mirror of
https://github.com/classilla/tenfourfox.git
synced 2025-01-19 07:31:25 +00:00
404 lines
11 KiB
C++
404 lines
11 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* Utilities for hashing. */
|
|
|
|
/*
|
|
* This file exports functions for hashing data down to a 32-bit value,
|
|
* including:
|
|
*
|
|
* - HashString Hash a char* or uint16_t/wchar_t* of known or unknown
|
|
* length.
|
|
*
|
|
* - HashBytes Hash a byte array of known length.
|
|
*
|
|
* - HashGeneric Hash one or more values. Currently, we support uint32_t,
|
|
* types which can be implicitly cast to uint32_t, data
|
|
* pointers, and function pointers.
|
|
*
|
|
* - AddToHash Add one or more values to the given hash. This supports the
|
|
* same list of types as HashGeneric.
|
|
*
|
|
*
|
|
* You can chain these functions together to hash complex objects. For example:
|
|
*
|
|
* class ComplexObject
|
|
* {
|
|
* char* mStr;
|
|
* uint32_t mUint1, mUint2;
|
|
* void (*mCallbackFn)();
|
|
*
|
|
* public:
|
|
* uint32_t hash()
|
|
* {
|
|
* uint32_t hash = HashString(mStr);
|
|
* hash = AddToHash(hash, mUint1, mUint2);
|
|
* return AddToHash(hash, mCallbackFn);
|
|
* }
|
|
* };
|
|
*
|
|
* If you want to hash an nsAString or nsACString, use the HashString functions
|
|
* in nsHashKeys.h.
|
|
*/
|
|
|
|
#ifndef mozilla_HashFunctions_h
|
|
#define mozilla_HashFunctions_h
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Char16.h"
|
|
#include "mozilla/MathAlgorithms.h"
|
|
#include "mozilla/Types.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#ifdef __cplusplus
|
|
namespace mozilla {
|
|
|
|
/**
|
|
* The golden ratio as a 32-bit fixed-point value.
|
|
*/
|
|
static const uint32_t kGoldenRatioU32 = 0x9E3779B9U;
|
|
|
|
inline uint32_t
|
|
RotateBitsLeft32(uint32_t aValue, uint8_t aBits)
|
|
{
|
|
MOZ_ASSERT(aBits < 32);
|
|
return (aValue << aBits) | (aValue >> (32 - aBits));
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
inline uint32_t
|
|
AddU32ToHash(uint32_t aHash, uint32_t aValue)
|
|
{
|
|
/*
|
|
* This is the meat of all our hash routines. This hash function is not
|
|
* particularly sophisticated, but it seems to work well for our mostly
|
|
* plain-text inputs. Implementation notes follow.
|
|
*
|
|
* Our use of the golden ratio here is arbitrary; we could pick almost any
|
|
* number which:
|
|
*
|
|
* * is odd (because otherwise, all our hash values will be even)
|
|
*
|
|
* * has a reasonably-even mix of 1's and 0's (consider the extreme case
|
|
* where we multiply by 0x3 or 0xeffffff -- this will not produce good
|
|
* mixing across all bits of the hash).
|
|
*
|
|
* The rotation length of 5 is also arbitrary, although an odd number is again
|
|
* preferable so our hash explores the whole universe of possible rotations.
|
|
*
|
|
* Finally, we multiply by the golden ratio *after* xor'ing, not before.
|
|
* Otherwise, if |aHash| is 0 (as it often is for the beginning of a
|
|
* message), the expression
|
|
*
|
|
* (kGoldenRatioU32 * RotateBitsLeft(aHash, 5)) |xor| aValue
|
|
*
|
|
* evaluates to |aValue|.
|
|
*
|
|
* (Number-theoretic aside: Because any odd number |m| is relatively prime to
|
|
* our modulus (2^32), the list
|
|
*
|
|
* [x * m (mod 2^32) for 0 <= x < 2^32]
|
|
*
|
|
* has no duplicate elements. This means that multiplying by |m| does not
|
|
* cause us to skip any possible hash values.
|
|
*
|
|
* It's also nice if |m| has large-ish order mod 2^32 -- that is, if the
|
|
* smallest k such that m^k == 1 (mod 2^32) is large -- so we can safely
|
|
* multiply our hash value by |m| a few times without negating the
|
|
* multiplicative effect. Our golden ratio constant has order 2^29, which is
|
|
* more than enough for our purposes.)
|
|
*/
|
|
return kGoldenRatioU32 * (RotateBitsLeft32(aHash, 5) ^ aValue);
|
|
}
|
|
|
|
/**
|
|
* AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
|
|
*/
|
|
template<size_t PtrSize>
|
|
inline uint32_t
|
|
AddUintptrToHash(uint32_t aHash, uintptr_t aValue);
|
|
|
|
template<>
|
|
inline uint32_t
|
|
AddUintptrToHash<4>(uint32_t aHash, uintptr_t aValue)
|
|
{
|
|
return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
|
|
}
|
|
|
|
template<>
|
|
inline uint32_t
|
|
AddUintptrToHash<8>(uint32_t aHash, uintptr_t aValue)
|
|
{
|
|
/*
|
|
* The static cast to uint64_t below is necessary because this function
|
|
* sometimes gets compiled on 32-bit platforms (yes, even though it's a
|
|
* template and we never call this particular override in a 32-bit build). If
|
|
* we do aValue >> 32 on a 32-bit machine, we're shifting a 32-bit uintptr_t
|
|
* right 32 bits, and the compiler throws an error.
|
|
*/
|
|
uint32_t v1 = static_cast<uint32_t>(aValue);
|
|
uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
|
|
return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
|
|
}
|
|
|
|
} /* namespace detail */
|
|
|
|
/**
|
|
* AddToHash takes a hash and some values and returns a new hash based on the
|
|
* inputs.
|
|
*
|
|
* Currently, we support hashing uint32_t's, values which we can implicitly
|
|
* convert to uint32_t, data pointers, and function pointers.
|
|
*/
|
|
template<typename A>
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
AddToHash(uint32_t aHash, A aA)
|
|
{
|
|
/*
|
|
* Try to convert |A| to uint32_t implicitly. If this works, great. If not,
|
|
* we'll error out.
|
|
*/
|
|
return detail::AddU32ToHash(aHash, aA);
|
|
}
|
|
|
|
template<typename A>
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
AddToHash(uint32_t aHash, A* aA)
|
|
{
|
|
/*
|
|
* You might think this function should just take a void*. But then we'd only
|
|
* catch data pointers and couldn't handle function pointers.
|
|
*/
|
|
|
|
static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
|
|
|
|
return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
|
|
}
|
|
|
|
template<>
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
AddToHash(uint32_t aHash, uintptr_t aA)
|
|
{
|
|
return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, aA);
|
|
}
|
|
|
|
template<typename A, typename... Args>
|
|
MOZ_WARN_UNUSED_RESULT uint32_t
|
|
AddToHash(uint32_t aHash, A aArg, Args... aArgs)
|
|
{
|
|
return AddToHash(AddToHash(aHash, aArg), aArgs...);
|
|
}
|
|
|
|
/**
|
|
* The HashGeneric class of functions let you hash one or more values.
|
|
*
|
|
* If you want to hash together two values x and y, calling HashGeneric(x, y) is
|
|
* much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
|
|
* that x has already been hashed.
|
|
*/
|
|
template<typename... Args>
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashGeneric(Args... aArgs)
|
|
{
|
|
return AddToHash(0, aArgs...);
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
template<typename T>
|
|
uint32_t
|
|
HashUntilZero(const T* aStr)
|
|
{
|
|
uint32_t hash = 0;
|
|
for (T c; (c = *aStr); aStr++) {
|
|
hash = AddToHash(hash, c);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
template<typename T>
|
|
uint32_t
|
|
HashKnownLength(const T* aStr, size_t aLength)
|
|
{
|
|
uint32_t hash = 0;
|
|
for (size_t i = 0; i < aLength; i++) {
|
|
hash = AddToHash(hash, aStr[i]);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
} /* namespace detail */
|
|
|
|
/**
|
|
* The HashString overloads below do just what you'd expect.
|
|
*
|
|
* If you have the string's length, you might as well call the overload which
|
|
* includes the length. It may be marginally faster.
|
|
*/
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const char* aStr)
|
|
{
|
|
return detail::HashUntilZero(reinterpret_cast<const unsigned char*>(aStr));
|
|
}
|
|
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const char* aStr, size_t aLength)
|
|
{
|
|
return detail::HashKnownLength(reinterpret_cast<const unsigned char*>(aStr), aLength);
|
|
}
|
|
|
|
MOZ_WARN_UNUSED_RESULT
|
|
inline uint32_t
|
|
HashString(const unsigned char* aStr, size_t aLength)
|
|
{
|
|
return detail::HashKnownLength(aStr, aLength);
|
|
}
|
|
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const uint16_t* aStr)
|
|
{
|
|
return detail::HashUntilZero(aStr);
|
|
}
|
|
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const uint16_t* aStr, size_t aLength)
|
|
{
|
|
return detail::HashKnownLength(aStr, aLength);
|
|
}
|
|
|
|
#ifdef MOZ_CHAR16_IS_NOT_WCHAR
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const char16_t* aStr)
|
|
{
|
|
return detail::HashUntilZero(aStr);
|
|
}
|
|
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const char16_t* aStr, size_t aLength)
|
|
{
|
|
return detail::HashKnownLength(aStr, aLength);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* On Windows, wchar_t (char16_t) is not the same as uint16_t, even though it's
|
|
* the same width!
|
|
*/
|
|
#ifdef WIN32
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const wchar_t* aStr)
|
|
{
|
|
return detail::HashUntilZero(aStr);
|
|
}
|
|
|
|
MOZ_WARN_UNUSED_RESULT inline uint32_t
|
|
HashString(const wchar_t* aStr, size_t aLength)
|
|
{
|
|
return detail::HashKnownLength(aStr, aLength);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Hash some number of bytes.
|
|
*
|
|
* This hash walks word-by-word, rather than byte-by-byte, so you won't get the
|
|
* same result out of HashBytes as you would out of HashString.
|
|
*/
|
|
MOZ_WARN_UNUSED_RESULT extern MFBT_API uint32_t
|
|
HashBytes(const void* bytes, size_t aLength);
|
|
|
|
/**
|
|
* A pseudorandom function mapping 32-bit integers to 32-bit integers.
|
|
*
|
|
* This is for when you're feeding private data (like pointer values or credit
|
|
* card numbers) to a non-crypto hash function (like HashBytes) and then using
|
|
* the hash code for something that untrusted parties could observe (like a JS
|
|
* Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
|
|
* private data.
|
|
*
|
|
* By itself, this does not prevent hash-flooding DoS attacks, because an
|
|
* attacker can still generate many values with exactly equal hash codes by
|
|
* attacking the non-crypto hash function alone. Equal hash codes will, of
|
|
* course, still be equal however much you scramble them.
|
|
*
|
|
* The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
|
|
*/
|
|
class HashCodeScrambler
|
|
{
|
|
struct SipHasher;
|
|
|
|
uint64_t mK0, mK1;
|
|
|
|
public:
|
|
/** Creates a new scrambler with the given 128-bit key. */
|
|
HashCodeScrambler(uint64_t aK0, uint64_t aK1) : mK0(aK0), mK1(aK1) {}
|
|
|
|
/**
|
|
* Scramble a hash code. Always produces the same result for the same
|
|
* combination of key and hash code.
|
|
*/
|
|
uint32_t scramble(uint32_t aHashCode) const
|
|
{
|
|
SipHasher hasher(mK0, mK1);
|
|
return uint32_t(hasher.sipHash(aHashCode));
|
|
}
|
|
|
|
private:
|
|
struct SipHasher
|
|
{
|
|
SipHasher(uint64_t aK0, uint64_t aK1)
|
|
{
|
|
// 1. Initialization.
|
|
mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
|
|
mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
|
|
mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
|
|
mV3 = aK1 ^ UINT64_C(0x7465646279746573);
|
|
}
|
|
|
|
uint64_t sipHash(uint64_t aM)
|
|
{
|
|
// 2. Compression.
|
|
mV3 ^= aM;
|
|
sipRound();
|
|
mV0 ^= aM;
|
|
|
|
// 3. Finalization.
|
|
mV2 ^= 0xff;
|
|
for (int i = 0; i < 3; i++)
|
|
sipRound();
|
|
return mV0 ^ mV1 ^ mV2 ^ mV3;
|
|
}
|
|
|
|
void sipRound()
|
|
{
|
|
mV0 += mV1;
|
|
mV1 = RotateLeft(mV1, 13);
|
|
mV1 ^= mV0;
|
|
mV0 = RotateLeft(mV0, 32);
|
|
mV2 += mV3;
|
|
mV3 = RotateLeft(mV3, 16);
|
|
mV3 ^= mV2;
|
|
mV0 += mV3;
|
|
mV3 = RotateLeft(mV3, 21);
|
|
mV3 ^= mV0;
|
|
mV2 += mV1;
|
|
mV1 = RotateLeft(mV1, 17);
|
|
mV1 ^= mV2;
|
|
mV2 = RotateLeft(mV2, 32);
|
|
}
|
|
|
|
uint64_t mV0, mV1, mV2, mV3;
|
|
};
|
|
};
|
|
|
|
} /* namespace mozilla */
|
|
#endif /* __cplusplus */
|
|
|
|
#endif /* mozilla_HashFunctions_h */
|