrics.IsScrollable()) {
|
|
// On Fennec it's possible that the there is no scrollable layer in the
|
|
// tree, and this function just gets called with the root layer. In that
|
|
// case TopmostScrollableMetrics will return an empty FrameMetrics but we
|
|
// still want to use the actual non-scrollable metrics from the layer.
|
|
metrics = LayerMetricsWrapper::BottommostMetrics(aLayer);
|
|
}
|
|
|
|
// We must apply the resolution scale before a pan/zoom transform, so we call
|
|
// GetTransform here.
|
|
Matrix4x4 oldTransform = aLayer->GetTransform();
|
|
|
|
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
|
|
|
|
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
|
|
|
|
if (mIsFirstPaint) {
|
|
mContentRect = metrics.GetScrollableRect();
|
|
SetFirstPaintViewport(scrollOffsetLayerPixels,
|
|
geckoZoom,
|
|
mContentRect);
|
|
mIsFirstPaint = false;
|
|
} else if (!metrics.GetScrollableRect().IsEqualEdges(mContentRect)) {
|
|
mContentRect = metrics.GetScrollableRect();
|
|
SetPageRect(mContentRect);
|
|
}
|
|
|
|
// We synchronise the viewport information with Java after sending the above
|
|
// notifications, so that Java can take these into account in its response.
|
|
// Calculate the absolute display port to send to Java
|
|
LayerIntRect displayPort = RoundedToInt(
|
|
(metrics.GetCriticalDisplayPort().IsEmpty()
|
|
? metrics.GetDisplayPort()
|
|
: metrics.GetCriticalDisplayPort()
|
|
) * geckoZoom);
|
|
displayPort += scrollOffsetLayerPixels;
|
|
|
|
ScreenMargin fixedLayerMargins(0, 0, 0, 0);
|
|
|
|
// Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
|
|
// but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
|
|
// appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
|
|
// however, we can assume there is no async zooming in progress and so the following statement
|
|
// works fine.
|
|
CSSToParentLayerScale userZoom(metrics.GetDevPixelsPerCSSPixel()
|
|
// This function only applies to the root scrollable frame,
|
|
// for which we can assume that x and y scales are equal.
|
|
* metrics.GetCumulativeResolution().ToScaleFactor()
|
|
* LayerToParentLayerScale(1));
|
|
ParentLayerRect userRect(metrics.GetScrollOffset() * userZoom,
|
|
metrics.GetCompositionBounds().Size());
|
|
SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated, mPaintSyncId,
|
|
userRect, userZoom, fixedLayerMargins);
|
|
mLayersUpdated = false;
|
|
mPaintSyncId = 0;
|
|
|
|
// Handle transformations for asynchronous panning and zooming. We determine the
|
|
// zoom used by Gecko from the transformation set on the root layer, and we
|
|
// determine the scroll offset used by Gecko from the frame metrics of the
|
|
// primary scrollable layer. We compare this to the user zoom and scroll
|
|
// offset in the view transform we obtained from Java in order to compute the
|
|
// transformation we need to apply.
|
|
ParentLayerPoint geckoScroll(0, 0);
|
|
if (metrics.IsScrollable()) {
|
|
geckoScroll = metrics.GetScrollOffset() * userZoom;
|
|
}
|
|
|
|
LayerToParentLayerScale asyncZoom = userZoom / metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
|
|
ParentLayerPoint translation = userRect.TopLeft() - geckoScroll;
|
|
Matrix4x4 treeTransform = ViewTransform(asyncZoom, -translation);
|
|
|
|
// Apply the tree transform on top of GetLocalTransform() here (rather than
|
|
// GetTransform()) in case the OMTA code in SampleAnimations already set a
|
|
// shadow transform; in that case we want to apply ours on top of that one
|
|
// rather than clobber it.
|
|
SetShadowTransform(aLayer, aLayer->GetLocalTransform() * treeTransform);
|
|
|
|
// Make sure that overscroll and under-zoom are represented in the old
|
|
// transform so that fixed position content moves and scales accordingly.
|
|
// These calculations will effectively scale and offset fixed position layers
|
|
// in screen space when the compensatory transform is performed in
|
|
// AlignFixedAndStickyLayers.
|
|
ParentLayerRect contentScreenRect = mContentRect * userZoom;
|
|
Point3D overscrollTranslation;
|
|
if (userRect.x < contentScreenRect.x) {
|
|
overscrollTranslation.x = contentScreenRect.x - userRect.x;
|
|
} else if (userRect.XMost() > contentScreenRect.XMost()) {
|
|
overscrollTranslation.x = contentScreenRect.XMost() - userRect.XMost();
|
|
}
|
|
if (userRect.y < contentScreenRect.y) {
|
|
overscrollTranslation.y = contentScreenRect.y - userRect.y;
|
|
} else if (userRect.YMost() > contentScreenRect.YMost()) {
|
|
overscrollTranslation.y = contentScreenRect.YMost() - userRect.YMost();
|
|
}
|
|
oldTransform.PreTranslate(overscrollTranslation.x,
|
|
overscrollTranslation.y,
|
|
overscrollTranslation.z);
|
|
|
|
gfx::Size underZoomScale(1.0f, 1.0f);
|
|
if (mContentRect.width * userZoom.scale < metrics.GetCompositionBounds().width) {
|
|
underZoomScale.width = (mContentRect.width * userZoom.scale) /
|
|
metrics.GetCompositionBounds().width;
|
|
}
|
|
if (mContentRect.height * userZoom.scale < metrics.GetCompositionBounds().height) {
|
|
underZoomScale.height = (mContentRect.height * userZoom.scale) /
|
|
metrics.GetCompositionBounds().height;
|
|
}
|
|
oldTransform.PreScale(underZoomScale.width, underZoomScale.height, 1);
|
|
|
|
// Make sure fixed position layers don't move away from their anchor points
|
|
// when we're asynchronously panning or zooming
|
|
AlignFixedAndStickyLayers(aLayer, aLayer, metrics.GetScrollId(), oldTransform,
|
|
aLayer->GetLocalTransform(), fixedLayerMargins);
|
|
|
|
ExpandRootClipRect(aLayer, fixedLayerMargins);
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::GetFrameUniformity(FrameUniformityData* aOutData)
|
|
{
|
|
MOZ_ASSERT(CompositorParent::IsInCompositorThread());
|
|
mLayerTransformRecorder.EndTest(aOutData);
|
|
}
|
|
|
|
bool
|
|
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame,
|
|
TransformsToSkip aSkip)
|
|
{
|
|
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
|
|
js::ProfileEntry::Category::GRAPHICS);
|
|
|
|
Layer* root = mLayerManager->GetRoot();
|
|
if (!root) {
|
|
return false;
|
|
}
|
|
|
|
// First, compute and set the shadow transforms from OMT animations.
|
|
// NB: we must sample animations *before* sampling pan/zoom
|
|
// transforms.
|
|
bool wantNextFrame = SampleAnimations(root, aCurrentFrame);
|
|
|
|
if (!(aSkip & TransformsToSkip::APZ)) {
|
|
// FIXME/bug 775437: unify this interface with the ~native-fennec
|
|
// derived code
|
|
//
|
|
// Attempt to apply an async content transform to any layer that has
|
|
// an async pan zoom controller (which means that it is rendered
|
|
// async using Gecko). If this fails, fall back to transforming the
|
|
// primary scrollable layer. "Failing" here means that we don't
|
|
// find a frame that is async scrollable. Note that the fallback
|
|
// code also includes Fennec which is rendered async. Fennec uses
|
|
// its own platform-specific async rendering that is done partially
|
|
// in Gecko and partially in Java.
|
|
wantNextFrame |= SampleAPZAnimations(LayerMetricsWrapper(root), aCurrentFrame);
|
|
bool foundRoot = false;
|
|
if (ApplyAsyncContentTransformToTree(root, &foundRoot)) {
|
|
#if defined(MOZ_ANDROID_APZ)
|
|
MOZ_ASSERT(foundRoot);
|
|
if (foundRoot && mFixedLayerMargins != ScreenMargin()) {
|
|
MoveScrollbarForLayerMargin(root, mRootScrollableId, mFixedLayerMargins);
|
|
}
|
|
#endif
|
|
} else {
|
|
nsAutoTArray<Layer*,1> scrollableLayers;
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
mLayerManager->GetRootScrollableLayers(scrollableLayers);
|
|
#else
|
|
mLayerManager->GetScrollableLayers(scrollableLayers);
|
|
#endif
|
|
|
|
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
|
|
if (scrollableLayers[i]) {
|
|
TransformScrollableLayer(scrollableLayers[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LayerComposite* rootComposite = root->AsLayerComposite();
|
|
|
|
gfx::Matrix4x4 trans = rootComposite->GetShadowTransform();
|
|
trans *= gfx::Matrix4x4::From2D(mWorldTransform);
|
|
rootComposite->SetShadowTransform(trans);
|
|
|
|
if (gfxPrefs::CollectScrollTransforms()) {
|
|
RecordShadowTransforms(root);
|
|
}
|
|
|
|
return wantNextFrame;
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
|
|
const CSSToLayerScale& aZoom,
|
|
const CSSRect& aCssPageRect)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
|
|
const CSSToLayerScale& aDisplayResolution,
|
|
bool aLayersUpdated,
|
|
int32_t aPaintSyncId,
|
|
ParentLayerRect& aScrollRect,
|
|
CSSToParentLayerScale& aScale,
|
|
ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
|
|
aDisplayResolution,
|
|
aLayersUpdated,
|
|
aPaintSyncId,
|
|
aScrollRect,
|
|
aScale,
|
|
aFixedLayerMargins);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SyncFrameMetrics(const ParentLayerPoint& aScrollOffset,
|
|
const CSSToParentLayerScale& aZoom,
|
|
const CSSRect& aCssPageRect,
|
|
const CSSRect& aDisplayPort,
|
|
const CSSToLayerScale& aPaintedResolution,
|
|
bool aLayersUpdated,
|
|
int32_t aPaintSyncId,
|
|
ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
|
|
aDisplayPort, aPaintedResolution,
|
|
aLayersUpdated, aPaintSyncId,
|
|
aFixedLayerMargins);
|
|
#endif
|
|
}
|
|
|
|
} // namespace layers
|
|
} // namespace mozilla
|