tenfourfox/gfx/layers/composite/AsyncCompositionManager.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

1448 lines
60 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/AsyncCompositionManager.h"
#include <stdint.h> // for uint32_t
#include "apz/src/AsyncPanZoomController.h"
#include "FrameMetrics.h" // for FrameMetrics
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
#include "Layers.h" // for Layer, ContainerLayer, etc
#include "gfxPoint.h" // for gfxPoint, gfxSize
#include "gfxPrefs.h" // for gfxPrefs
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
#include "mozilla/dom/KeyframeEffect.h" // for KeyframeEffectReadOnly
#include "mozilla/dom/AnimationEffectReadOnlyBinding.h" // for dom::FillMode
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
#include "mozilla/layers/Compositor.h" // for Compositor
#include "mozilla/layers/CompositorParent.h" // for CompositorParent, etc
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
#include "nsDebug.h" // for NS_ASSERTION, etc
#include "nsDeviceContext.h" // for nsDeviceContext
#include "nsDisplayList.h" // for nsDisplayTransform, etc
#include "nsMathUtils.h" // for NS_round
#include "nsPoint.h" // for nsPoint
#include "nsRect.h" // for mozilla::gfx::IntRect
#include "nsRegion.h" // for nsIntRegion
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
#include "UnitTransforms.h" // for TransformTo
#include "gfxPrefs.h"
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "GeckoProfiler.h"
#include "FrameUniformityData.h"
#include "TreeTraversal.h"
struct nsCSSValueSharedList;
namespace mozilla {
namespace layers {
using namespace mozilla::gfx;
enum Op { Resolve, Detach };
static bool
IsSameDimension(dom::ScreenOrientationInternal o1, dom::ScreenOrientationInternal o2)
{
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
return !(isO1portrait ^ isO2portrait);
}
static bool
ContentMightReflowOnOrientationChange(const IntRect& rect)
{
return rect.width != rect.height;
}
template<Op OP>
static void
WalkTheTree(Layer* aLayer,
bool& aReady,
const TargetConfig& aTargetConfig,
CompositorParent* aCompositor,
bool& aHasRemote,
bool aWillResolvePlugins,
bool& aDidResolvePlugins)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
aHasRemote = true;
if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (!ref->GetVisibleRegion().IsEmpty()) {
dom::ScreenOrientationInternal chromeOrientation = aTargetConfig.orientation();
dom::ScreenOrientationInternal contentOrientation = state->mTargetConfig.orientation();
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
ContentMightReflowOnOrientationChange(aTargetConfig.naturalBounds())) {
aReady = false;
}
}
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
if (aCompositor && aWillResolvePlugins) {
aDidResolvePlugins |=
aCompositor->UpdatePluginWindowState(ref->GetReferentId());
}
#endif
} else {
ref->DetachReferentLayer(referent);
WalkTheTree<OP>(referent, aReady, aTargetConfig,
aCompositor, aHasRemote, aWillResolvePlugins,
aDidResolvePlugins);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aReady, aTargetConfig,
aCompositor, aHasRemote, aWillResolvePlugins,
aDidResolvePlugins);
}
}
AsyncCompositionManager::AsyncCompositionManager(LayerManagerComposite* aManager)
: mLayerManager(aManager)
, mIsFirstPaint(true)
, mLayersUpdated(false)
, mPaintSyncId(0)
, mReadyForCompose(true)
{
}
AsyncCompositionManager::~AsyncCompositionManager()
{
}
void
AsyncCompositionManager::ResolveRefLayers(CompositorParent* aCompositor,
bool* aHasRemoteContent,
bool* aResolvePlugins)
{
if (aHasRemoteContent) {
*aHasRemoteContent = false;
}
// If valid *aResolvePlugins indicates if we need to update plugin geometry
// when we walk the tree.
bool willResolvePlugins = (aResolvePlugins && *aResolvePlugins);
if (!mLayerManager->GetRoot()) {
// Updated the return value since this result controls completing composition.
if (aResolvePlugins) {
*aResolvePlugins = false;
}
return;
}
mReadyForCompose = true;
bool hasRemoteContent = false;
bool didResolvePlugins = false;
WalkTheTree<Resolve>(mLayerManager->GetRoot(),
mReadyForCompose,
mTargetConfig,
aCompositor,
hasRemoteContent,
willResolvePlugins,
didResolvePlugins);
if (aHasRemoteContent) {
*aHasRemoteContent = hasRemoteContent;
}
if (aResolvePlugins) {
*aResolvePlugins = didResolvePlugins;
}
}
void
AsyncCompositionManager::DetachRefLayers()
{
if (!mLayerManager->GetRoot()) {
return;
}
CompositorParent* dummy = nullptr;
bool ignored = false;
WalkTheTree<Detach>(mLayerManager->GetRoot(),
mReadyForCompose,
mTargetConfig,
dummy,
ignored, ignored, ignored);
}
void
AsyncCompositionManager::ComputeRotation()
{
if (!mTargetConfig.naturalBounds().IsEmpty()) {
mWorldTransform =
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation());
}
}
static void
GetBaseTransform(Layer* aLayer, Matrix4x4* aTransform)
{
// Start with the animated transform if there is one
*aTransform =
(aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation()
? aLayer->GetLocalTransform()
: aLayer->GetTransform());
}
static void
TransformClipRect(Layer* aLayer,
const ParentLayerToParentLayerMatrix4x4& aTransform)
{
MOZ_ASSERT(aTransform.Is2D());
const Maybe<ParentLayerIntRect>& clipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
if (clipRect) {
ParentLayerIntRect transformed = TransformBy(aTransform, *clipRect);
aLayer->AsLayerComposite()->SetShadowClipRect(Some(transformed));
}
}
/**
* Set the given transform as the shadow transform on the layer, assuming
* that the given transform already has the pre- and post-scales applied.
* That is, this function cancels out the pre- and post-scales from aTransform
* before setting it as the shadow transform on the layer, so that when
* the layer's effective transform is computed, the pre- and post-scales will
* only be applied once.
*/
static void
SetShadowTransform(Layer* aLayer, Matrix4x4 aTransform)
{
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
aTransform.PreScale(1.0f / c->GetPreXScale(),
1.0f / c->GetPreYScale(),
1);
}
aTransform.PostScale(1.0f / aLayer->GetPostXScale(),
1.0f / aLayer->GetPostYScale(),
1);
aLayer->AsLayerComposite()->SetShadowTransform(aTransform);
}
static void
TranslateShadowLayer(Layer* aLayer,
const gfxPoint& aTranslation,
bool aAdjustClipRect)
{
// This layer might also be a scrollable layer and have an async transform.
// To make sure we don't clobber that, we start with the shadow transform.
// (i.e. GetLocalTransform() instead of GetTransform()).
// Note that the shadow transform is reset on every frame of composition so
// we don't have to worry about the adjustments compounding over successive
// frames.
Matrix4x4 layerTransform = aLayer->GetLocalTransform();
// Apply the translation to the layer transform.
layerTransform.PostTranslate(aTranslation.x, aTranslation.y, 0);
SetShadowTransform(aLayer, layerTransform);
aLayer->AsLayerComposite()->SetShadowTransformSetByAnimation(false);
if (aAdjustClipRect) {
TransformClipRect(aLayer,
ParentLayerToParentLayerMatrix4x4::Translation(aTranslation.x, aTranslation.y, 0));
// If a fixed- or sticky-position layer has a mask layer, that mask should
// move along with the layer, so apply the translation to the mask layer too.
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
TranslateShadowLayer(maskLayer, aTranslation, false);
}
}
}
static void
AccumulateLayerTransforms(Layer* aLayer,
Layer* aAncestor,
Matrix4x4& aMatrix)
{
// Accumulate the transforms between this layer and the subtree root layer.
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
Matrix4x4 transform;
GetBaseTransform(l, &transform);
aMatrix *= transform;
}
}
static LayerPoint
GetLayerFixedMarginsOffset(Layer* aLayer,
const ScreenMargin& aFixedLayerMargins)
{
// Work out the necessary translation, in root scrollable layer space.
// Because fixed layer margins are stored relative to the root scrollable
// layer, we can just take the difference between these values.
LayerPoint translation;
int32_t sides = aLayer->GetFixedPositionSides();
if ((sides & eSideBitsLeftRight) == eSideBitsLeftRight) {
translation.x += (aFixedLayerMargins.left - aFixedLayerMargins.right) / 2;
} else if (sides & eSideBitsRight) {
translation.x -= aFixedLayerMargins.right;
} else if (sides & eSideBitsLeft) {
translation.x += aFixedLayerMargins.left;
}
if ((sides & eSideBitsTopBottom) == eSideBitsTopBottom) {
translation.y += (aFixedLayerMargins.top - aFixedLayerMargins.bottom) / 2;
} else if (sides & eSideBitsBottom) {
translation.y -= aFixedLayerMargins.bottom;
} else if (sides & eSideBitsTop) {
translation.y += aFixedLayerMargins.top;
}
return translation;
}
static gfxFloat
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
{
// Determine the amount of overlap between the 1D vector |aTranslation|
// and the interval [aMin, aMax].
if (aTranslation > 0) {
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
} else {
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
}
}
/**
* Finds the metrics on |aLayer| with scroll id |aScrollId|, and returns a
* LayerMetricsWrapper representing the (layer, metrics) pair, or the null
* LayerMetricsWrapper if no matching metrics could be found.
*/
static LayerMetricsWrapper
FindMetricsWithScrollId(Layer* aLayer, FrameMetrics::ViewID aScrollId)
{
for (uint64_t i = 0; i < aLayer->GetFrameMetricsCount(); ++i) {
if (aLayer->GetFrameMetrics(i).GetScrollId() == aScrollId) {
return LayerMetricsWrapper(aLayer, i);
}
}
return LayerMetricsWrapper();
}
/**
* Checks whether the (layer, metrics) pair (aTransformedLayer, aTransformedMetrics)
* is on the path from |aFixedLayer| to the metrics with scroll id
* |aFixedWithRespectTo|, inclusive.
*/
static bool
AsyncTransformShouldBeUnapplied(Layer* aFixedLayer,
FrameMetrics::ViewID aFixedWithRespectTo,
Layer* aTransformedLayer,
FrameMetrics::ViewID aTransformedMetrics)
{
LayerMetricsWrapper transformed = FindMetricsWithScrollId(aTransformedLayer, aTransformedMetrics);
if (!transformed.IsValid()) {
return false;
}
// It's important to start at the bottom, because the fixed layer itself
// could have the transformed metrics, and they can be at the bottom.
LayerMetricsWrapper current(aFixedLayer, LayerMetricsWrapper::StartAt::BOTTOM);
bool encounteredTransformedLayer = false;
// The transformed layer is on the path from |aFixedLayer| to the fixed-to
// layer if as we walk up the (layer, metrics) tree starting from
// |aFixedLayer|, we *first* encounter the transformed layer, and *then* (or
// at the same time) the fixed-to layer.
while (current) {
if (!encounteredTransformedLayer && current == transformed) {
encounteredTransformedLayer = true;
}
if (current.Metrics().GetScrollId() == aFixedWithRespectTo) {
return encounteredTransformedLayer;
}
current = current.GetParent();
// It's possible that we reach a layers id boundary before we reach an
// ancestor with the scroll id |aFixedWithRespectTo| (this could happen
// e.g. if the scroll frame with that scroll id uses containerless
// scrolling). In such a case, stop the walk, as a new layers id could
// have a different layer with scroll id |aFixedWithRespectTo| which we
// don't intend to match.
if (current && current.AsRefLayer() != nullptr) {
break;
}
}
return false;
}
void
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer,
Layer* aTransformedSubtreeRoot,
FrameMetrics::ViewID aTransformScrollId,
const Matrix4x4& aPreviousTransformForRoot,
const Matrix4x4& aCurrentTransformForRoot,
const ScreenMargin& aFixedLayerMargins)
{
FrameMetrics::ViewID fixedTo; // the scroll id of the scroll frame we are fixed/sticky to
bool isRootOfFixedSubtree = aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition();
if (isRootOfFixedSubtree) {
fixedTo = aLayer->GetFixedPositionScrollContainerId();
}
bool isSticky = aLayer->GetIsStickyPosition();
if (isSticky) {
fixedTo = aLayer->GetStickyScrollContainerId();
}
bool needsAsyncTransformUnapplied = false;
if (isRootOfFixedSubtree || isSticky) {
needsAsyncTransformUnapplied = AsyncTransformShouldBeUnapplied(aLayer,
fixedTo, aTransformedSubtreeRoot, aTransformScrollId);
}
// We want to process all the fixed and sticky descendants of
// aTransformedSubtreeRoot. Once we do encounter such a descendant, we don't
// need to recurse any deeper because the adjustment to the fixed or sticky
// layer will apply to its subtree.
if (!needsAsyncTransformUnapplied) {
for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) {
AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot, aTransformScrollId,
aPreviousTransformForRoot,
aCurrentTransformForRoot, aFixedLayerMargins);
}
return;
}
// Insert a translation so that the position of the anchor point is the same
// before and after the change to the transform of aTransformedSubtreeRoot.
// Accumulate the transforms between this layer and the subtree root layer.
Matrix4x4 ancestorTransform;
AccumulateLayerTransforms(aLayer->GetParent(), aTransformedSubtreeRoot,
ancestorTransform);
// Calculate the cumulative transforms between the subtree root with the
// old transform and the current transform.
Matrix4x4 oldCumulativeTransform = ancestorTransform * aPreviousTransformForRoot;
Matrix4x4 newCumulativeTransform = ancestorTransform * aCurrentTransformForRoot;
if (newCumulativeTransform.IsSingular()) {
return;
}
// Add in the layer's local transform, if it isn't already included in
// |aPreviousTransformForRoot| and |aCurrentTransformForRoot| (this happens
// when the fixed/sticky layer is itself the transformed subtree root).
Matrix4x4 localTransform;
GetBaseTransform(aLayer, &localTransform);
if (aLayer != aTransformedSubtreeRoot) {
oldCumulativeTransform = localTransform * oldCumulativeTransform;
newCumulativeTransform = localTransform * newCumulativeTransform;
}
// Now work out the translation necessary to make sure the layer doesn't
// move given the new sub-tree root transform.
// Get the layer's fixed anchor point, in the layer's local coordinate space
// (before any cumulative transform is applied).
LayerPoint anchor = aLayer->GetFixedPositionAnchor();
// Offset the layer's anchor point to make sure fixed position content
// respects content document fixed position margins.
LayerPoint offsetAnchor = anchor + GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins);
// Additionally transform the anchor to compensate for the change
// from the old cumulative transform to the new cumulative transform. We do
// this by using the old transform to take the offset anchor back into
// subtree root space, and then the inverse of the new cumulative transform
// to bring it back to layer space.
LayerPoint transformedAnchor = ViewAs<LayerPixel>(
newCumulativeTransform.Inverse() *
(oldCumulativeTransform * offsetAnchor.ToUnknownPoint()));
// We want to translate the layer by the difference between |transformedAnchor|
// and |anchor|. To achieve this, we will add a translation to the layer's
// transform. This translation will apply on top of the layer's local
// transform, but |anchor| and |transformedAnchor| are in a coordinate space
// where the local transform isn't applied yet, so apply it and then subtract
// to get the desired translation.
auto localTransformTyped = ViewAs<LayerToParentLayerMatrix4x4>(localTransform);
ParentLayerPoint translation = TransformBy(localTransformTyped, transformedAnchor)
- TransformBy(localTransformTyped, anchor);
if (aLayer->GetIsStickyPosition()) {
// For sticky positioned layers, the difference between the two rectangles
// defines a pair of translation intervals in each dimension through which
// the layer should not move relative to the scroll container. To
// accomplish this, we limit each dimension of the |translation| to that
// part of it which overlaps those intervals.
const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter();
const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner();
// TODO: There's a unit mismatch here, as |translation| is in ParentLayer
// space while |stickyOuter| and |stickyInner| are in Layer space.
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
}
// Finally, apply the translation to the layer transform. Note that in
// general we need to apply the same translation to the layer's clip rect, so
// that the effective transform on the clip rect takes it back to where it was
// originally, had there been no async scroll. In the case where the
// fixed/sticky layer is the same as aTransformedSubtreeRoot, then the clip
// rect is not affected by the scroll-induced async scroll transform anyway
// (since the clip is applied post-transform) so we don't need to make the
// adjustment. Also, some layers want async scrolling to move their clip rect
// (IsClipFixed() = false), so we don't make a compensating adjustment for
// those.
bool adjustClipRect = aLayer != aTransformedSubtreeRoot &&
aLayer->IsClipFixed();
TranslateShadowLayer(aLayer, ThebesPoint(translation.ToUnknownPoint()), adjustClipRect);
}
static void
SampleValue(float aPortion, Animation& aAnimation, StyleAnimationValue& aStart,
StyleAnimationValue& aEnd, Animatable* aValue)
{
StyleAnimationValue interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == StyleAnimationValue::eUnit_None ||
aEnd.GetUnit() == StyleAnimationValue::eUnit_None,
"Must have same unit");
StyleAnimationValue::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueSharedList* interpolatedList =
interpolatedValue.GetCSSValueSharedListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
// we expect all our transform data to arrive in device pixels
Point3D transformOrigin = data.transformOrigin();
Point3D perspectiveOrigin = data.perspectiveOrigin();
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
transformOrigin,
perspectiveOrigin,
data.perspective());
Matrix4x4 transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
data.appUnitsPerDevPixel(),
&data.bounds());
Point3D scaledOrigin =
Point3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
0.0f);
transform.PreTranslate(scaledOrigin);
InfallibleTArray<TransformFunction> functions;
functions.AppendElement(TransformMatrix(transform));
*aValue = functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
// Process in order, since later animations override earlier ones.
for (size_t i = 0, iEnd = animations.Length(); i < iEnd; ++i) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
activeAnimations = true;
MOZ_ASSERT(!animation.startTime().IsNull(),
"Failed to resolve start time of pending animations");
TimeDuration elapsedDuration =
(aPoint - animation.startTime()).MultDouble(animation.playbackRate());
// Skip animations that are yet to start.
//
// Currently, this should only happen when the refresh driver is under test
// control and is made to produce a time in the past or is restored from
// test control causing it to jump backwards in time.
//
// Since activeAnimations is true, this could mean we keep compositing
// unnecessarily during the delay, but so long as this only happens while
// the refresh driver is under test control that should be ok.
if (elapsedDuration.ToSeconds() < 0) {
continue;
}
AnimationTiming timing;
timing.mIterationDuration = animation.duration();
// Currently animations run on the compositor have their delay factored
// into their start time, hence the delay is effectively zero.
timing.mDelay = TimeDuration(0);
timing.mIterationCount = animation.iterationCount();
timing.mDirection = static_cast<dom::PlaybackDirection>(animation.direction());
// Animations typically only run on the compositor during their active
// interval but if we end up sampling them outside that range (for
// example, while they are waiting to be removed) we currently just
// assume that we should fill.
timing.mFillMode = dom::FillMode::Both;
ComputedTiming computedTiming =
dom::KeyframeEffectReadOnly::GetComputedTimingAt(
Nullable<TimeDuration>(elapsedDuration), timing);
MOZ_ASSERT(!computedTiming.mProgress.IsNull() &&
0.0 <= computedTiming.mProgress.Value() &&
computedTiming.mProgress.Value() <= 1.0,
"iteration progress should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < computedTiming.mProgress.Value()) {
++segment;
++segmentIndex;
}
double positionInSegment =
(computedTiming.mProgress.Value() - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion =
animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
LayerComposite* layerComposite = aLayer->AsLayerComposite();
switch (animation.property()) {
case eCSSProperty_opacity:
{
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
matrix.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1);
}
layerComposite->SetShadowTransform(matrix);
layerComposite->SetShadowTransformSetByAnimation(true);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
static bool
SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime)
{
bool activeAnimations = false;
for (LayerMetricsWrapper child = aLayer.GetFirstChild(); child;
child = child.GetNextSibling()) {
activeAnimations |= SampleAPZAnimations(child, aSampleTime);
}
if (AsyncPanZoomController* apzc = aLayer.GetApzc()) {
apzc->ReportCheckerboard(aSampleTime);
activeAnimations |= apzc->AdvanceAnimations(aSampleTime);
}
return activeAnimations;
}
void
AsyncCompositionManager::RecordShadowTransforms(Layer* aLayer)
{
MOZ_ASSERT(gfxPrefs::CollectScrollTransforms());
MOZ_ASSERT(CompositorParent::IsInCompositorThread());
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
RecordShadowTransforms(child);
}
for (uint32_t i = 0; i < aLayer->GetFrameMetricsCount(); i++) {
AsyncPanZoomController* apzc = aLayer->GetAsyncPanZoomController(i);
if (!apzc) {
continue;
}
gfx::Matrix4x4 shadowTransform = aLayer->AsLayerComposite()->GetShadowTransform();
if (!shadowTransform.Is2D()) {
continue;
}
Matrix transform = shadowTransform.As2D();
if (transform.IsTranslation() && !shadowTransform.IsIdentity()) {
Point translation = transform.GetTranslation();
mLayerTransformRecorder.RecordTransform(aLayer, translation);
return;
}
}
}
Matrix4x4
AdjustForClip(const Matrix4x4& asyncTransform, Layer* aLayer)
{
Matrix4x4 result = asyncTransform;
// Container layers start at the origin, but they are clipped to where they
// actually have content on the screen. The tree transform is meant to apply
// to the clipped area. If the tree transform includes a scale component,
// then applying it to container as-is will produce incorrect results. To
// avoid this, translate the layer so that the clip rect starts at the origin,
// apply the tree transform, and translate back.
if (const Maybe<ParentLayerIntRect>& shadowClipRect = aLayer->AsLayerComposite()->GetShadowClipRect()) {
if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis
result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0);
}
}
return result;
}
static void
ExpandRootClipRect(Layer* aLayer, const ScreenMargin& aFixedLayerMargins)
{
// For Fennec we want to expand the root scrollable layer clip rect based on
// the fixed position margins. In particular, we want this while the dynamic
// toolbar is in the process of sliding offscreen and the area of the
// LayerView visible to the user is larger than the viewport size that Gecko
// knows about (and therefore larger than the clip rect). We could also just
// clear the clip rect on aLayer entirely but this seems more precise.
Maybe<ParentLayerIntRect> rootClipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
if (rootClipRect && aFixedLayerMargins != ScreenMargin()) {
#ifndef MOZ_WIDGET_ANDROID
// We should never enter here on anything other than Fennec, since
// aFixedLayerMargins should be empty everywhere else.
MOZ_ASSERT(false);
#endif
ParentLayerRect rect(rootClipRect.value());
rect.Deflate(ViewAs<ParentLayerPixel>(aFixedLayerMargins,
PixelCastJustification::ScreenIsParentLayerForRoot));
aLayer->AsLayerComposite()->SetShadowClipRect(Some(RoundedOut(rect)));
}
}
#ifdef MOZ_ANDROID_APZ
static void
MoveScrollbarForLayerMargin(Layer* aRoot, FrameMetrics::ViewID aRootScrollId,
const ScreenMargin& aFixedLayerMargins)
{
// See bug 1223928 comment 9 - once we can detect the RCD with just the
// isRootContent flag on the metrics, we can probably move this code into
// ApplyAsyncTransformToScrollbar rather than having it as a separate
// adjustment on the layer tree.
Layer* scrollbar = BreadthFirstSearch(aRoot,
[aRootScrollId](Layer* aNode) {
return (aNode->GetScrollbarDirection() == Layer::HORIZONTAL &&
aNode->GetScrollbarTargetContainerId() == aRootScrollId);
});
if (scrollbar) {
// Shift the horizontal scrollbar down into the new space exposed by the
// dynamic toolbar hiding. Technically we should also scale the vertical
// scrollbar a bit to expand into the new space but it's not as noticeable
// and it would add a lot more complexity, so we're going with the "it's not
// worth it" justification.
TranslateShadowLayer(scrollbar, gfxPoint(0, -aFixedLayerMargins.bottom), true);
if (scrollbar->GetParent()) {
// The layer that has the HORIZONTAL direction sits inside another
// ContainerLayer. This ContainerLayer also has a clip rect that causes
// the scrollbar to get clipped. We need to expand that clip rect to
// prevent that from happening. This is kind of ugly in that we're
// assuming a particular layer tree structure but short of adding more
// flags to the layer there doesn't appear to be a good way to do this.
ExpandRootClipRect(scrollbar->GetParent(), aFixedLayerMargins);
}
}
}
#endif
bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer,
bool* aOutFoundRoot)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(child, aOutFoundRoot);
}
Matrix4x4 oldTransform = aLayer->GetTransform();
Matrix4x4 combinedAsyncTransform;
bool hasAsyncTransform = false;
ScreenMargin fixedLayerMargins;
// Each layer has multiple clips. Its local clip, which must move with async
// transforms, and its scrollframe clips, which are the clips between each
// scrollframe and its ancestor scrollframe. Scrollframe clips include the
// composition bounds and any other clips induced by layout.
//
// The final clip for the layer is the intersection of these clips.
Maybe<ParentLayerIntRect> asyncClip = aLayer->GetClipRect();
// The transform of a mask layer is relative to the masked layer's parent
// layer. So whenever we apply an async transform to a layer, we need to
// apply that same transform to the layer's own mask layer.
// A layer can also have "ancestor" mask layers for any rounded clips from
// its ancestor scroll frames. A scroll frame mask layer only needs to be
// async transformed for async scrolls of this scroll frame's ancestor
// scroll frames, not for async scrolls of this scroll frame itself.
// In the loop below, we iterate over scroll frames from inside to outside.
// At each iteration, this array contains the layer's ancestor mask layers
// of all scroll frames inside the current one.
nsTArray<Layer*> ancestorMaskLayers;
for (uint32_t i = 0; i < aLayer->GetFrameMetricsCount(); i++) {
AsyncPanZoomController* controller = aLayer->GetAsyncPanZoomController(i);
if (!controller) {
continue;
}
hasAsyncTransform = true;
ViewTransform asyncTransformWithoutOverscroll;
ParentLayerPoint scrollOffset;
controller->SampleContentTransformForFrame(&asyncTransformWithoutOverscroll,
scrollOffset);
Matrix4x4 overscrollTransform = controller->GetOverscrollTransform();
Matrix4x4 asyncTransform =
Matrix4x4(asyncTransformWithoutOverscroll) * overscrollTransform;
if (!aLayer->IsScrollInfoLayer()) {
controller->MarkAsyncTransformAppliedToContent();
}
const FrameMetrics& metrics = aLayer->GetFrameMetrics(i);
#if defined(MOZ_ANDROID_APZ)
// If we find a metrics which is the root content doc, use that. If not, use
// the root layer. Since this function recurses on children first we should
// only end up using the root layer if the entire tree was devoid of a
// root content metrics. This is a temporary solution; in the long term we
// should not need the root content metrics at all. See bug 1201529 comment
// 6 for details.
if (!(*aOutFoundRoot)) {
*aOutFoundRoot = metrics.IsRootContent() || /* RCD */
(aLayer->GetParent() == nullptr && /* rootmost metrics */
i + 1 >= aLayer->GetFrameMetricsCount());
if (*aOutFoundRoot) {
mRootScrollableId = metrics.GetScrollId();
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
if (mIsFirstPaint) {
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
mContentRect = metrics.GetScrollableRect();
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
} else {
// Compute the painted displayport in document-relative CSS pixels.
CSSRect displayPort(metrics.GetCriticalDisplayPort().IsEmpty() ?
metrics.GetDisplayPort() :
metrics.GetCriticalDisplayPort());
displayPort += metrics.GetScrollOffset();
SyncFrameMetrics(scrollOffset,
geckoZoom * asyncTransformWithoutOverscroll.mScale,
metrics.GetScrollableRect(), displayPort, geckoZoom, mLayersUpdated,
mPaintSyncId, fixedLayerMargins);
mFixedLayerMargins = fixedLayerMargins;
mLayersUpdated = false;
}
mIsFirstPaint = false;
mPaintSyncId = 0;
}
}
#else
// Non-Android platforms still care about this flag being cleared after
// the first call to TransformShadowTree().
mIsFirstPaint = false;
#endif
// Transform the current local clip by this APZC's async transform. If we're
// using containerful scrolling, then the clip is not part of the scrolled
// frame and should not be transformed.
if (asyncClip && !metrics.UsesContainerScrolling()) {
MOZ_ASSERT(asyncTransform.Is2D());
asyncClip = Some(TransformBy(
ViewAs<ParentLayerToParentLayerMatrix4x4>(asyncTransform), *asyncClip));
}
// Combine the local clip with the ancestor scrollframe clip. This is not
// included in the async transform above, since the ancestor clip should not
// move with this APZC.
if (metrics.HasClipRect()) {
ParentLayerIntRect clip = metrics.ClipRect();
if (asyncClip) {
asyncClip = Some(clip.Intersect(*asyncClip));
} else {
asyncClip = Some(clip);
}
}
// Do the same for the ancestor mask layers: ancestorMaskLayers contains
// the ancestor mask layers for scroll frames *inside* the current scroll
// frame, so these are the ones we need to shift by our async transform.
for (Layer* ancestorMaskLayer : ancestorMaskLayers) {
SetShadowTransform(ancestorMaskLayer,
ancestorMaskLayer->GetLocalTransform() * asyncTransform);
}
// Append the ancestor mask layer for this scroll frame to ancestorMaskLayers.
if (metrics.GetMaskLayerIndex()) {
size_t maskLayerIndex = metrics.GetMaskLayerIndex().value();
Layer* ancestorMaskLayer = aLayer->GetAncestorMaskLayerAt(maskLayerIndex);
ancestorMaskLayers.AppendElement(ancestorMaskLayer);
}
combinedAsyncTransform *= asyncTransform;
// For the purpose of aligning fixed and sticky layers, we disregard
// the overscroll transform as well as any OMTA transform when computing the
// 'aCurrentTransformForRoot' parameter. This ensures that the overscroll
// and OMTA transforms are not unapplied, and therefore that the visual
// effects apply to fixed and sticky layers. We do this by using
// GetTransform() as the base transform rather than GetLocalTransform(),
// which would include those factors.
Matrix4x4 transformWithoutOverscrollOrOmta = aLayer->GetTransform() *
AdjustForClip(asyncTransformWithoutOverscroll, aLayer);
// Since fixed/sticky layers are relative to their nearest scrolling ancestor,
// we use the ViewID from the bottommost scrollable metrics here.
AlignFixedAndStickyLayers(aLayer, aLayer, metrics.GetScrollId(), oldTransform,
transformWithoutOverscrollOrOmta, fixedLayerMargins);
}
if (hasAsyncTransform) {
if (asyncClip) {
aLayer->AsLayerComposite()->SetShadowClipRect(asyncClip);
}
// Apply the APZ transform on top of GetLocalTransform() here (rather than
// GetTransform()) in case the OMTA code in SampleAnimations already set a
// shadow transform; in that case we want to apply ours on top of that one
// rather than clobber it.
SetShadowTransform(aLayer,
aLayer->GetLocalTransform() * AdjustForClip(combinedAsyncTransform, aLayer));
// Do the same for the layer's own mask layer, if it has one.
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
SetShadowTransform(maskLayer,
maskLayer->GetLocalTransform() * combinedAsyncTransform);
}
appliedTransform = true;
}
ExpandRootClipRect(aLayer, fixedLayerMargins);
if (aLayer->GetScrollbarDirection() != Layer::NONE) {
ApplyAsyncTransformToScrollbar(aLayer);
}
return appliedTransform;
}
static bool
LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar)
{
AsyncPanZoomController* apzc = aTarget.GetApzc();
if (!apzc) {
return false;
}
const FrameMetrics& metrics = aTarget.Metrics();
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
return false;
}
return !aTarget.IsScrollInfoLayer();
}
static void
ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar,
const LayerMetricsWrapper& aContent,
bool aScrollbarIsDescendant)
{
// We only apply the transform if the scroll-target layer has non-container
// children (i.e. when it has some possibly-visible content). This is to
// avoid moving scroll-bars in the situation that only a scroll information
// layer has been built for a scroll frame, as this would result in a
// disparity between scrollbars and visible content.
if (aContent.IsScrollInfoLayer()) {
return;
}
const FrameMetrics& metrics = aContent.Metrics();
AsyncPanZoomController* apzc = aContent.GetApzc();
Matrix4x4 asyncTransform = apzc->GetCurrentAsyncTransform();
// |asyncTransform| represents the amount by which we have scrolled and
// zoomed since the last paint. Because the scrollbar was sized and positioned based
// on the painted content, we need to adjust it based on asyncTransform so that
// it reflects what the user is actually seeing now.
Matrix4x4 scrollbarTransform;
if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
const ParentLayerCoord asyncScrollY = asyncTransform._42;
const float asyncZoomY = asyncTransform._22;
// The scroll thumb needs to be scaled in the direction of scrolling by the
// inverse of the async zoom. This is because zooming in decreases the
// fraction of the whole srollable rect that is in view.
const float yScale = 1.f / asyncZoomY;
// Note: |metrics.GetZoom()| doesn't yet include the async zoom.
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().yScale * asyncZoomY);
// Here we convert the scrollbar thumb ratio into a true unitless ratio by
// dividing out the conversion factor from the scrollframe's parent's space
// to the scrollframe's space.
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
(metrics.GetPresShellResolution() * asyncZoomY);
// The scroll thumb needs to be translated in opposite direction of the
// async scroll. This is because scrolling down, which translates the layer
// content up, should result in moving the scroll thumb down.
ParentLayerCoord yTranslation = -asyncScrollY * ratio;
// The scroll thumb additionally needs to be translated to compensate for
// the scale applied above. The origin with respect to which the scale is
// applied is the origin of the entire scrollbar, rather than the origin of
// the scroll thumb (meaning, for a vertical scrollbar it's at the top of
// the composition bounds). This means that empty space above the thumb
// is scaled too, effectively translating the thumb. We undo that
// translation here.
// (One can think of the adjustment being done to the translation here as
// a change of basis. We have a method to help with that,
// Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code
// cleaner in this case).
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().y * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * yScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
yTranslation -= thumbOriginDeltaPL;
if (metrics.IsRootContent()) {
// Scrollbar for the root are painted at the same resolution as the
// content. Since the coordinate space we apply this transform in includes
// the resolution, we need to adjust for it as well here. Note that in
// another metrics.IsRootContent() hunk below we apply a
// resolution-cancelling transform which ensures the scroll thumb isn't
// actually rendered at a larger scale.
yTranslation *= metrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(1.f, yScale, 1.f);
scrollbarTransform.PostTranslate(0, yTranslation, 0);
}
if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
// See detailed comments under the VERTICAL case.
const ParentLayerCoord asyncScrollX = asyncTransform._41;
const float asyncZoomX = asyncTransform._11;
const float xScale = 1.f / asyncZoomX;
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().xScale * asyncZoomX);
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
(metrics.GetPresShellResolution() * asyncZoomX);
ParentLayerCoord xTranslation = -asyncScrollX * ratio;
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().x * ratio);
const CSSCoord thumbOriginScaled = thumbOrigin * xScale;
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
xTranslation -= thumbOriginDeltaPL;
if (metrics.IsRootContent()) {
xTranslation *= metrics.GetPresShellResolution();
}
scrollbarTransform.PostScale(xScale, 1.f, 1.f);
scrollbarTransform.PostTranslate(xTranslation, 0, 0);
}
Matrix4x4 transform = aScrollbar->GetLocalTransform() * scrollbarTransform;
Matrix4x4 compensation;
// If the scrollbar layer is for the root then the content's resolution
// applies to the scrollbar as well. Since we don't actually want the scroll
// thumb's size to vary with the zoom (other than its length reflecting the
// fraction of the scrollable length that's in view, which is taken care of
// above), we apply a transform to cancel out this resolution.
if (metrics.IsRootContent()) {
compensation =
Matrix4x4::Scaling(metrics.GetPresShellResolution(),
metrics.GetPresShellResolution(),
1.0f).Inverse();
}
// If the scrollbar layer is a child of the content it is a scrollbar for,
// then we need to adjust for any async transform (including an overscroll
// transform) on the content. This needs to be cancelled out because layout
// positions and sizes the scrollbar on the assumption that there is no async
// transform, and without this adjustment the scrollbar will end up in the
// wrong place.
//
// Note that since the async transform is applied on top of the content's
// regular transform, we need to make sure to unapply the async transform in
// the same coordinate space. This requires applying the content transform
// and then unapplying it after unapplying the async transform.
if (aScrollbarIsDescendant) {
Matrix4x4 asyncUntransform = (asyncTransform * apzc->GetOverscrollTransform()).Inverse();
Matrix4x4 contentTransform = aContent.GetTransform();
Matrix4x4 contentUntransform = contentTransform.Inverse();
Matrix4x4 asyncCompensation = contentTransform
* asyncUntransform
* contentUntransform;
compensation = compensation * asyncCompensation;
// We also need to make a corresponding change on the clip rect of all the
// layers on the ancestor chain from the scrollbar layer up to but not
// including the layer with the async transform. Otherwise the scrollbar
// shifts but gets clipped and so appears to flicker.
for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) {
TransformClipRect(ancestor, ViewAs<ParentLayerToParentLayerMatrix4x4>(asyncCompensation));
}
}
transform = transform * compensation;
SetShadowTransform(aScrollbar, transform);
}
static LayerMetricsWrapper
FindScrolledLayerRecursive(Layer* aScrollbar, const LayerMetricsWrapper& aSubtreeRoot)
{
if (LayerIsScrollbarTarget(aSubtreeRoot, aScrollbar)) {
return aSubtreeRoot;
}
for (LayerMetricsWrapper child = aSubtreeRoot.GetFirstChild();
child;
child = child.GetNextSibling())
{
// Do not recurse into RefLayers, since our initial aSubtreeRoot is the
// root (or RefLayer root) of a single layer space to search.
if (child.AsRefLayer()) {
continue;
}
LayerMetricsWrapper target = FindScrolledLayerRecursive(aScrollbar, child);
if (target) {
return target;
}
}
return LayerMetricsWrapper();
}
static LayerMetricsWrapper
FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor)
{
// First check if the scrolled layer is an ancestor of the scrollbar layer.
LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot());
LayerMetricsWrapper prevAncestor(aScrollbar);
for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) {
// Don't walk into remote layer trees; the scrollbar will always be in
// the same layer space.
if (ancestor.AsRefLayer()) {
root = prevAncestor;
break;
}
prevAncestor = ancestor;
if (LayerIsScrollbarTarget(ancestor, aScrollbar)) {
*aOutIsAncestor = true;
return ancestor;
}
}
// Search the entire layer space of the scrollbar.
return FindScrolledLayerRecursive(aScrollbar, root);
}
void
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer)
{
// If this layer corresponds to a scrollbar, then there should be a layer that
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
// That is the content that this scrollbar is for. We pick up the transient
// async transform from that layer and use it to update the scrollbar position.
// Note that it is possible that the content layer is no longer there; in
// this case we don't need to do anything because there can't be an async
// transform on the content.
bool isAncestor = false;
const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
if (scrollTarget) {
ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor);
}
}
void
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
{
FrameMetrics metrics = LayerMetricsWrapper::TopmostScrollableMetrics(aLayer);
if (!metrics.IsScrollable()) {
// On Fennec it's possible that the there is no scrollable layer in the
// tree, and this function just gets called with the root layer. In that
// case TopmostScrollableMetrics will return an empty FrameMetrics but we
// still want to use the actual non-scrollable metrics from the layer.
metrics = LayerMetricsWrapper::BottommostMetrics(aLayer);
}
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
Matrix4x4 oldTransform = aLayer->GetTransform();
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
if (mIsFirstPaint) {
mContentRect = metrics.GetScrollableRect();
SetFirstPaintViewport(scrollOffsetLayerPixels,
geckoZoom,
mContentRect);
mIsFirstPaint = false;
} else if (!metrics.GetScrollableRect().IsEqualEdges(mContentRect)) {
mContentRect = metrics.GetScrollableRect();
SetPageRect(mContentRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
LayerIntRect displayPort = RoundedToInt(
(metrics.GetCriticalDisplayPort().IsEmpty()
? metrics.GetDisplayPort()
: metrics.GetCriticalDisplayPort()
) * geckoZoom);
displayPort += scrollOffsetLayerPixels;
ScreenMargin fixedLayerMargins(0, 0, 0, 0);
// Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
// but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
// appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
// however, we can assume there is no async zooming in progress and so the following statement
// works fine.
CSSToParentLayerScale userZoom(metrics.GetDevPixelsPerCSSPixel()
// This function only applies to the root scrollable frame,
// for which we can assume that x and y scales are equal.
* metrics.GetCumulativeResolution().ToScaleFactor()
* LayerToParentLayerScale(1));
ParentLayerRect userRect(metrics.GetScrollOffset() * userZoom,
metrics.GetCompositionBounds().Size());
SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated, mPaintSyncId,
userRect, userZoom, fixedLayerMargins);
mLayersUpdated = false;
mPaintSyncId = 0;
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the user zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
ParentLayerPoint geckoScroll(0, 0);
if (metrics.IsScrollable()) {
geckoScroll = metrics.GetScrollOffset() * userZoom;
}
LayerToParentLayerScale asyncZoom = userZoom / metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
ParentLayerPoint translation = userRect.TopLeft() - geckoScroll;
Matrix4x4 treeTransform = ViewTransform(asyncZoom, -translation);
// Apply the tree transform on top of GetLocalTransform() here (rather than
// GetTransform()) in case the OMTA code in SampleAnimations already set a
// shadow transform; in that case we want to apply ours on top of that one
// rather than clobber it.
SetShadowTransform(aLayer, aLayer->GetLocalTransform() * treeTransform);
// Make sure that overscroll and under-zoom are represented in the old
// transform so that fixed position content moves and scales accordingly.
// These calculations will effectively scale and offset fixed position layers
// in screen space when the compensatory transform is performed in
// AlignFixedAndStickyLayers.
ParentLayerRect contentScreenRect = mContentRect * userZoom;
Point3D overscrollTranslation;
if (userRect.x < contentScreenRect.x) {
overscrollTranslation.x = contentScreenRect.x - userRect.x;
} else if (userRect.XMost() > contentScreenRect.XMost()) {
overscrollTranslation.x = contentScreenRect.XMost() - userRect.XMost();
}
if (userRect.y < contentScreenRect.y) {
overscrollTranslation.y = contentScreenRect.y - userRect.y;
} else if (userRect.YMost() > contentScreenRect.YMost()) {
overscrollTranslation.y = contentScreenRect.YMost() - userRect.YMost();
}
oldTransform.PreTranslate(overscrollTranslation.x,
overscrollTranslation.y,
overscrollTranslation.z);
gfx::Size underZoomScale(1.0f, 1.0f);
if (mContentRect.width * userZoom.scale < metrics.GetCompositionBounds().width) {
underZoomScale.width = (mContentRect.width * userZoom.scale) /
metrics.GetCompositionBounds().width;
}
if (mContentRect.height * userZoom.scale < metrics.GetCompositionBounds().height) {
underZoomScale.height = (mContentRect.height * userZoom.scale) /
metrics.GetCompositionBounds().height;
}
oldTransform.PreScale(underZoomScale.width, underZoomScale.height, 1);
// Make sure fixed position layers don't move away from their anchor points
// when we're asynchronously panning or zooming
AlignFixedAndStickyLayers(aLayer, aLayer, metrics.GetScrollId(), oldTransform,
aLayer->GetLocalTransform(), fixedLayerMargins);
ExpandRootClipRect(aLayer, fixedLayerMargins);
}
void
AsyncCompositionManager::GetFrameUniformity(FrameUniformityData* aOutData)
{
MOZ_ASSERT(CompositorParent::IsInCompositorThread());
mLayerTransformRecorder.EndTest(aOutData);
}
bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame,
TransformsToSkip aSkip)
{
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
js::ProfileEntry::Category::GRAPHICS);
Layer* root = mLayerManager->GetRoot();
if (!root) {
return false;
}
// First, compute and set the shadow transforms from OMT animations.
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
bool wantNextFrame = SampleAnimations(root, aCurrentFrame);
if (!(aSkip & TransformsToSkip::APZ)) {
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
wantNextFrame |= SampleAPZAnimations(LayerMetricsWrapper(root), aCurrentFrame);
bool foundRoot = false;
if (ApplyAsyncContentTransformToTree(root, &foundRoot)) {
#if defined(MOZ_ANDROID_APZ)
MOZ_ASSERT(foundRoot);
if (foundRoot && mFixedLayerMargins != ScreenMargin()) {
MoveScrollbarForLayerMargin(root, mRootScrollableId, mFixedLayerMargins);
}
#endif
} else {
nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
mLayerManager->GetRootScrollableLayers(scrollableLayers);
#else
mLayerManager->GetScrollableLayers(scrollableLayers);
#endif
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
if (scrollableLayers[i]) {
TransformScrollableLayer(scrollableLayers[i]);
}
}
}
}
LayerComposite* rootComposite = root->AsLayerComposite();
gfx::Matrix4x4 trans = rootComposite->GetShadowTransform();
trans *= gfx::Matrix4x4::From2D(mWorldTransform);
rootComposite->SetShadowTransform(trans);
if (gfxPrefs::CollectScrollTransforms()) {
RecordShadowTransforms(root);
}
return wantNextFrame;
}
void
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
const CSSToLayerScale& aZoom,
const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
#endif
}
void
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
const CSSToLayerScale& aDisplayResolution,
bool aLayersUpdated,
int32_t aPaintSyncId,
ParentLayerRect& aScrollRect,
CSSToParentLayerScale& aScale,
ScreenMargin& aFixedLayerMargins)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
aDisplayResolution,
aLayersUpdated,
aPaintSyncId,
aScrollRect,
aScale,
aFixedLayerMargins);
#endif
}
void
AsyncCompositionManager::SyncFrameMetrics(const ParentLayerPoint& aScrollOffset,
const CSSToParentLayerScale& aZoom,
const CSSRect& aCssPageRect,
const CSSRect& aDisplayPort,
const CSSToLayerScale& aPaintedResolution,
bool aLayersUpdated,
int32_t aPaintSyncId,
ScreenMargin& aFixedLayerMargins)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
aDisplayPort, aPaintedResolution,
aLayersUpdated, aPaintSyncId,
aFixedLayerMargins);
#endif
}
} // namespace layers
} // namespace mozilla