Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

3156 lines
77 KiB
C

/*
** This file is in the public domain, so clarified as of
** 2006-07-17 by Arthur David Olson.
*/
/* Enable extensions and modifications for ICU. */
#define ICU
/* Continue executing after link failure. Even if ICU is undefined
* (for vanilla zic behavior), ICU_LINKS should be defined, since zic
* appears to fail on the 2003 data the first time through during the
* linking phase. Running zic twice, with ICU_LINKS defined, causes
* links to be handled correctly. */
#define ICU_LINKS
#define LEAVE_SOME_PRE_2011_SYSTEMS_IN_THE_LURCH
#ifdef ICU
/* These constants are embedded in dynamically generated header
* version.h in the standard tzcode distribution. */
static char const PKGVERSION[]="N/A";
static char const TZVERSION[]="N/A";
static char const REPORT_BUGS_TO[]="N/A";
#else
#include "version.h"
#endif
#include "private.h"
#include "locale.h"
#include "tzfile.h"
#include <stdarg.h>
#define ZIC_VERSION_PRE_2013 '2'
#define ZIC_VERSION '3'
typedef int_fast64_t zic_t;
#define ZIC_MIN INT_FAST64_MIN
#define ZIC_MAX INT_FAST64_MAX
#define SCNdZIC SCNdFAST64
#ifndef ZIC_MAX_ABBR_LEN_WO_WARN
#define ZIC_MAX_ABBR_LEN_WO_WARN 6
#endif /* !defined ZIC_MAX_ABBR_LEN_WO_WARN */
#if HAVE_SYS_STAT_H
#include "sys/stat.h"
#endif
#ifdef S_IRUSR
#define MKDIR_UMASK (S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
#else
#define MKDIR_UMASK 0755
#endif
#ifdef ICU
#include "tz2icu.h"
#endif
/*
** On some ancient hosts, predicates like `isspace(C)' are defined
** only if isascii(C) || C == EOF. Modern hosts obey the C Standard,
** which says they are defined only if C == ((unsigned char) C) || C == EOF.
** Neither the C Standard nor Posix require that `isascii' exist.
** For portability, we check both ancient and modern requirements.
** If isascii is not defined, the isascii check succeeds trivially.
*/
#include "ctype.h"
#ifndef isascii
#define isascii(x) 1
#endif
#define end(cp) (strchr((cp), '\0'))
struct rule {
const char * r_filename;
int r_linenum;
const char * r_name;
zic_t r_loyear; /* for example, 1986 */
zic_t r_hiyear; /* for example, 1986 */
const char * r_yrtype;
int r_lowasnum;
int r_hiwasnum;
int r_month; /* 0..11 */
int r_dycode; /* see below */
int r_dayofmonth;
int r_wday;
zic_t r_tod; /* time from midnight */
int r_todisstd; /* above is standard time if TRUE */
/* or wall clock time if FALSE */
int r_todisgmt; /* above is GMT if TRUE */
/* or local time if FALSE */
zic_t r_stdoff; /* offset from standard time */
const char * r_abbrvar; /* variable part of abbreviation */
int r_todo; /* a rule to do (used in outzone) */
zic_t r_temp; /* used in outzone */
};
/*
** r_dycode r_dayofmonth r_wday
*/
#define DC_DOM 0 /* 1..31 */ /* unused */
#define DC_DOWGEQ 1 /* 1..31 */ /* 0..6 (Sun..Sat) */
#define DC_DOWLEQ 2 /* 1..31 */ /* 0..6 (Sun..Sat) */
struct zone {
const char * z_filename;
int z_linenum;
const char * z_name;
zic_t z_gmtoff;
const char * z_rule;
const char * z_format;
zic_t z_stdoff;
struct rule * z_rules;
int z_nrules;
struct rule z_untilrule;
zic_t z_untiltime;
};
extern int getopt(int argc, char * const argv[],
const char * options);
extern int link(const char * fromname, const char * toname);
extern char * optarg;
extern int optind;
#if ! HAVE_LINK
# define link(from, to) (-1)
#endif
#if ! HAVE_SYMLINK
# define symlink(from, to) (-1)
#endif
static void addtt(zic_t starttime, int type);
#ifdef ICU
static int addtype(const zic_t gmtoff, const zic_t rawoff, const zic_t dstoff,
char *const abbr, int isdst,
int ttisstd, int ttisgmt);
#else
static int addtype(zic_t gmtoff, const char * abbr, int isdst,
int ttisstd, int ttisgmt);
#endif
static void leapadd(zic_t t, int positive, int rolling, int count);
static void adjleap(void);
static void associate(void);
static void dolink(const char * fromfield, const char * tofield);
static char ** getfields(char * buf);
static zic_t gethms(const char * string, const char * errstrng,
int signable);
static void infile(const char * filename);
static void inleap(char ** fields, int nfields);
static void inlink(char ** fields, int nfields);
static void inrule(char ** fields, int nfields);
static int inzcont(char ** fields, int nfields);
static int inzone(char ** fields, int nfields);
static int inzsub(char ** fields, int nfields, int iscont);
static int itsdir(const char * name);
static int lowerit(int c);
static int mkdirs(char * filename);
static void newabbr(const char * abbr);
static zic_t oadd(zic_t t1, zic_t t2);
static void outzone(const struct zone * zp, int ntzones);
static zic_t rpytime(const struct rule * rp, zic_t wantedy);
static void rulesub(struct rule * rp,
const char * loyearp, const char * hiyearp,
const char * typep, const char * monthp,
const char * dayp, const char * timep);
static zic_t tadd(zic_t t1, zic_t t2);
static int yearistype(int year, const char * type);
#ifdef ICU
static void emit_icu_zone(FILE* f, const char* zoneName, int zoneOffset,
const struct rule* rule,
int ruleIndex, int startYear);
static void emit_icu_link(FILE* f, const char* from, const char* to);
static void emit_icu_rule(FILE* f, const struct rule* r, int ruleIndex);
static int add_icu_final_rules(const struct rule* r1, const struct rule* r2);
#endif
static int charcnt;
static int errors;
static const char * filename;
static int leapcnt;
static int leapseen;
static zic_t leapminyear;
static zic_t leapmaxyear;
static int linenum;
static int max_abbrvar_len;
static int max_format_len;
static zic_t max_year;
static zic_t min_year;
static int noise;
static const char * rfilename;
static int rlinenum;
static const char * progname;
static int timecnt;
static int timecnt_alloc;
static int typecnt;
/*
** Line codes.
*/
#define LC_RULE 0
#define LC_ZONE 1
#define LC_LINK 2
#define LC_LEAP 3
/*
** Which fields are which on a Zone line.
*/
#define ZF_NAME 1
#define ZF_GMTOFF 2
#define ZF_RULE 3
#define ZF_FORMAT 4
#define ZF_TILYEAR 5
#define ZF_TILMONTH 6
#define ZF_TILDAY 7
#define ZF_TILTIME 8
#define ZONE_MINFIELDS 5
#define ZONE_MAXFIELDS 9
/*
** Which fields are which on a Zone continuation line.
*/
#define ZFC_GMTOFF 0
#define ZFC_RULE 1
#define ZFC_FORMAT 2
#define ZFC_TILYEAR 3
#define ZFC_TILMONTH 4
#define ZFC_TILDAY 5
#define ZFC_TILTIME 6
#define ZONEC_MINFIELDS 3
#define ZONEC_MAXFIELDS 7
/*
** Which files are which on a Rule line.
*/
#define RF_NAME 1
#define RF_LOYEAR 2
#define RF_HIYEAR 3
#define RF_COMMAND 4
#define RF_MONTH 5
#define RF_DAY 6
#define RF_TOD 7
#define RF_STDOFF 8
#define RF_ABBRVAR 9
#define RULE_FIELDS 10
/*
** Which fields are which on a Link line.
*/
#define LF_FROM 1
#define LF_TO 2
#define LINK_FIELDS 3
/*
** Which fields are which on a Leap line.
*/
#define LP_YEAR 1
#define LP_MONTH 2
#define LP_DAY 3
#define LP_TIME 4
#define LP_CORR 5
#define LP_ROLL 6
#define LEAP_FIELDS 7
/*
** Year synonyms.
*/
#define YR_MINIMUM 0
#define YR_MAXIMUM 1
#define YR_ONLY 2
static struct rule * rules;
static int nrules; /* number of rules */
static int nrules_alloc;
static struct zone * zones;
static int nzones; /* number of zones */
static int nzones_alloc;
struct link {
const char * l_filename;
int l_linenum;
const char * l_from;
const char * l_to;
};
static struct link * links;
static int nlinks;
static int nlinks_alloc;
struct lookup {
const char * l_word;
const int l_value;
};
#ifdef ICU
/* Indices into rules[] for final rules. They will occur in pairs,
* with finalRules[i] occurring before finalRules[i+1] in the year.
* Each zone need only store a start year, a standard offset, and an
* index into finalRules[]. FinalRules[] are aliases into rules[]. */
static const struct rule ** finalRules = NULL;
static int finalRulesCount = 0;
#endif
static struct lookup const * byword(const char * string,
const struct lookup * lp);
static struct lookup const line_codes[] = {
{ "Rule", LC_RULE },
{ "Zone", LC_ZONE },
{ "Link", LC_LINK },
{ "Leap", LC_LEAP },
{ NULL, 0}
};
static struct lookup const mon_names[] = {
{ "January", TM_JANUARY },
{ "February", TM_FEBRUARY },
{ "March", TM_MARCH },
{ "April", TM_APRIL },
{ "May", TM_MAY },
{ "June", TM_JUNE },
{ "July", TM_JULY },
{ "August", TM_AUGUST },
{ "September", TM_SEPTEMBER },
{ "October", TM_OCTOBER },
{ "November", TM_NOVEMBER },
{ "December", TM_DECEMBER },
{ NULL, 0 }
};
static struct lookup const wday_names[] = {
{ "Sunday", TM_SUNDAY },
{ "Monday", TM_MONDAY },
{ "Tuesday", TM_TUESDAY },
{ "Wednesday", TM_WEDNESDAY },
{ "Thursday", TM_THURSDAY },
{ "Friday", TM_FRIDAY },
{ "Saturday", TM_SATURDAY },
{ NULL, 0 }
};
static struct lookup const lasts[] = {
{ "last-Sunday", TM_SUNDAY },
{ "last-Monday", TM_MONDAY },
{ "last-Tuesday", TM_TUESDAY },
{ "last-Wednesday", TM_WEDNESDAY },
{ "last-Thursday", TM_THURSDAY },
{ "last-Friday", TM_FRIDAY },
{ "last-Saturday", TM_SATURDAY },
{ NULL, 0 }
};
static struct lookup const begin_years[] = {
{ "minimum", YR_MINIMUM },
{ "maximum", YR_MAXIMUM },
{ NULL, 0 }
};
static struct lookup const end_years[] = {
{ "minimum", YR_MINIMUM },
{ "maximum", YR_MAXIMUM },
{ "only", YR_ONLY },
{ NULL, 0 }
};
static struct lookup const leap_types[] = {
{ "Rolling", TRUE },
{ "Stationary", FALSE },
{ NULL, 0 }
};
static const int len_months[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
static const int len_years[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
static struct attype {
zic_t at;
unsigned char type;
} * attypes;
static zic_t gmtoffs[TZ_MAX_TYPES];
#ifdef ICU
/* gmtoffs[i] = rawoffs[i] + dstoffs[i] */
static zic_t rawoffs[TZ_MAX_TYPES];
static zic_t dstoffs[TZ_MAX_TYPES];
#endif
static char isdsts[TZ_MAX_TYPES];
static unsigned char abbrinds[TZ_MAX_TYPES];
static char ttisstds[TZ_MAX_TYPES];
static char ttisgmts[TZ_MAX_TYPES];
static char chars[TZ_MAX_CHARS];
static zic_t trans[TZ_MAX_LEAPS];
static zic_t corr[TZ_MAX_LEAPS];
static char roll[TZ_MAX_LEAPS];
/*
** Memory allocation.
*/
static _Noreturn void
memory_exhausted(const char *msg)
{
fprintf(stderr, _("%s: Memory exhausted: %s\n"), progname, msg);
exit(EXIT_FAILURE);
}
static ATTRIBUTE_PURE size_t
size_product(size_t nitems, size_t itemsize)
{
if (SIZE_MAX / itemsize < nitems)
memory_exhausted("size overflow");
return nitems * itemsize;
}
static ATTRIBUTE_PURE void *
memcheck(void *const ptr)
{
if (ptr == NULL)
memory_exhausted(strerror(errno));
return ptr;
}
#define emalloc(size) memcheck(malloc(size))
#define erealloc(ptr, size) memcheck(realloc(ptr, size))
#define ecpyalloc(ptr) memcheck(icpyalloc(ptr))
#define ecatalloc(oldp, newp) memcheck(icatalloc((oldp), (newp)))
static void *
growalloc(void *ptr, size_t itemsize, int nitems, int *nitems_alloc)
{
if (nitems < *nitems_alloc)
return ptr;
else {
int amax = INT_MAX < SIZE_MAX ? INT_MAX : SIZE_MAX;
if ((amax - 1) / 3 * 2 < *nitems_alloc)
memory_exhausted("int overflow");
*nitems_alloc = *nitems_alloc + (*nitems_alloc >> 1) + 1;
return erealloc(ptr, size_product(*nitems_alloc, itemsize));
}
}
/*
** Error handling.
*/
static void
eats(const char *const name, const int num, const char *const rname,
const int rnum)
{
filename = name;
linenum = num;
rfilename = rname;
rlinenum = rnum;
}
static void
eat(const char *const name, const int num)
{
eats(name, num, NULL, -1);
}
static void ATTRIBUTE_FORMAT((printf, 1, 0))
verror(const char *const string, va_list args)
{
/*
** Match the format of "cc" to allow sh users to
** zic ... 2>&1 | error -t "*" -v
** on BSD systems.
*/
fprintf(stderr, _("\"%s\", line %d: "), filename, linenum);
vfprintf(stderr, string, args);
if (rfilename != NULL)
(void) fprintf(stderr, _(" (rule from \"%s\", line %d)"),
rfilename, rlinenum);
(void) fprintf(stderr, "\n");
++errors;
}
static void ATTRIBUTE_FORMAT((printf, 1, 2))
error(const char *const string, ...)
{
va_list args;
va_start(args, string);
verror(string, args);
va_end(args);
}
static void ATTRIBUTE_FORMAT((printf, 1, 2))
warning(const char *const string, ...)
{
va_list args;
fprintf(stderr, _("warning: "));
va_start(args, string);
verror(string, args);
va_end(args);
--errors;
}
static _Noreturn void
usage(FILE *stream, int status)
{
(void) fprintf(stream, _("%s: usage is %s \
[ --version ] [ --help ] [ -v ] [ -l localtime ] [ -p posixrules ] \\\n\
\t[ -d directory ] [ -L leapseconds ] [ -y yearistype ] [ filename ... ]\n\
\n\
Report bugs to %s.\n"),
progname, progname, REPORT_BUGS_TO);
exit(status);
}
#ifdef ICU
/* File into which we will write supplemental ICU data. */
static FILE * icuFile;
static void
emit_icu_zone(FILE* f, const char* zoneName, int zoneOffset,
const struct rule* rule,
int ruleIndex, int startYear) {
/* machine-readable section */
fprintf(f, "zone %s %d %d %s", zoneName, zoneOffset, startYear, rule->r_name);
/* human-readable section */
fprintf(f, " # zone %s, offset %d, year >= %d, rule %s (%d)\n",
zoneName, zoneOffset, startYear,
rule->r_name, ruleIndex);
}
static void
emit_icu_link(FILE* f, const char* from, const char* to) {
/* machine-readable section */
fprintf(f, "link %s %s\n", from, to);
}
static const char* DYCODE[] = {"DOM", "DOWGEQ", "DOWLEQ"};
static void
emit_icu_rule(FILE* f, const struct rule* r, int ruleIndex) {
if (r->r_yrtype != NULL) {
warning("year types not supported by ICU");
fprintf(stderr, "rule %s, file %s, line %d\n",
r->r_name, r->r_filename, r->r_linenum);
}
/* machine-readable section */
fprintf(f, "rule %s %s %d %d %d %lld %d %d %lld",
r->r_name, DYCODE[r->r_dycode],
r->r_month, r->r_dayofmonth,
(r->r_dycode == DC_DOM ? -1 : r->r_wday),
r->r_tod, r->r_todisstd, r->r_todisgmt, r->r_stdoff
);
/* human-readable section */
fprintf(f, " # %d: %s, file %s, line %d",
ruleIndex, r->r_name, r->r_filename, r->r_linenum);
fprintf(f, ", mode %s", DYCODE[r->r_dycode]);
fprintf(f, ", %s, dom %d", mon_names[r->r_month].l_word, r->r_dayofmonth);
if (r->r_dycode != DC_DOM) {
fprintf(f, ", %s", wday_names[r->r_wday].l_word);
}
fprintf(f, ", time %lld", r->r_tod);
fprintf(f, ", isstd %d", r->r_todisstd);
fprintf(f, ", isgmt %d", r->r_todisgmt);
fprintf(f, ", offset %lld", r->r_stdoff);
fprintf(f, "\n");
}
static int
add_icu_final_rules(const struct rule* r1, const struct rule* r2) {
int i;
for (i=0; i<finalRulesCount; ++i) { /* i+=2 should work too */
if (r1==finalRules[i]) return i; /* [sic] pointer comparison */
}
finalRules = (const struct rule**) (void*) erealloc((char *) finalRules,
(finalRulesCount + 2) * sizeof(*finalRules));
finalRules[finalRulesCount++] = r1;
finalRules[finalRulesCount++] = r2;
return finalRulesCount - 2;
}
#endif
static const char * psxrules;
static const char * lcltime;
static const char * directory;
static const char * leapsec;
static const char * yitcommand;
int
main(int argc, char **argv)
{
register int i;
register int j;
register int c;
#ifdef S_IWGRP
(void) umask(umask(S_IWGRP | S_IWOTH) | (S_IWGRP | S_IWOTH));
#endif
#if HAVE_GETTEXT
(void) setlocale(LC_ALL, "");
#ifdef TZ_DOMAINDIR
(void) bindtextdomain(TZ_DOMAIN, TZ_DOMAINDIR);
#endif /* defined TEXTDOMAINDIR */
(void) textdomain(TZ_DOMAIN);
#endif /* HAVE_GETTEXT */
progname = argv[0];
if (TYPE_BIT(zic_t) < 64) {
(void) fprintf(stderr, "%s: %s\n", progname,
_("wild compilation-time specification of zic_t"));
exit(EXIT_FAILURE);
}
for (i = 1; i < argc; ++i)
if (strcmp(argv[i], "--version") == 0) {
(void) printf("zic %s%s\n", PKGVERSION, TZVERSION);
exit(EXIT_SUCCESS);
} else if (strcmp(argv[i], "--help") == 0) {
usage(stdout, EXIT_SUCCESS);
}
while ((c = getopt(argc, argv, "d:l:p:L:vsy:")) != EOF && c != -1)
switch (c) {
default:
usage(stderr, EXIT_FAILURE);
case 'd':
if (directory == NULL)
directory = optarg;
else {
(void) fprintf(stderr,
_("%s: More than one -d option specified\n"),
progname);
exit(EXIT_FAILURE);
}
break;
case 'l':
if (lcltime == NULL)
lcltime = optarg;
else {
(void) fprintf(stderr,
_("%s: More than one -l option specified\n"),
progname);
exit(EXIT_FAILURE);
}
break;
case 'p':
if (psxrules == NULL)
psxrules = optarg;
else {
(void) fprintf(stderr,
_("%s: More than one -p option specified\n"),
progname);
exit(EXIT_FAILURE);
}
break;
case 'y':
if (yitcommand == NULL)
yitcommand = optarg;
else {
(void) fprintf(stderr,
_("%s: More than one -y option specified\n"),
progname);
exit(EXIT_FAILURE);
}
break;
case 'L':
if (leapsec == NULL)
leapsec = optarg;
else {
(void) fprintf(stderr,
_("%s: More than one -L option specified\n"),
progname);
exit(EXIT_FAILURE);
}
break;
case 'v':
noise = TRUE;
break;
case 's':
(void) printf("%s: -s ignored\n", progname);
break;
}
if (optind == argc - 1 && strcmp(argv[optind], "=") == 0)
usage(stderr, EXIT_FAILURE); /* usage message by request */
if (directory == NULL)
directory = TZDIR;
if (yitcommand == NULL)
yitcommand = "yearistype";
if (optind < argc && leapsec != NULL) {
infile(leapsec);
adjleap();
}
#ifdef ICU
if ((icuFile = fopen(ICU_ZONE_FILE, "w")) == NULL) {
const char *e = strerror(errno);
(void) fprintf(stderr, _("%s: Can't open %s: %s\n"),
progname, ICU_ZONE_FILE, e);
(void) exit(EXIT_FAILURE);
}
#endif
for (i = optind; i < argc; ++i)
infile(argv[i]);
if (errors)
exit(EXIT_FAILURE);
associate();
for (i = 0; i < nzones; i = j) {
/*
** Find the next non-continuation zone entry.
*/
for (j = i + 1; j < nzones && zones[j].z_name == NULL; ++j)
continue;
outzone(&zones[i], j - i);
}
/*
** Make links.
*/
for (i = 0; i < nlinks; ++i) {
eat(links[i].l_filename, links[i].l_linenum);
dolink(links[i].l_from, links[i].l_to);
#ifdef ICU
emit_icu_link(icuFile, links[i].l_from, links[i].l_to);
#endif
if (noise)
for (j = 0; j < nlinks; ++j)
if (strcmp(links[i].l_to,
links[j].l_from) == 0)
warning(_("link to link"));
}
if (lcltime != NULL) {
eat("command line", 1);
dolink(lcltime, TZDEFAULT);
}
if (psxrules != NULL) {
eat("command line", 1);
dolink(psxrules, TZDEFRULES);
}
#ifdef ICU
for (i=0; i<finalRulesCount; ++i) {
emit_icu_rule(icuFile, finalRules[i], i);
}
#endif /*ICU*/
return (errors == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}
static void
dolink(const char *const fromfield, const char *const tofield)
{
register char * fromname;
register char * toname;
if (fromfield[0] == '/')
fromname = ecpyalloc(fromfield);
else {
fromname = ecpyalloc(directory);
fromname = ecatalloc(fromname, "/");
fromname = ecatalloc(fromname, fromfield);
}
if (tofield[0] == '/')
toname = ecpyalloc(tofield);
else {
toname = ecpyalloc(directory);
toname = ecatalloc(toname, "/");
toname = ecatalloc(toname, tofield);
}
/*
** We get to be careful here since
** there's a fair chance of root running us.
*/
if (!itsdir(toname))
(void) remove(toname);
if (link(fromname, toname) != 0
&& access(fromname, F_OK) == 0 && !itsdir(fromname)) {
int result;
if (mkdirs(toname) != 0)
exit(EXIT_FAILURE);
result = link(fromname, toname);
if (result != 0) {
const char *s = fromfield;
const char *t;
register char * symlinkcontents = NULL;
do
t = s;
while ((s = strchr(s, '/'))
&& ! strncmp (fromfield, tofield,
++s - fromfield));
for (s = tofield + (t - fromfield);
(s = strchr(s, '/'));
s++)
symlinkcontents =
ecatalloc(symlinkcontents,
"../");
symlinkcontents = ecatalloc(symlinkcontents, t);
result = symlink(symlinkcontents, toname);
if (result == 0)
warning(_("hard link failed, symbolic link used"));
free(symlinkcontents);
}
if (result != 0) {
FILE *fp, *tp;
int c;
fp = fopen(fromname, "rb");
if (!fp) {
const char *e = strerror(errno);
(void) fprintf(stderr,
_("%s: Can't read %s: %s\n"),
progname, fromname, e);
exit(EXIT_FAILURE);
}
tp = fopen(toname, "wb");
if (!tp) {
const char *e = strerror(errno);
(void) fprintf(stderr,
_("%s: Can't create %s: %s\n"),
progname, toname, e);
exit(EXIT_FAILURE);
}
while ((c = getc(fp)) != EOF)
putc(c, tp);
if (ferror(fp) || fclose(fp)) {
(void) fprintf(stderr,
_("%s: Error reading %s\n"),
progname, fromname);
exit(EXIT_FAILURE);
}
if (ferror(tp) || fclose(tp)) {
(void) fprintf(stderr,
_("%s: Error writing %s\n"),
progname, toname);
exit(EXIT_FAILURE);
}
warning(_("link failed, copy used"));
#ifndef ICU_LINKS
exit(EXIT_FAILURE);
#endif
}
}
free(fromname);
free(toname);
}
#define TIME_T_BITS_IN_FILE 64
static const zic_t min_time = (zic_t) -1 << (TIME_T_BITS_IN_FILE - 1);
static const zic_t max_time = -1 - ((zic_t) -1 << (TIME_T_BITS_IN_FILE - 1));
static int
itsdir(const char *const name)
{
register char * myname;
register int accres;
myname = ecpyalloc(name);
myname = ecatalloc(myname, "/.");
accres = access(myname, F_OK);
free(myname);
return accres == 0;
}
/*
** Associate sets of rules with zones.
*/
/*
** Sort by rule name.
*/
static int
rcomp(const void *cp1, const void *cp2)
{
return strcmp(((const struct rule *) cp1)->r_name,
((const struct rule *) cp2)->r_name);
}
static void
associate(void)
{
register struct zone * zp;
register struct rule * rp;
register int base, out;
register int i, j;
if (nrules != 0) {
(void) qsort(rules, nrules, sizeof *rules, rcomp);
for (i = 0; i < nrules - 1; ++i) {
if (strcmp(rules[i].r_name,
rules[i + 1].r_name) != 0)
continue;
if (strcmp(rules[i].r_filename,
rules[i + 1].r_filename) == 0)
continue;
eat(rules[i].r_filename, rules[i].r_linenum);
warning(_("same rule name in multiple files"));
eat(rules[i + 1].r_filename, rules[i + 1].r_linenum);
warning(_("same rule name in multiple files"));
for (j = i + 2; j < nrules; ++j) {
if (strcmp(rules[i].r_name,
rules[j].r_name) != 0)
break;
if (strcmp(rules[i].r_filename,
rules[j].r_filename) == 0)
continue;
if (strcmp(rules[i + 1].r_filename,
rules[j].r_filename) == 0)
continue;
break;
}
i = j - 1;
}
}
for (i = 0; i < nzones; ++i) {
zp = &zones[i];
zp->z_rules = NULL;
zp->z_nrules = 0;
}
for (base = 0; base < nrules; base = out) {
rp = &rules[base];
for (out = base + 1; out < nrules; ++out)
if (strcmp(rp->r_name, rules[out].r_name) != 0)
break;
for (i = 0; i < nzones; ++i) {
zp = &zones[i];
if (strcmp(zp->z_rule, rp->r_name) != 0)
continue;
zp->z_rules = rp;
zp->z_nrules = out - base;
}
}
for (i = 0; i < nzones; ++i) {
zp = &zones[i];
if (zp->z_nrules == 0) {
/*
** Maybe we have a local standard time offset.
*/
eat(zp->z_filename, zp->z_linenum);
zp->z_stdoff = gethms(zp->z_rule, _("unruly zone"),
TRUE);
/*
** Note, though, that if there's no rule,
** a '%s' in the format is a bad thing.
*/
if (strchr(zp->z_format, '%') != 0)
error("%s", _("%s in ruleless zone"));
}
}
if (errors)
exit(EXIT_FAILURE);
}
static void
infile(const char *name)
{
register FILE * fp;
register char ** fields;
register char * cp;
register const struct lookup * lp;
register int nfields;
register int wantcont;
register int num;
char buf[BUFSIZ];
if (strcmp(name, "-") == 0) {
name = _("standard input");
fp = stdin;
} else if ((fp = fopen(name, "r")) == NULL) {
const char *e = strerror(errno);
(void) fprintf(stderr, _("%s: Can't open %s: %s\n"),
progname, name, e);
exit(EXIT_FAILURE);
}
wantcont = FALSE;
for (num = 1; ; ++num) {
eat(name, num);
if (fgets(buf, sizeof buf, fp) != buf)
break;
cp = strchr(buf, '\n');
if (cp == NULL) {
error(_("line too long"));
exit(EXIT_FAILURE);
}
*cp = '\0';
fields = getfields(buf);
nfields = 0;
while (fields[nfields] != NULL) {
static char nada;
if (strcmp(fields[nfields], "-") == 0)
fields[nfields] = &nada;
++nfields;
}
if (nfields == 0) {
/* nothing to do */
} else if (wantcont) {
wantcont = inzcont(fields, nfields);
} else {
lp = byword(fields[0], line_codes);
if (lp == NULL)
error(_("input line of unknown type"));
else switch ((int) (lp->l_value)) {
case LC_RULE:
inrule(fields, nfields);
wantcont = FALSE;
break;
case LC_ZONE:
wantcont = inzone(fields, nfields);
break;
case LC_LINK:
inlink(fields, nfields);
wantcont = FALSE;
break;
case LC_LEAP:
if (name != leapsec)
(void) fprintf(stderr,
_("%s: Leap line in non leap seconds file %s\n"),
progname, name);
else inleap(fields, nfields);
wantcont = FALSE;
break;
default: /* "cannot happen" */
(void) fprintf(stderr,
_("%s: panic: Invalid l_value %d\n"),
progname, lp->l_value);
exit(EXIT_FAILURE);
}
}
free(fields);
}
if (ferror(fp)) {
(void) fprintf(stderr, _("%s: Error reading %s\n"),
progname, filename);
exit(EXIT_FAILURE);
}
if (fp != stdin && fclose(fp)) {
const char *e = strerror(errno);
(void) fprintf(stderr, _("%s: Error closing %s: %s\n"),
progname, filename, e);
exit(EXIT_FAILURE);
}
if (wantcont)
error(_("expected continuation line not found"));
}
/*
** Convert a string of one of the forms
** h -h hh:mm -hh:mm hh:mm:ss -hh:mm:ss
** into a number of seconds.
** A null string maps to zero.
** Call error with errstring and return zero on errors.
*/
static zic_t
gethms(const char *string, const char *const errstring, const int signable)
{
zic_t hh;
int mm, ss, sign;
if (string == NULL || *string == '\0')
return 0;
if (!signable)
sign = 1;
else if (*string == '-') {
sign = -1;
++string;
} else sign = 1;
if (sscanf(string, scheck(string, "%"SCNdZIC), &hh) == 1)
mm = ss = 0;
else if (sscanf(string, scheck(string, "%"SCNdZIC":%d"), &hh, &mm) == 2)
ss = 0;
else if (sscanf(string, scheck(string, "%"SCNdZIC":%d:%d"),
&hh, &mm, &ss) != 3) {
error("%s", errstring);
return 0;
}
if (hh < 0 ||
mm < 0 || mm >= MINSPERHOUR ||
ss < 0 || ss > SECSPERMIN) {
error("%s", errstring);
return 0;
}
if (ZIC_MAX / SECSPERHOUR < hh) {
error(_("time overflow"));
return 0;
}
if (noise && hh == HOURSPERDAY && mm == 0 && ss == 0)
warning(_("24:00 not handled by pre-1998 versions of zic"));
if (noise && (hh > HOURSPERDAY ||
(hh == HOURSPERDAY && (mm != 0 || ss != 0))))
warning(_("values over 24 hours not handled by pre-2007 versions of zic"));
return oadd(sign * hh * SECSPERHOUR,
sign * (mm * SECSPERMIN + ss));
}
static void
inrule(register char **const fields, const int nfields)
{
static struct rule r;
if (nfields != RULE_FIELDS) {
error(_("wrong number of fields on Rule line"));
return;
}
if (*fields[RF_NAME] == '\0') {
error(_("nameless rule"));
return;
}
r.r_filename = filename;
r.r_linenum = linenum;
r.r_stdoff = gethms(fields[RF_STDOFF], _("invalid saved time"), TRUE);
rulesub(&r, fields[RF_LOYEAR], fields[RF_HIYEAR], fields[RF_COMMAND],
fields[RF_MONTH], fields[RF_DAY], fields[RF_TOD]);
r.r_name = ecpyalloc(fields[RF_NAME]);
r.r_abbrvar = ecpyalloc(fields[RF_ABBRVAR]);
if (max_abbrvar_len < strlen(r.r_abbrvar))
max_abbrvar_len = strlen(r.r_abbrvar);
rules = growalloc(rules, sizeof *rules, nrules, &nrules_alloc);
rules[nrules++] = r;
}
static int
inzone(register char **const fields, const int nfields)
{
register int i;
if (nfields < ZONE_MINFIELDS || nfields > ZONE_MAXFIELDS) {
error(_("wrong number of fields on Zone line"));
return FALSE;
}
if (strcmp(fields[ZF_NAME], TZDEFAULT) == 0 && lcltime != NULL) {
error(
_("\"Zone %s\" line and -l option are mutually exclusive"),
TZDEFAULT);
return FALSE;
}
if (strcmp(fields[ZF_NAME], TZDEFRULES) == 0 && psxrules != NULL) {
error(
_("\"Zone %s\" line and -p option are mutually exclusive"),
TZDEFRULES);
return FALSE;
}
for (i = 0; i < nzones; ++i)
if (zones[i].z_name != NULL &&
strcmp(zones[i].z_name, fields[ZF_NAME]) == 0) {
error(
_("duplicate zone name %s (file \"%s\", line %d)"),
fields[ZF_NAME],
zones[i].z_filename,
zones[i].z_linenum);
return FALSE;
}
return inzsub(fields, nfields, FALSE);
}
static int
inzcont(register char **const fields, const int nfields)
{
if (nfields < ZONEC_MINFIELDS || nfields > ZONEC_MAXFIELDS) {
error(_("wrong number of fields on Zone continuation line"));
return FALSE;
}
return inzsub(fields, nfields, TRUE);
}
static int
inzsub(register char **const fields, const int nfields, const int iscont)
{
register char * cp;
static struct zone z;
register int i_gmtoff, i_rule, i_format;
register int i_untilyear, i_untilmonth;
register int i_untilday, i_untiltime;
register int hasuntil;
if (iscont) {
i_gmtoff = ZFC_GMTOFF;
i_rule = ZFC_RULE;
i_format = ZFC_FORMAT;
i_untilyear = ZFC_TILYEAR;
i_untilmonth = ZFC_TILMONTH;
i_untilday = ZFC_TILDAY;
i_untiltime = ZFC_TILTIME;
z.z_name = NULL;
} else {
i_gmtoff = ZF_GMTOFF;
i_rule = ZF_RULE;
i_format = ZF_FORMAT;
i_untilyear = ZF_TILYEAR;
i_untilmonth = ZF_TILMONTH;
i_untilday = ZF_TILDAY;
i_untiltime = ZF_TILTIME;
z.z_name = ecpyalloc(fields[ZF_NAME]);
}
z.z_filename = filename;
z.z_linenum = linenum;
z.z_gmtoff = gethms(fields[i_gmtoff], _("invalid UT offset"), TRUE);
if ((cp = strchr(fields[i_format], '%')) != 0) {
if (*++cp != 's' || strchr(cp, '%') != 0) {
error(_("invalid abbreviation format"));
return FALSE;
}
}
z.z_rule = ecpyalloc(fields[i_rule]);
z.z_format = ecpyalloc(fields[i_format]);
if (max_format_len < strlen(z.z_format))
max_format_len = strlen(z.z_format);
hasuntil = nfields > i_untilyear;
if (hasuntil) {
z.z_untilrule.r_filename = filename;
z.z_untilrule.r_linenum = linenum;
rulesub(&z.z_untilrule,
fields[i_untilyear],
"only",
"",
(nfields > i_untilmonth) ?
fields[i_untilmonth] : "Jan",
(nfields > i_untilday) ? fields[i_untilday] : "1",
(nfields > i_untiltime) ? fields[i_untiltime] : "0");
z.z_untiltime = rpytime(&z.z_untilrule,
z.z_untilrule.r_loyear);
if (iscont && nzones > 0 &&
z.z_untiltime > min_time &&
z.z_untiltime < max_time &&
zones[nzones - 1].z_untiltime > min_time &&
zones[nzones - 1].z_untiltime < max_time &&
zones[nzones - 1].z_untiltime >= z.z_untiltime) {
error(_(
"Zone continuation line end time is not after end time of previous line"
));
return FALSE;
}
}
zones = growalloc(zones, sizeof *zones, nzones, &nzones_alloc);
zones[nzones++] = z;
/*
** If there was an UNTIL field on this line,
** there's more information about the zone on the next line.
*/
return hasuntil;
}
static void
inleap(register char ** const fields, const int nfields)
{
register const char * cp;
register const struct lookup * lp;
register int i, j;
zic_t year;
int month, day;
zic_t dayoff, tod;
zic_t t;
if (nfields != LEAP_FIELDS) {
error(_("wrong number of fields on Leap line"));
return;
}
dayoff = 0;
cp = fields[LP_YEAR];
if (sscanf(cp, scheck(cp, "%"SCNdZIC), &year) != 1) {
/*
** Leapin' Lizards!
*/
error(_("invalid leaping year"));
return;
}
if (!leapseen || leapmaxyear < year)
leapmaxyear = year;
if (!leapseen || leapminyear > year)
leapminyear = year;
leapseen = TRUE;
j = EPOCH_YEAR;
while (j != year) {
if (year > j) {
i = len_years[isleap(j)];
++j;
} else {
--j;
i = -len_years[isleap(j)];
}
dayoff = oadd(dayoff, i);
}
if ((lp = byword(fields[LP_MONTH], mon_names)) == NULL) {
error(_("invalid month name"));
return;
}
month = lp->l_value;
j = TM_JANUARY;
while (j != month) {
i = len_months[isleap(year)][j];
dayoff = oadd(dayoff, i);
++j;
}
cp = fields[LP_DAY];
if (sscanf(cp, scheck(cp, "%d"), &day) != 1 ||
day <= 0 || day > len_months[isleap(year)][month]) {
error(_("invalid day of month"));
return;
}
dayoff = oadd(dayoff, day - 1);
if (dayoff < 0 && !TYPE_SIGNED(zic_t)) {
error(_("time before zero"));
return;
}
if (dayoff < min_time / SECSPERDAY) {
error(_("time too small"));
return;
}
if (dayoff > max_time / SECSPERDAY) {
error(_("time too large"));
return;
}
t = (zic_t) dayoff * SECSPERDAY;
tod = gethms(fields[LP_TIME], _("invalid time of day"), FALSE);
cp = fields[LP_CORR];
{
register int positive;
int count;
if (strcmp(cp, "") == 0) { /* infile() turns "-" into "" */
positive = FALSE;
count = 1;
} else if (strcmp(cp, "--") == 0) {
positive = FALSE;
count = 2;
} else if (strcmp(cp, "+") == 0) {
positive = TRUE;
count = 1;
} else if (strcmp(cp, "++") == 0) {
positive = TRUE;
count = 2;
} else {
error(_("illegal CORRECTION field on Leap line"));
return;
}
if ((lp = byword(fields[LP_ROLL], leap_types)) == NULL) {
error(_(
"illegal Rolling/Stationary field on Leap line"
));
return;
}
leapadd(tadd(t, tod), positive, lp->l_value, count);
}
}
static void
inlink(register char **const fields, const int nfields)
{
struct link l;
if (nfields != LINK_FIELDS) {
error(_("wrong number of fields on Link line"));
return;
}
if (*fields[LF_FROM] == '\0') {
error(_("blank FROM field on Link line"));
return;
}
if (*fields[LF_TO] == '\0') {
error(_("blank TO field on Link line"));
return;
}
l.l_filename = filename;
l.l_linenum = linenum;
l.l_from = ecpyalloc(fields[LF_FROM]);
l.l_to = ecpyalloc(fields[LF_TO]);
links = growalloc(links, sizeof *links, nlinks, &nlinks_alloc);
links[nlinks++] = l;
}
static void
rulesub(register struct rule *const rp,
const char *const loyearp,
const char *const hiyearp,
const char *const typep,
const char *const monthp,
const char *const dayp,
const char *const timep)
{
register const struct lookup * lp;
register const char * cp;
register char * dp;
register char * ep;
if ((lp = byword(monthp, mon_names)) == NULL) {
error(_("invalid month name"));
return;
}
rp->r_month = lp->l_value;
rp->r_todisstd = FALSE;
rp->r_todisgmt = FALSE;
dp = ecpyalloc(timep);
if (*dp != '\0') {
ep = dp + strlen(dp) - 1;
switch (lowerit(*ep)) {
case 's': /* Standard */
rp->r_todisstd = TRUE;
rp->r_todisgmt = FALSE;
*ep = '\0';
break;
case 'w': /* Wall */
rp->r_todisstd = FALSE;
rp->r_todisgmt = FALSE;
*ep = '\0';
break;
case 'g': /* Greenwich */
case 'u': /* Universal */
case 'z': /* Zulu */
rp->r_todisstd = TRUE;
rp->r_todisgmt = TRUE;
*ep = '\0';
break;
}
}
rp->r_tod = gethms(dp, _("invalid time of day"), FALSE);
free(dp);
/*
** Year work.
*/
cp = loyearp;
lp = byword(cp, begin_years);
rp->r_lowasnum = lp == NULL;
if (!rp->r_lowasnum) switch ((int) lp->l_value) {
case YR_MINIMUM:
rp->r_loyear = ZIC_MIN;
break;
case YR_MAXIMUM:
rp->r_loyear = ZIC_MAX;
break;
default: /* "cannot happen" */
(void) fprintf(stderr,
_("%s: panic: Invalid l_value %d\n"),
progname, lp->l_value);
exit(EXIT_FAILURE);
} else if (sscanf(cp, scheck(cp, "%"SCNdZIC), &rp->r_loyear) != 1) {
error(_("invalid starting year"));
return;
}
cp = hiyearp;
lp = byword(cp, end_years);
rp->r_hiwasnum = lp == NULL;
if (!rp->r_hiwasnum) switch ((int) lp->l_value) {
case YR_MINIMUM:
rp->r_hiyear = ZIC_MIN;
break;
case YR_MAXIMUM:
rp->r_hiyear = ZIC_MAX;
break;
case YR_ONLY:
rp->r_hiyear = rp->r_loyear;
break;
default: /* "cannot happen" */
(void) fprintf(stderr,
_("%s: panic: Invalid l_value %d\n"),
progname, lp->l_value);
exit(EXIT_FAILURE);
} else if (sscanf(cp, scheck(cp, "%"SCNdZIC), &rp->r_hiyear) != 1) {
error(_("invalid ending year"));
return;
}
if (rp->r_loyear > rp->r_hiyear) {
error(_("starting year greater than ending year"));
return;
}
if (*typep == '\0')
rp->r_yrtype = NULL;
else {
if (rp->r_loyear == rp->r_hiyear) {
error(_("typed single year"));
return;
}
rp->r_yrtype = ecpyalloc(typep);
}
/*
** Day work.
** Accept things such as:
** 1
** last-Sunday
** Sun<=20
** Sun>=7
*/
dp = ecpyalloc(dayp);
if ((lp = byword(dp, lasts)) != NULL) {
rp->r_dycode = DC_DOWLEQ;
rp->r_wday = lp->l_value;
rp->r_dayofmonth = len_months[1][rp->r_month];
} else {
if ((ep = strchr(dp, '<')) != 0)
rp->r_dycode = DC_DOWLEQ;
else if ((ep = strchr(dp, '>')) != 0)
rp->r_dycode = DC_DOWGEQ;
else {
ep = dp;
rp->r_dycode = DC_DOM;
}
if (rp->r_dycode != DC_DOM) {
*ep++ = 0;
if (*ep++ != '=') {
error(_("invalid day of month"));
free(dp);
return;
}
if ((lp = byword(dp, wday_names)) == NULL) {
error(_("invalid weekday name"));
free(dp);
return;
}
rp->r_wday = lp->l_value;
}
if (sscanf(ep, scheck(ep, "%d"), &rp->r_dayofmonth) != 1 ||
rp->r_dayofmonth <= 0 ||
(rp->r_dayofmonth > len_months[1][rp->r_month])) {
error(_("invalid day of month"));
free(dp);
return;
}
}
free(dp);
}
static void
convert(const int_fast32_t val, char *const buf)
{
register int i;
register int shift;
unsigned char *const b = (unsigned char *) buf;
for (i = 0, shift = 24; i < 4; ++i, shift -= 8)
b[i] = val >> shift;
}
static void
convert64(const zic_t val, char *const buf)
{
register int i;
register int shift;
unsigned char *const b = (unsigned char *) buf;
for (i = 0, shift = 56; i < 8; ++i, shift -= 8)
b[i] = val >> shift;
}
static void
puttzcode(const int_fast32_t val, FILE *const fp)
{
char buf[4];
convert(val, buf);
(void) fwrite(buf, sizeof buf, 1, fp);
}
static void
puttzcode64(const zic_t val, FILE *const fp)
{
char buf[8];
convert64(val, buf);
(void) fwrite(buf, sizeof buf, 1, fp);
}
static int
atcomp(const void *avp, const void *bvp)
{
const zic_t a = ((const struct attype *) avp)->at;
const zic_t b = ((const struct attype *) bvp)->at;
return (a < b) ? -1 : (a > b);
}
static int
is32(const zic_t x)
{
return INT32_MIN <= x && x <= INT32_MAX;
}
static void
writezone(const char *const name, const char *const string, char version)
{
register FILE * fp;
register int i, j;
register int leapcnt32, leapi32;
register int timecnt32, timei32;
register int pass;
static char * fullname;
static const struct tzhead tzh0;
static struct tzhead tzh;
zic_t *ats = emalloc(size_product(timecnt, sizeof *ats + 1));
void *typesptr = ats + timecnt;
unsigned char *types = typesptr;
/*
** Sort.
*/
if (timecnt > 1)
(void) qsort(attypes, timecnt, sizeof *attypes, atcomp);
/*
** Optimize.
*/
{
int fromi;
int toi;
toi = 0;
fromi = 0;
while (fromi < timecnt && attypes[fromi].at < min_time)
++fromi;
/*
** Remember that type 0 is reserved.
*/
if (isdsts[1] == 0)
while (fromi < timecnt && attypes[fromi].type == 1)
++fromi; /* handled by default rule */
for ( ; fromi < timecnt; ++fromi) {
if (toi != 0 && ((attypes[fromi].at +
gmtoffs[attypes[toi - 1].type]) <=
(attypes[toi - 1].at + gmtoffs[toi == 1 ? 0
: attypes[toi - 2].type]))) {
attypes[toi - 1].type =
attypes[fromi].type;
continue;
}
if (toi == 0 ||
attypes[toi - 1].type != attypes[fromi].type)
attypes[toi++] = attypes[fromi];
}
timecnt = toi;
}
/*
** Transfer.
*/
for (i = 0; i < timecnt; ++i) {
ats[i] = attypes[i].at;
types[i] = attypes[i].type;
}
/*
** Correct for leap seconds.
*/
for (i = 0; i < timecnt; ++i) {
j = leapcnt;
while (--j >= 0)
if (ats[i] > trans[j] - corr[j]) {
ats[i] = tadd(ats[i], corr[j]);
break;
}
}
/*
** Figure out 32-bit-limited starts and counts.
*/
timecnt32 = timecnt;
timei32 = 0;
leapcnt32 = leapcnt;
leapi32 = 0;
while (timecnt32 > 0 && !is32(ats[timecnt32 - 1]))
--timecnt32;
while (timecnt32 > 0 && !is32(ats[timei32])) {
--timecnt32;
++timei32;
}
while (leapcnt32 > 0 && !is32(trans[leapcnt32 - 1]))
--leapcnt32;
while (leapcnt32 > 0 && !is32(trans[leapi32])) {
--leapcnt32;
++leapi32;
}
fullname = erealloc(fullname,
strlen(directory) + 1 + strlen(name) + 1);
(void) sprintf(fullname, "%s/%s", directory, name);
/*
** Remove old file, if any, to snap links.
*/
if (!itsdir(fullname) && remove(fullname) != 0 && errno != ENOENT) {
const char *e = strerror(errno);
(void) fprintf(stderr, _("%s: Can't remove %s: %s\n"),
progname, fullname, e);
exit(EXIT_FAILURE);
}
if ((fp = fopen(fullname, "wb")) == NULL) {
if (mkdirs(fullname) != 0)
exit(EXIT_FAILURE);
if ((fp = fopen(fullname, "wb")) == NULL) {
const char *e = strerror(errno);
(void) fprintf(stderr, _("%s: Can't create %s: %s\n"),
progname, fullname, e);
exit(EXIT_FAILURE);
}
}
for (pass = 1; pass <= 2; ++pass) {
register int thistimei, thistimecnt;
register int thisleapi, thisleapcnt;
register int thistimelim, thisleaplim;
int writetype[TZ_MAX_TYPES];
int typemap[TZ_MAX_TYPES];
register int thistypecnt;
char thischars[TZ_MAX_CHARS];
char thischarcnt;
int indmap[TZ_MAX_CHARS];
if (pass == 1) {
thistimei = timei32;
thistimecnt = timecnt32;
thisleapi = leapi32;
thisleapcnt = leapcnt32;
} else {
thistimei = 0;
thistimecnt = timecnt;
thisleapi = 0;
thisleapcnt = leapcnt;
}
thistimelim = thistimei + thistimecnt;
thisleaplim = thisleapi + thisleapcnt;
/*
** Remember that type 0 is reserved.
*/
writetype[0] = FALSE;
for (i = 1; i < typecnt; ++i)
writetype[i] = thistimecnt == timecnt;
if (thistimecnt == 0) {
/*
** No transition times fall in the current
** (32- or 64-bit) window.
*/
if (typecnt != 0)
writetype[typecnt - 1] = TRUE;
} else {
for (i = thistimei - 1; i < thistimelim; ++i)
if (i >= 0)
writetype[types[i]] = TRUE;
/*
** For America/Godthab and Antarctica/Palmer
*/
/*
** Remember that type 0 is reserved.
*/
if (thistimei == 0)
writetype[1] = TRUE;
}
#ifndef LEAVE_SOME_PRE_2011_SYSTEMS_IN_THE_LURCH
/*
** For some pre-2011 systems: if the last-to-be-written
** standard (or daylight) type has an offset different from the
** most recently used offset,
** append an (unused) copy of the most recently used type
** (to help get global "altzone" and "timezone" variables
** set correctly).
*/
{
register int mrudst, mrustd, hidst, histd, type;
hidst = histd = mrudst = mrustd = -1;
for (i = thistimei; i < thistimelim; ++i)
if (isdsts[types[i]])
mrudst = types[i];
else mrustd = types[i];
for (i = 0; i < typecnt; ++i)
if (writetype[i]) {
if (isdsts[i])
hidst = i;
else histd = i;
}
if (hidst >= 0 && mrudst >= 0 && hidst != mrudst &&
gmtoffs[hidst] != gmtoffs[mrudst]) {
isdsts[mrudst] = -1;
type = addtype(gmtoffs[mrudst],
#ifdef ICU
rawoffs[mrudst], dstoffs[mrudst],
#endif
&chars[abbrinds[mrudst]],
TRUE,
ttisstds[mrudst],
ttisgmts[mrudst]);
isdsts[mrudst] = TRUE;
writetype[type] = TRUE;
}
if (histd >= 0 && mrustd >= 0 && histd != mrustd &&
gmtoffs[histd] != gmtoffs[mrustd]) {
isdsts[mrustd] = -1;
type = addtype(gmtoffs[mrustd],
#ifdef ICU
rawoffs[mrudst], dstoffs[mrudst],
#endif
&chars[abbrinds[mrustd]],
FALSE,
ttisstds[mrustd],
ttisgmts[mrustd]);
isdsts[mrustd] = FALSE;
writetype[type] = TRUE;
}
}
#endif /* !defined LEAVE_SOME_PRE_2011_SYSTEMS_IN_THE_LURCH */
thistypecnt = 0;
/*
** Potentially, set type 0 to that of lowest-valued time.
*/
if (thistimei > 0) {
for (i = 1; i < typecnt; ++i)
if (writetype[i] && !isdsts[i])
break;
if (i != types[thistimei - 1]) {
i = types[thistimei - 1];
gmtoffs[0] = gmtoffs[i];
isdsts[0] = isdsts[i];
ttisstds[0] = ttisstds[i];
ttisgmts[0] = ttisgmts[i];
abbrinds[0] = abbrinds[i];
writetype[0] = TRUE;
writetype[i] = FALSE;
}
}
for (i = 0; i < typecnt; ++i)
typemap[i] = writetype[i] ? thistypecnt++ : 0;
for (i = 0; i < sizeof indmap / sizeof indmap[0]; ++i)
indmap[i] = -1;
thischarcnt = 0;
for (i = 0; i < typecnt; ++i) {
register char * thisabbr;
if (!writetype[i])
continue;
if (indmap[abbrinds[i]] >= 0)
continue;
thisabbr = &chars[abbrinds[i]];
for (j = 0; j < thischarcnt; ++j)
if (strcmp(&thischars[j], thisabbr) == 0)
break;
if (j == thischarcnt) {
(void) strcpy(&thischars[(int) thischarcnt],
thisabbr);
thischarcnt += strlen(thisabbr) + 1;
}
indmap[abbrinds[i]] = j;
}
#define DO(field) ((void) fwrite(tzh.field, sizeof tzh.field, 1, fp))
tzh = tzh0;
#ifdef ICU
* (ICUZoneinfoVersion*) &tzh.tzh_reserved = TZ_ICU_VERSION;
(void) strncpy(tzh.tzh_magic, TZ_ICU_MAGIC, sizeof tzh.tzh_magic);
#else
(void) strncpy(tzh.tzh_magic, TZ_MAGIC, sizeof tzh.tzh_magic);
#endif
tzh.tzh_version[0] = version;
convert(thistypecnt, tzh.tzh_ttisgmtcnt);
convert(thistypecnt, tzh.tzh_ttisstdcnt);
convert(thisleapcnt, tzh.tzh_leapcnt);
convert(thistimecnt, tzh.tzh_timecnt);
convert(thistypecnt, tzh.tzh_typecnt);
convert(thischarcnt, tzh.tzh_charcnt);
DO(tzh_magic);
DO(tzh_version);
DO(tzh_reserved);
DO(tzh_ttisgmtcnt);
DO(tzh_ttisstdcnt);
DO(tzh_leapcnt);
DO(tzh_timecnt);
DO(tzh_typecnt);
DO(tzh_charcnt);
#undef DO
for (i = thistimei; i < thistimelim; ++i)
if (pass == 1)
puttzcode(ats[i], fp);
else puttzcode64(ats[i], fp);
for (i = thistimei; i < thistimelim; ++i) {
unsigned char uc;
uc = typemap[types[i]];
(void) fwrite(&uc, sizeof uc, 1, fp);
}
for (i = 0; i < typecnt; ++i)
if (writetype[i]) {
#ifdef ICU
puttzcode(rawoffs[i], fp);
puttzcode(dstoffs[i], fp);
#else
puttzcode(gmtoffs[i], fp);
#endif
(void) putc(isdsts[i], fp);
(void) putc((unsigned char) indmap[abbrinds[i]], fp);
}
if (thischarcnt != 0)
(void) fwrite(thischars, sizeof thischars[0],
thischarcnt, fp);
for (i = thisleapi; i < thisleaplim; ++i) {
register zic_t todo;
if (roll[i]) {
if (timecnt == 0 || trans[i] < ats[0]) {
j = 0;
while (isdsts[j])
if (++j >= typecnt) {
j = 0;
break;
}
} else {
j = 1;
while (j < timecnt &&
trans[i] >= ats[j])
++j;
j = types[j - 1];
}
todo = tadd(trans[i], -gmtoffs[j]);
} else todo = trans[i];
if (pass == 1)
puttzcode(todo, fp);
else puttzcode64(todo, fp);
puttzcode(corr[i], fp);
}
for (i = 0; i < typecnt; ++i)
if (writetype[i])
(void) putc(ttisstds[i], fp);
for (i = 0; i < typecnt; ++i)
if (writetype[i])
(void) putc(ttisgmts[i], fp);
}
(void) fprintf(fp, "\n%s\n", string);
if (ferror(fp) || fclose(fp)) {
(void) fprintf(stderr, _("%s: Error writing %s\n"),
progname, fullname);
exit(EXIT_FAILURE);
}
free(ats);
}
static void
doabbr(char *const abbr, const char *const format, const char *const letters,
const int isdst, const int doquotes)
{
register char * cp;
register char * slashp;
register int len;
slashp = strchr(format, '/');
if (slashp == NULL) {
if (letters == NULL)
(void) strcpy(abbr, format);
else (void) sprintf(abbr, format, letters);
} else if (isdst) {
(void) strcpy(abbr, slashp + 1);
} else {
if (slashp > format)
(void) strncpy(abbr, format, slashp - format);
abbr[slashp - format] = '\0';
}
if (!doquotes)
return;
for (cp = abbr; *cp != '\0'; ++cp)
if (strchr("ABCDEFGHIJKLMNOPQRSTUVWXYZ", *cp) == NULL &&
strchr("abcdefghijklmnopqrstuvwxyz", *cp) == NULL)
break;
len = strlen(abbr);
if (len > 0 && *cp == '\0')
return;
abbr[len + 2] = '\0';
abbr[len + 1] = '>';
for ( ; len > 0; --len)
abbr[len] = abbr[len - 1];
abbr[0] = '<';
}
static void
updateminmax(const zic_t x)
{
if (min_year > x)
min_year = x;
if (max_year < x)
max_year = x;
}
static int
stringoffset(char *result, zic_t offset)
{
register int hours;
register int minutes;
register int seconds;
result[0] = '\0';
if (offset < 0) {
(void) strcpy(result, "-");
offset = -offset;
}
seconds = offset % SECSPERMIN;
offset /= SECSPERMIN;
minutes = offset % MINSPERHOUR;
offset /= MINSPERHOUR;
hours = offset;
if (hours >= HOURSPERDAY * DAYSPERWEEK) {
result[0] = '\0';
return -1;
}
(void) sprintf(end(result), "%d", hours);
if (minutes != 0 || seconds != 0) {
(void) sprintf(end(result), ":%02d", minutes);
if (seconds != 0)
(void) sprintf(end(result), ":%02d", seconds);
}
return 0;
}
static int
stringrule(char *result, const struct rule *const rp, const zic_t dstoff,
const zic_t gmtoff)
{
register zic_t tod = rp->r_tod;
register int compat = 0;
result = end(result);
if (rp->r_dycode == DC_DOM) {
register int month, total;
if (rp->r_dayofmonth == 29 && rp->r_month == TM_FEBRUARY)
return -1;
total = 0;
for (month = 0; month < rp->r_month; ++month)
total += len_months[0][month];
/* Omit the "J" in Jan and Feb, as that's shorter. */
if (rp->r_month <= 1)
(void) sprintf(result, "%d", total + rp->r_dayofmonth - 1);
else
(void) sprintf(result, "J%d", total + rp->r_dayofmonth);
} else {
register int week;
register int wday = rp->r_wday;
register int wdayoff;
if (rp->r_dycode == DC_DOWGEQ) {
wdayoff = (rp->r_dayofmonth - 1) % DAYSPERWEEK;
if (wdayoff)
compat = 2013;
wday -= wdayoff;
tod += wdayoff * SECSPERDAY;
week = 1 + (rp->r_dayofmonth - 1) / DAYSPERWEEK;
} else if (rp->r_dycode == DC_DOWLEQ) {
if (rp->r_dayofmonth == len_months[1][rp->r_month])
week = 5;
else {
wdayoff = rp->r_dayofmonth % DAYSPERWEEK;
if (wdayoff)
compat = 2013;
wday -= wdayoff;
tod += wdayoff * SECSPERDAY;
week = rp->r_dayofmonth / DAYSPERWEEK;
}
} else return -1; /* "cannot happen" */
if (wday < 0)
wday += DAYSPERWEEK;
(void) sprintf(result, "M%d.%d.%d",
rp->r_month + 1, week, wday);
}
if (rp->r_todisgmt)
tod += gmtoff;
if (rp->r_todisstd && rp->r_stdoff == 0)
tod += dstoff;
if (tod != 2 * SECSPERMIN * MINSPERHOUR) {
(void) strcat(result, "/");
if (stringoffset(end(result), tod) != 0)
return -1;
if (tod < 0) {
if (compat < 2013)
compat = 2013;
} else if (SECSPERDAY <= tod) {
if (compat < 1994)
compat = 1994;
}
}
return compat;
}
static int
rule_cmp(struct rule const *a, struct rule const *b)
{
if (!a)
return -!!b;
if (!b)
return 1;
if (a->r_hiyear != b->r_hiyear)
return a->r_hiyear < b->r_hiyear ? -1 : 1;
if (a->r_month - b->r_month != 0)
return a->r_month - b->r_month;
return a->r_dayofmonth - b->r_dayofmonth;
}
enum { YEAR_BY_YEAR_ZONE = 1 };
static int
stringzone(char *result, const struct zone *const zpfirst, const int zonecount)
{
register const struct zone * zp;
register struct rule * rp;
register struct rule * stdrp;
register struct rule * dstrp;
register int i;
register const char * abbrvar;
register int compat = 0;
register int c;
struct rule stdr, dstr;
result[0] = '\0';
zp = zpfirst + zonecount - 1;
stdrp = dstrp = NULL;
for (i = 0; i < zp->z_nrules; ++i) {
rp = &zp->z_rules[i];
if (rp->r_hiwasnum || rp->r_hiyear != ZIC_MAX)
continue;
if (rp->r_yrtype != NULL)
continue;
if (rp->r_stdoff == 0) {
if (stdrp == NULL)
stdrp = rp;
else return -1;
} else {
if (dstrp == NULL)
dstrp = rp;
else return -1;
}
}
if (stdrp == NULL && dstrp == NULL) {
/*
** There are no rules running through "max".
** Find the latest std rule in stdabbrrp
** and latest rule of any type in stdrp.
*/
register struct rule *stdabbrrp = NULL;
for (i = 0; i < zp->z_nrules; ++i) {
rp = &zp->z_rules[i];
if (rp->r_stdoff == 0 && rule_cmp(stdabbrrp, rp) < 0)
stdabbrrp = rp;
if (rule_cmp(stdrp, rp) < 0)
stdrp = rp;
}
/*
** Horrid special case: if year is 2037,
** presume this is a zone handled on a year-by-year basis;
** do not try to apply a rule to the zone.
*/
if (stdrp != NULL && stdrp->r_hiyear == 2037)
return YEAR_BY_YEAR_ZONE;
if (stdrp != NULL && stdrp->r_stdoff != 0) {
/* Perpetual DST. */
dstr.r_month = TM_JANUARY;
dstr.r_dycode = DC_DOM;
dstr.r_dayofmonth = 1;
dstr.r_tod = 0;
dstr.r_todisstd = dstr.r_todisgmt = FALSE;
dstr.r_stdoff = stdrp->r_stdoff;
dstr.r_abbrvar = stdrp->r_abbrvar;
stdr.r_month = TM_DECEMBER;
stdr.r_dycode = DC_DOM;
stdr.r_dayofmonth = 31;
stdr.r_tod = SECSPERDAY + stdrp->r_stdoff;
stdr.r_todisstd = stdr.r_todisgmt = FALSE;
stdr.r_stdoff = 0;
stdr.r_abbrvar
= (stdabbrrp ? stdabbrrp->r_abbrvar : "");
dstrp = &dstr;
stdrp = &stdr;
}
}
if (stdrp == NULL && (zp->z_nrules != 0 || zp->z_stdoff != 0))
return -1;
abbrvar = (stdrp == NULL) ? "" : stdrp->r_abbrvar;
doabbr(result, zp->z_format, abbrvar, FALSE, TRUE);
if (stringoffset(end(result), -zp->z_gmtoff) != 0) {
result[0] = '\0';
return -1;
}
if (dstrp == NULL)
return compat;
doabbr(end(result), zp->z_format, dstrp->r_abbrvar, TRUE, TRUE);
if (dstrp->r_stdoff != SECSPERMIN * MINSPERHOUR)
if (stringoffset(end(result),
-(zp->z_gmtoff + dstrp->r_stdoff)) != 0) {
result[0] = '\0';
return -1;
}
(void) strcat(result, ",");
c = stringrule(result, dstrp, dstrp->r_stdoff, zp->z_gmtoff);
if (c < 0) {
result[0] = '\0';
return -1;
}
if (compat < c)
compat = c;
(void) strcat(result, ",");
c = stringrule(result, stdrp, dstrp->r_stdoff, zp->z_gmtoff);
if (c < 0) {
result[0] = '\0';
return -1;
}
if (compat < c)
compat = c;
return compat;
}
static void
outzone(const struct zone * const zpfirst, const int zonecount)
{
register const struct zone * zp;
register struct rule * rp;
register int i, j;
register int usestart, useuntil;
register zic_t starttime, untiltime;
register zic_t gmtoff;
register zic_t stdoff;
register zic_t year;
register zic_t startoff;
register int startttisstd;
register int startttisgmt;
register int type;
register char * startbuf;
register char * ab;
register char * envvar;
register int max_abbr_len;
register int max_envvar_len;
register int prodstic; /* all rules are min to max */
register int compat;
register int do_extend;
register char version;
#ifdef ICU
int finalRuleYear, finalRuleIndex;
const struct rule* finalRule1;
const struct rule* finalRule2;
#endif
max_abbr_len = 2 + max_format_len + max_abbrvar_len;
max_envvar_len = 2 * max_abbr_len + 5 * 9;
startbuf = emalloc(max_abbr_len + 1);
ab = emalloc(max_abbr_len + 1);
envvar = emalloc(max_envvar_len + 1);
INITIALIZE(untiltime);
INITIALIZE(starttime);
/*
** Now. . .finally. . .generate some useful data!
*/
timecnt = 0;
typecnt = 0;
charcnt = 0;
prodstic = zonecount == 1;
/*
** Thanks to Earl Chew
** for noting the need to unconditionally initialize startttisstd.
*/
startttisstd = FALSE;
startttisgmt = FALSE;
min_year = max_year = EPOCH_YEAR;
if (leapseen) {
updateminmax(leapminyear);
updateminmax(leapmaxyear + (leapmaxyear < ZIC_MAX));
}
/*
** Reserve type 0.
*/
gmtoffs[0] = isdsts[0] = ttisstds[0] = ttisgmts[0] = abbrinds[0] = -1;
typecnt = 1;
for (i = 0; i < zonecount; ++i) {
zp = &zpfirst[i];
if (i < zonecount - 1)
updateminmax(zp->z_untilrule.r_loyear);
for (j = 0; j < zp->z_nrules; ++j) {
rp = &zp->z_rules[j];
if (rp->r_lowasnum)
updateminmax(rp->r_loyear);
if (rp->r_hiwasnum)
updateminmax(rp->r_hiyear);
if (rp->r_lowasnum || rp->r_hiwasnum)
prodstic = FALSE;
}
}
/*
** Generate lots of data if a rule can't cover all future times.
*/
compat = stringzone(envvar, zpfirst, zonecount);
version = compat < 2013 ? ZIC_VERSION_PRE_2013 : ZIC_VERSION;
do_extend = compat < 0 || compat == YEAR_BY_YEAR_ZONE;
#ifdef ICU
do_extend = 0;
#endif
if (noise) {
if (!*envvar)
warning("%s %s",
_("no POSIX environment variable for zone"),
zpfirst->z_name);
else if (compat != 0 && compat != YEAR_BY_YEAR_ZONE) {
/* Circa-COMPAT clients, and earlier clients, might
not work for this zone when given dates before
1970 or after 2038. */
warning(_("%s: pre-%d clients may mishandle"
" distant timestamps"),
zpfirst->z_name, compat);
}
}
if (do_extend) {
/*
** Search through a couple of extra years past the obvious
** 400, to avoid edge cases. For example, suppose a non-POSIX
** rule applies from 2012 onwards and has transitions in March
** and September, plus some one-off transitions in November
** 2013. If zic looked only at the last 400 years, it would
** set max_year=2413, with the intent that the 400 years 2014
** through 2413 will be repeated. The last transition listed
** in the tzfile would be in 2413-09, less than 400 years
** after the last one-off transition in 2013-11. Two years
** might be overkill, but with the kind of edge cases
** available we're not sure that one year would suffice.
*/
enum { years_of_observations = YEARSPERREPEAT + 2 };
if (min_year >= ZIC_MIN + years_of_observations)
min_year -= years_of_observations;
else min_year = ZIC_MIN;
if (max_year <= ZIC_MAX - years_of_observations)
max_year += years_of_observations;
else max_year = ZIC_MAX;
/*
** Regardless of any of the above,
** for a "proDSTic" zone which specifies that its rules
** always have and always will be in effect,
** we only need one cycle to define the zone.
*/
if (prodstic) {
min_year = 1900;
max_year = min_year + years_of_observations;
}
}
/*
** For the benefit of older systems,
** generate data from 1900 through 2037.
*/
if (min_year > 1900)
min_year = 1900;
if (max_year < 2037)
max_year = 2037;
for (i = 0; i < zonecount; ++i) {
/*
** A guess that may well be corrected later.
*/
stdoff = 0;
zp = &zpfirst[i];
usestart = i > 0 && (zp - 1)->z_untiltime > min_time;
useuntil = i < (zonecount - 1);
if (useuntil && zp->z_untiltime <= min_time)
continue;
gmtoff = zp->z_gmtoff;
eat(zp->z_filename, zp->z_linenum);
*startbuf = '\0';
startoff = zp->z_gmtoff;
#ifdef ICU
finalRuleYear = finalRuleIndex = -1;
finalRule1 = finalRule2 = NULL;
if (i == (zonecount - 1)) { /* !useuntil */
/* Look for exactly 2 rules that end at 'max' and
* note them. Determine max(r_loyear) for the 2 of
* them. */
for (j=0; j<zp->z_nrules; ++j) {
rp = &zp->z_rules[j];
if (rp->r_hiyear == ZIC_MAX) {
if (rp->r_loyear > finalRuleYear) {
finalRuleYear = rp->r_loyear;
}
if (finalRule1 == NULL) {
finalRule1 = rp;
} else if (finalRule2 == NULL) {
finalRule2 = rp;
} else {
error("more than two max rules found (ICU)");
exit(EXIT_FAILURE);
}
} else if (rp->r_hiyear >= finalRuleYear) {
/* There might be an overriding non-max rule
* to be applied to a specific year after one of
* max rule's start year. For example,
*
* Rule Foo 2010 max ...
* Rule Foo 2015 only ...
*
* In this case, we need to change the start year of
* the final (max) rules to the next year. */
finalRuleYear = rp->r_hiyear + 1;
/* When above adjustment is done, max_year might need
* to be adjusted, so the final rule will be properly
* evaluated and emitted by the later code block.
*
* Note: This may push the start year of the final
* rules ahead by 1 year unnecessarily. For example,
* If there are two rules, non-max rule and max rule
* starting in the same year, such as
*
* Rule Foo 2010 only ....
* Rule Foo 2010 max ....
*
* In this case, the final (max) rule actually starts
* in 2010, instead of 2010. We could make this tool
* more intelligent to detect such situation. But pushing
* final rule start year to 1 year ahead (in the worst case)
* will just populate a few extra transitions, and it still
* works fine. So for now, we're not trying to put additional
* logic to optimize the case.
*/
if (max_year < finalRuleYear) {
max_year = finalRuleYear;
}
}
}
if (finalRule1 != NULL) {
if (finalRule2 == NULL) {
warning("only one max rule found (ICU)");
finalRuleYear = finalRuleIndex = -1;
finalRule1 = NULL;
} else {
if (finalRule1->r_stdoff == finalRule2->r_stdoff) {
/* America/Resolute in 2009a uses a pair of rules
* which does not change the offset. ICU ignores
* such rules without actual time transitions. */
finalRuleYear = finalRuleIndex = -1;
finalRule1 = finalRule2 = NULL;
} else {
/* Swap if necessary so finalRule1 occurs before
* finalRule2 */
if (finalRule1->r_month > finalRule2->r_month) {
const struct rule* t = finalRule1;
finalRule1 = finalRule2;
finalRule2 = t;
}
/* Add final rule to our list */
finalRuleIndex = add_icu_final_rules(finalRule1, finalRule2);
}
}
}
}
#endif
if (zp->z_nrules == 0) {
stdoff = zp->z_stdoff;
doabbr(startbuf, zp->z_format,
NULL, stdoff != 0, FALSE);
type = addtype(oadd(zp->z_gmtoff, stdoff),
#ifdef ICU
zp->z_gmtoff, stdoff,
#endif
startbuf, stdoff != 0, startttisstd,
startttisgmt);
if (usestart) {
addtt(starttime, type);
usestart = FALSE;
} else if (stdoff != 0)
addtt(min_time, type);
} else for (year = min_year; year <= max_year; ++year) {
if (useuntil && year > zp->z_untilrule.r_hiyear)
break;
/*
** Mark which rules to do in the current year.
** For those to do, calculate rpytime(rp, year);
*/
for (j = 0; j < zp->z_nrules; ++j) {
rp = &zp->z_rules[j];
eats(zp->z_filename, zp->z_linenum,
rp->r_filename, rp->r_linenum);
rp->r_todo = year >= rp->r_loyear &&
year <= rp->r_hiyear &&
yearistype(year, rp->r_yrtype);
if (rp->r_todo)
rp->r_temp = rpytime(rp, year);
}
for ( ; ; ) {
register int k;
register zic_t jtime, ktime;
register zic_t offset;
INITIALIZE(ktime);
if (useuntil) {
/*
** Turn untiltime into UT
** assuming the current gmtoff and
** stdoff values.
*/
untiltime = zp->z_untiltime;
if (!zp->z_untilrule.r_todisgmt)
untiltime = tadd(untiltime,
-gmtoff);
if (!zp->z_untilrule.r_todisstd)
untiltime = tadd(untiltime,
-stdoff);
}
/*
** Find the rule (of those to do, if any)
** that takes effect earliest in the year.
*/
k = -1;
for (j = 0; j < zp->z_nrules; ++j) {
rp = &zp->z_rules[j];
if (!rp->r_todo)
continue;
eats(zp->z_filename, zp->z_linenum,
rp->r_filename, rp->r_linenum);
offset = rp->r_todisgmt ? 0 : gmtoff;
if (!rp->r_todisstd)
offset = oadd(offset, stdoff);
jtime = rp->r_temp;
if (jtime == min_time ||
jtime == max_time)
continue;
jtime = tadd(jtime, -offset);
if (k < 0 || jtime < ktime) {
k = j;
ktime = jtime;
}
}
if (k < 0)
break; /* go on to next year */
rp = &zp->z_rules[k];
rp->r_todo = FALSE;
if (useuntil && ktime >= untiltime)
break;
stdoff = rp->r_stdoff;
if (usestart && ktime == starttime)
usestart = FALSE;
if (usestart) {
if (ktime < starttime) {
startoff = oadd(zp->z_gmtoff,
stdoff);
doabbr(startbuf, zp->z_format,
rp->r_abbrvar,
rp->r_stdoff != 0,
FALSE);
continue;
}
if (*startbuf == '\0' &&
startoff == oadd(zp->z_gmtoff,
stdoff)) {
doabbr(startbuf,
zp->z_format,
rp->r_abbrvar,
rp->r_stdoff !=
0,
FALSE);
}
}
#ifdef ICU
if (year >= finalRuleYear && rp == finalRule1) {
/* We want to shift final year 1 year after
* the actual final rule takes effect (year + 1),
* because the previous type is valid until the first
* transition defined by the final rule. Otherwise
* we may see unexpected offset shift at the
* begining of the year when the final rule takes
* effect.
*
* Note: This may results some 64bit second transitions
* at the very end (year 2038). ICU 4.2 or older releases
* cannot handle 64bit second transitions and they are
* dropped from zoneinfo.txt. */
emit_icu_zone(icuFile,
zpfirst->z_name, zp->z_gmtoff,
rp, finalRuleIndex, year + 1);
/* only emit this for the first year */
finalRule1 = NULL;
}
#endif
eats(zp->z_filename, zp->z_linenum,
rp->r_filename, rp->r_linenum);
doabbr(ab, zp->z_format, rp->r_abbrvar,
rp->r_stdoff != 0, FALSE);
offset = oadd(zp->z_gmtoff, rp->r_stdoff);
#ifdef ICU
type = addtype(offset, zp->z_gmtoff, rp->r_stdoff,
ab, rp->r_stdoff != 0,
rp->r_todisstd, rp->r_todisgmt);
#else
type = addtype(offset, ab, rp->r_stdoff != 0,
rp->r_todisstd, rp->r_todisgmt);
#endif
addtt(ktime, type);
}
}
if (usestart) {
if (*startbuf == '\0' &&
zp->z_format != NULL &&
strchr(zp->z_format, '%') == NULL &&
strchr(zp->z_format, '/') == NULL)
(void) strcpy(startbuf, zp->z_format);
eat(zp->z_filename, zp->z_linenum);
if (*startbuf == '\0')
error(_("can't determine time zone abbreviation to use just after until time"));
else addtt(starttime,
#ifdef ICU
addtype(startoff,
zp->z_gmtoff, startoff - zp->z_gmtoff,
startbuf,
startoff != zp->z_gmtoff,
startttisstd,
startttisgmt));
#else
addtype(startoff, startbuf,
startoff != zp->z_gmtoff,
startttisstd,
startttisgmt));
#endif
}
/*
** Now we may get to set starttime for the next zone line.
*/
if (useuntil) {
startttisstd = zp->z_untilrule.r_todisstd;
startttisgmt = zp->z_untilrule.r_todisgmt;
starttime = zp->z_untiltime;
if (!startttisstd)
starttime = tadd(starttime, -stdoff);
if (!startttisgmt)
starttime = tadd(starttime, -gmtoff);
}
}
if (do_extend) {
/*
** If we're extending the explicitly listed observations
** for 400 years because we can't fill the POSIX-TZ field,
** check whether we actually ended up explicitly listing
** observations through that period. If there aren't any
** near the end of the 400-year period, add a redundant
** one at the end of the final year, to make it clear
** that we are claiming to have definite knowledge of
** the lack of transitions up to that point.
*/
struct rule xr;
struct attype *lastat;
xr.r_month = TM_JANUARY;
xr.r_dycode = DC_DOM;
xr.r_dayofmonth = 1;
xr.r_tod = 0;
for (lastat = &attypes[0], i = 1; i < timecnt; i++)
if (attypes[i].at > lastat->at)
lastat = &attypes[i];
if (lastat->at < rpytime(&xr, max_year - 1)) {
/*
** Create new type code for the redundant entry,
** to prevent it being optimised away.
*/
if (typecnt >= TZ_MAX_TYPES) {
error(_("too many local time types"));
exit(EXIT_FAILURE);
}
gmtoffs[typecnt] = gmtoffs[lastat->type];
isdsts[typecnt] = isdsts[lastat->type];
ttisstds[typecnt] = ttisstds[lastat->type];
ttisgmts[typecnt] = ttisgmts[lastat->type];
abbrinds[typecnt] = abbrinds[lastat->type];
++typecnt;
addtt(rpytime(&xr, max_year + 1), typecnt-1);
}
}
writezone(zpfirst->z_name, envvar, version);
free(startbuf);
free(ab);
free(envvar);
}
static void
addtt(const zic_t starttime, int type)
{
if (starttime <= min_time ||
(timecnt == 1 && attypes[0].at < min_time)) {
gmtoffs[0] = gmtoffs[type];
#ifdef ICU
rawoffs[0] = rawoffs[type];
dstoffs[0] = dstoffs[type];
#endif
isdsts[0] = isdsts[type];
ttisstds[0] = ttisstds[type];
ttisgmts[0] = ttisgmts[type];
if (abbrinds[type] != 0)
(void) strcpy(chars, &chars[abbrinds[type]]);
abbrinds[0] = 0;
charcnt = strlen(chars) + 1;
typecnt = 1;
timecnt = 0;
type = 0;
}
attypes = growalloc(attypes, sizeof *attypes, timecnt, &timecnt_alloc);
attypes[timecnt].at = starttime;
attypes[timecnt].type = type;
++timecnt;
}
static int
#ifdef ICU
addtype(const zic_t gmtoff, const zic_t rawoff, const zic_t dstoff, char *const abbr, const int isdst,
const int ttisstd, const int ttisgmt)
#else
addtype(const zic_t gmtoff, const char *const abbr, const int isdst,
const int ttisstd, const int ttisgmt)
#endif
{
register int i, j;
if (isdst != TRUE && isdst != FALSE) {
error(_("internal error - addtype called with bad isdst"));
exit(EXIT_FAILURE);
}
if (ttisstd != TRUE && ttisstd != FALSE) {
error(_("internal error - addtype called with bad ttisstd"));
exit(EXIT_FAILURE);
}
if (ttisgmt != TRUE && ttisgmt != FALSE) {
error(_("internal error - addtype called with bad ttisgmt"));
exit(EXIT_FAILURE);
}
#ifdef ICU
if (isdst != (dstoff != 0)) {
error(_("internal error - addtype called with bad isdst/dstoff"));
exit(EXIT_FAILURE);
}
if (gmtoff != (rawoff + dstoff)) {
error(_("internal error - addtype called with bad gmt/raw/dstoff"));
exit(EXIT_FAILURE);
}
#endif
/*
** See if there's already an entry for this zone type.
** If so, just return its index.
*/
for (i = 0; i < typecnt; ++i) {
if (gmtoff == gmtoffs[i] && isdst == isdsts[i] &&
#ifdef ICU
rawoff == rawoffs[i] && dstoff == dstoffs[i] &&
#endif
strcmp(abbr, &chars[abbrinds[i]]) == 0 &&
ttisstd == ttisstds[i] &&
ttisgmt == ttisgmts[i])
return i;
}
/*
** There isn't one; add a new one, unless there are already too
** many.
*/
if (typecnt >= TZ_MAX_TYPES) {
error(_("too many local time types"));
exit(EXIT_FAILURE);
}
if (! (-1L - 2147483647L <= gmtoff && gmtoff <= 2147483647L)) {
error(_("UT offset out of range"));
exit(EXIT_FAILURE);
}
gmtoffs[i] = gmtoff;
#ifdef ICU
rawoffs[i] = rawoff;
dstoffs[i] = dstoff;
#endif
isdsts[i] = isdst;
ttisstds[i] = ttisstd;
ttisgmts[i] = ttisgmt;
for (j = 0; j < charcnt; ++j)
if (strcmp(&chars[j], abbr) == 0)
break;
if (j == charcnt)
newabbr(abbr);
abbrinds[i] = j;
++typecnt;
return i;
}
static void
leapadd(const zic_t t, const int positive, const int rolling, int count)
{
register int i, j;
if (leapcnt + (positive ? count : 1) > TZ_MAX_LEAPS) {
error(_("too many leap seconds"));
exit(EXIT_FAILURE);
}
for (i = 0; i < leapcnt; ++i)
if (t <= trans[i]) {
if (t == trans[i]) {
error(_("repeated leap second moment"));
exit(EXIT_FAILURE);
}
break;
}
do {
for (j = leapcnt; j > i; --j) {
trans[j] = trans[j - 1];
corr[j] = corr[j - 1];
roll[j] = roll[j - 1];
}
trans[i] = t;
corr[i] = positive ? 1 : -count;
roll[i] = rolling;
++leapcnt;
} while (positive && --count != 0);
}
static void
adjleap(void)
{
register int i;
register zic_t last = 0;
/*
** propagate leap seconds forward
*/
for (i = 0; i < leapcnt; ++i) {
trans[i] = tadd(trans[i], last);
last = corr[i] += last;
}
}
static int
yearistype(const int year, const char *const type)
{
static char * buf;
int result;
if (type == NULL || *type == '\0')
return TRUE;
buf = erealloc(buf, 132 + strlen(yitcommand) + strlen(type));
(void) sprintf(buf, "%s %d %s", yitcommand, year, type);
result = system(buf);
if (WIFEXITED(result)) switch (WEXITSTATUS(result)) {
case 0:
return TRUE;
case 1:
return FALSE;
}
error(_("Wild result from command execution"));
(void) fprintf(stderr, _("%s: command was '%s', result was %d\n"),
progname, buf, result);
for ( ; ; )
exit(EXIT_FAILURE);
}
static int
lowerit(int a)
{
a = (unsigned char) a;
return (isascii(a) && isupper(a)) ? tolower(a) : a;
}
/* case-insensitive equality */
static ATTRIBUTE_PURE int
ciequal(register const char *ap, register const char *bp)
{
while (lowerit(*ap) == lowerit(*bp++))
if (*ap++ == '\0')
return TRUE;
return FALSE;
}
static ATTRIBUTE_PURE int
itsabbr(register const char *abbr, register const char *word)
{
if (lowerit(*abbr) != lowerit(*word))
return FALSE;
++word;
while (*++abbr != '\0')
do {
if (*word == '\0')
return FALSE;
} while (lowerit(*word++) != lowerit(*abbr));
return TRUE;
}
static ATTRIBUTE_PURE const struct lookup *
byword(register const char *const word,
register const struct lookup *const table)
{
register const struct lookup * foundlp;
register const struct lookup * lp;
if (word == NULL || table == NULL)
return NULL;
/*
** Look for exact match.
*/
for (lp = table; lp->l_word != NULL; ++lp)
if (ciequal(word, lp->l_word))
return lp;
/*
** Look for inexact match.
*/
foundlp = NULL;
for (lp = table; lp->l_word != NULL; ++lp)
if (itsabbr(word, lp->l_word)) {
if (foundlp == NULL)
foundlp = lp;
else return NULL; /* multiple inexact matches */
}
return foundlp;
}
static char **
getfields(register char *cp)
{
register char * dp;
register char ** array;
register int nsubs;
if (cp == NULL)
return NULL;
array = emalloc(size_product(strlen(cp) + 1, sizeof *array));
nsubs = 0;
for ( ; ; ) {
while (isascii((unsigned char) *cp) &&
isspace((unsigned char) *cp))
++cp;
if (*cp == '\0' || *cp == '#')
break;
array[nsubs++] = dp = cp;
do {
if ((*dp = *cp++) != '"')
++dp;
else while ((*dp = *cp++) != '"')
if (*dp != '\0')
++dp;
else {
error(_(
"Odd number of quotation marks"
));
exit(1);
}
} while (*cp != '\0' && *cp != '#' &&
(!isascii(*cp) || !isspace((unsigned char) *cp)));
if (isascii(*cp) && isspace((unsigned char) *cp))
++cp;
*dp = '\0';
}
array[nsubs] = NULL;
return array;
}
static ATTRIBUTE_PURE zic_t
oadd(const zic_t t1, const zic_t t2)
{
if (t1 < 0 ? t2 < ZIC_MIN - t1 : ZIC_MAX - t1 < t2) {
error(_("time overflow"));
exit(EXIT_FAILURE);
}
return t1 + t2;
}
static ATTRIBUTE_PURE zic_t
tadd(const zic_t t1, const zic_t t2)
{
if (t1 == max_time && t2 > 0)
return max_time;
if (t1 == min_time && t2 < 0)
return min_time;
if (t1 < 0 ? t2 < min_time - t1 : max_time - t1 < t2) {
error(_("time overflow"));
exit(EXIT_FAILURE);
}
return t1 + t2;
}
/*
** Given a rule, and a year, compute the date - in seconds since January 1,
** 1970, 00:00 LOCAL time - in that year that the rule refers to.
*/
static zic_t
rpytime(register const struct rule *const rp, register const zic_t wantedy)
{
register int m, i;
register zic_t dayoff; /* with a nod to Margaret O. */
register zic_t t, y;
if (wantedy == ZIC_MIN)
return min_time;
if (wantedy == ZIC_MAX)
return max_time;
dayoff = 0;
m = TM_JANUARY;
y = EPOCH_YEAR;
while (wantedy != y) {
if (wantedy > y) {
i = len_years[isleap(y)];
++y;
} else {
--y;
i = -len_years[isleap(y)];
}
dayoff = oadd(dayoff, i);
}
while (m != rp->r_month) {
i = len_months[isleap(y)][m];
dayoff = oadd(dayoff, i);
++m;
}
i = rp->r_dayofmonth;
if (m == TM_FEBRUARY && i == 29 && !isleap(y)) {
if (rp->r_dycode == DC_DOWLEQ)
--i;
else {
error(_("use of 2/29 in non leap-year"));
exit(EXIT_FAILURE);
}
}
--i;
dayoff = oadd(dayoff, i);
if (rp->r_dycode == DC_DOWGEQ || rp->r_dycode == DC_DOWLEQ) {
register zic_t wday;
#define LDAYSPERWEEK ((zic_t) DAYSPERWEEK)
wday = EPOCH_WDAY;
/*
** Don't trust mod of negative numbers.
*/
if (dayoff >= 0)
wday = (wday + dayoff) % LDAYSPERWEEK;
else {
wday -= ((-dayoff) % LDAYSPERWEEK);
if (wday < 0)
wday += LDAYSPERWEEK;
}
while (wday != rp->r_wday)
if (rp->r_dycode == DC_DOWGEQ) {
dayoff = oadd(dayoff, 1);
if (++wday >= LDAYSPERWEEK)
wday = 0;
++i;
} else {
dayoff = oadd(dayoff, -1);
if (--wday < 0)
wday = LDAYSPERWEEK - 1;
--i;
}
if (i < 0 || i >= len_months[isleap(y)][m]) {
if (noise)
warning(_("rule goes past start/end of month--\
will not work with pre-2004 versions of zic"));
}
}
if (dayoff < min_time / SECSPERDAY)
return min_time;
if (dayoff > max_time / SECSPERDAY)
return max_time;
t = (zic_t) dayoff * SECSPERDAY;
return tadd(t, rp->r_tod);
}
static void
newabbr(const char *const string)
{
register int i;
if (strcmp(string, GRANDPARENTED) != 0) {
register const char * cp;
const char * mp;
/*
** Want one to ZIC_MAX_ABBR_LEN_WO_WARN alphabetics
** optionally followed by a + or - and a number from 1 to 14.
*/
cp = string;
mp = NULL;
while (isascii((unsigned char) *cp) &&
isalpha((unsigned char) *cp))
++cp;
if (cp - string == 0)
mp = _("time zone abbreviation lacks alphabetic at start");
if (noise && cp - string < 3)
mp = _("time zone abbreviation has fewer than 3 alphabetics");
if (cp - string > ZIC_MAX_ABBR_LEN_WO_WARN)
mp = _("time zone abbreviation has too many alphabetics");
if (mp == NULL && (*cp == '+' || *cp == '-')) {
++cp;
if (isascii((unsigned char) *cp) &&
isdigit((unsigned char) *cp))
if (*cp++ == '1' &&
*cp >= '0' && *cp <= '4')
++cp;
}
if (*cp != '\0')
mp = _("time zone abbreviation differs from POSIX standard");
if (mp != NULL)
warning("%s (%s)", mp, string);
}
i = strlen(string) + 1;
if (charcnt + i > TZ_MAX_CHARS) {
error(_("too many, or too long, time zone abbreviations"));
exit(EXIT_FAILURE);
}
(void) strcpy(&chars[charcnt], string);
charcnt += i;
}
static int
mkdirs(char *argname)
{
register char * name;
register char * cp;
if (argname == NULL || *argname == '\0')
return 0;
cp = name = ecpyalloc(argname);
while ((cp = strchr(cp + 1, '/')) != 0) {
*cp = '\0';
#ifdef HAVE_DOS_FILE_NAMES
/*
** DOS drive specifier?
*/
if (isalpha((unsigned char) name[0]) &&
name[1] == ':' && name[2] == '\0') {
*cp = '/';
continue;
}
#endif
if (!itsdir(name)) {
/*
** It doesn't seem to exist, so we try to create it.
** Creation may fail because of the directory being
** created by some other multiprocessor, so we get
** to do extra checking.
*/
if (mkdir(name, MKDIR_UMASK) != 0) {
const char *e = strerror(errno);
if (errno != EEXIST || !itsdir(name)) {
(void) fprintf(stderr,
_("%s: Can't create directory %s: %s\n"),
progname, name, e);
free(name);
return -1;
}
}
}
*cp = '/';
}
free(name);
return 0;
}
/*
** UNIX was a registered trademark of The Open Group in 2003.
*/