tenfourfox/security/pkix/lib/pkixder.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

609 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This code is made available to you under your choice of the following sets
* of licensing terms:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/* Copyright 2013 Mozilla Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pkixder.h"
#include "pkixutil.h"
namespace mozilla { namespace pkix { namespace der {
// Too complicated to be inline
Result
ReadTagAndGetValue(Reader& input, /*out*/ uint8_t& tag, /*out*/ Input& value)
{
Result rv;
rv = input.Read(tag);
if (rv != Success) {
return rv;
}
if ((tag & 0x1F) == 0x1F) {
return Result::ERROR_BAD_DER; // high tag number form not allowed
}
uint16_t length;
// The short form of length is a single byte with the high order bit set
// to zero. The long form of length is one byte with the high order bit
// set, followed by N bytes, where N is encoded in the lowest 7 bits of
// the first byte.
uint8_t length1;
rv = input.Read(length1);
if (rv != Success) {
return rv;
}
if (!(length1 & 0x80)) {
length = length1;
} else if (length1 == 0x81) {
uint8_t length2;
rv = input.Read(length2);
if (rv != Success) {
return rv;
}
if (length2 < 128) {
// Not shortest possible encoding
return Result::ERROR_BAD_DER;
}
length = length2;
} else if (length1 == 0x82) {
rv = input.Read(length);
if (rv != Success) {
return rv;
}
if (length < 256) {
// Not shortest possible encoding
return Result::ERROR_BAD_DER;
}
} else {
// We don't support lengths larger than 2^16 - 1.
return Result::ERROR_BAD_DER;
}
return input.Skip(length, value);
}
static Result
OptionalNull(Reader& input)
{
if (input.Peek(NULLTag)) {
return Null(input);
}
return Success;
}
namespace {
Result
AlgorithmIdentifierValue(Reader& input, /*out*/ Reader& algorithmOIDValue)
{
Result rv = ExpectTagAndGetValue(input, der::OIDTag, algorithmOIDValue);
if (rv != Success) {
return rv;
}
return OptionalNull(input);
}
} // unnamed namespace
Result
SignatureAlgorithmIdentifierValue(Reader& input,
/*out*/ PublicKeyAlgorithm& publicKeyAlgorithm,
/*out*/ DigestAlgorithm& digestAlgorithm)
{
// RFC 5758 Section 3.2 (ECDSA with SHA-2), and RFC 3279 Section 2.2.3
// (ECDSA with SHA-1) say that parameters must be omitted.
//
// RFC 4055 Section 5 and RFC 3279 Section 2.2.1 both say that parameters for
// RSA must be encoded as NULL; we relax that requirement by allowing the
// NULL to be omitted, to match all the other signature algorithms we support
// and for compatibility.
Reader algorithmID;
Result rv = AlgorithmIdentifierValue(input, algorithmID);
if (rv != Success) {
return rv;
}
// RFC 5758 Section 3.2 (ecdsa-with-SHA224 is intentionally excluded)
// python DottedOIDToCode.py ecdsa-with-SHA256 1.2.840.10045.4.3.2
static const uint8_t ecdsa_with_SHA256[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x02
};
// python DottedOIDToCode.py ecdsa-with-SHA384 1.2.840.10045.4.3.3
static const uint8_t ecdsa_with_SHA384[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x03
};
// python DottedOIDToCode.py ecdsa-with-SHA512 1.2.840.10045.4.3.4
static const uint8_t ecdsa_with_SHA512[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x04
};
// RFC 4055 Section 5 (sha224WithRSAEncryption is intentionally excluded)
// python DottedOIDToCode.py sha256WithRSAEncryption 1.2.840.113549.1.1.11
static const uint8_t sha256WithRSAEncryption[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0b
};
// python DottedOIDToCode.py sha384WithRSAEncryption 1.2.840.113549.1.1.12
static const uint8_t sha384WithRSAEncryption[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0c
};
// python DottedOIDToCode.py sha512WithRSAEncryption 1.2.840.113549.1.1.13
static const uint8_t sha512WithRSAEncryption[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0d
};
// RFC 3279 Section 2.2.1
// python DottedOIDToCode.py sha-1WithRSAEncryption 1.2.840.113549.1.1.5
static const uint8_t sha_1WithRSAEncryption[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05
};
// NIST Open Systems Environment (OSE) Implementor's Workshop (OIW)
// http://www.oiw.org/agreements/stable/12s-9412.txt (no longer works).
// http://www.imc.org/ietf-pkix/old-archive-97/msg01166.html
// We need to support this this non-PKIX OID for compatibility.
// python DottedOIDToCode.py sha1WithRSASignature 1.3.14.3.2.29
static const uint8_t sha1WithRSASignature[] = {
0x2b, 0x0e, 0x03, 0x02, 0x1d
};
// RFC 3279 Section 2.2.3
// python DottedOIDToCode.py ecdsa-with-SHA1 1.2.840.10045.4.1
static const uint8_t ecdsa_with_SHA1[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01
};
// Matching is attempted based on a rough estimate of the commonality of the
// algorithm, to minimize the number of MatchRest calls.
if (algorithmID.MatchRest(sha256WithRSAEncryption)) {
publicKeyAlgorithm = PublicKeyAlgorithm::RSA_PKCS1;
digestAlgorithm = DigestAlgorithm::sha256;
} else if (algorithmID.MatchRest(ecdsa_with_SHA256)) {
publicKeyAlgorithm = PublicKeyAlgorithm::ECDSA;
digestAlgorithm = DigestAlgorithm::sha256;
} else if (algorithmID.MatchRest(sha_1WithRSAEncryption)) {
publicKeyAlgorithm = PublicKeyAlgorithm::RSA_PKCS1;
digestAlgorithm = DigestAlgorithm::sha1;
} else if (algorithmID.MatchRest(ecdsa_with_SHA1)) {
publicKeyAlgorithm = PublicKeyAlgorithm::ECDSA;
digestAlgorithm = DigestAlgorithm::sha1;
} else if (algorithmID.MatchRest(ecdsa_with_SHA384)) {
publicKeyAlgorithm = PublicKeyAlgorithm::ECDSA;
digestAlgorithm = DigestAlgorithm::sha384;
} else if (algorithmID.MatchRest(ecdsa_with_SHA512)) {
publicKeyAlgorithm = PublicKeyAlgorithm::ECDSA;
digestAlgorithm = DigestAlgorithm::sha512;
} else if (algorithmID.MatchRest(sha384WithRSAEncryption)) {
publicKeyAlgorithm = PublicKeyAlgorithm::RSA_PKCS1;
digestAlgorithm = DigestAlgorithm::sha384;
} else if (algorithmID.MatchRest(sha512WithRSAEncryption)) {
publicKeyAlgorithm = PublicKeyAlgorithm::RSA_PKCS1;
digestAlgorithm = DigestAlgorithm::sha512;
} else if (algorithmID.MatchRest(sha1WithRSASignature)) {
// XXX(bug 1042479): recognize this old OID for compatibility.
publicKeyAlgorithm = PublicKeyAlgorithm::RSA_PKCS1;
digestAlgorithm = DigestAlgorithm::sha1;
} else {
return Result::ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED;
}
return Success;
}
Result
DigestAlgorithmIdentifier(Reader& input, /*out*/ DigestAlgorithm& algorithm)
{
Reader r;
return der::Nested(input, SEQUENCE, [&algorithm](Reader& r) -> Result {
Reader algorithmID;
Result rv = AlgorithmIdentifierValue(r, algorithmID);
if (rv != Success) {
return rv;
}
// RFC 4055 Section 2.1
// python DottedOIDToCode.py id-sha1 1.3.14.3.2.26
static const uint8_t id_sha1[] = {
0x2b, 0x0e, 0x03, 0x02, 0x1a
};
// python DottedOIDToCode.py id-sha256 2.16.840.1.101.3.4.2.1
static const uint8_t id_sha256[] = {
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01
};
// python DottedOIDToCode.py id-sha384 2.16.840.1.101.3.4.2.2
static const uint8_t id_sha384[] = {
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02
};
// python DottedOIDToCode.py id-sha512 2.16.840.1.101.3.4.2.3
static const uint8_t id_sha512[] = {
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03
};
// Matching is attempted based on a rough estimate of the commonality of the
// algorithm, to minimize the number of MatchRest calls.
if (algorithmID.MatchRest(id_sha1)) {
algorithm = DigestAlgorithm::sha1;
} else if (algorithmID.MatchRest(id_sha256)) {
algorithm = DigestAlgorithm::sha256;
} else if (algorithmID.MatchRest(id_sha384)) {
algorithm = DigestAlgorithm::sha384;
} else if (algorithmID.MatchRest(id_sha512)) {
algorithm = DigestAlgorithm::sha512;
} else {
return Result::ERROR_INVALID_ALGORITHM;
}
return Success;
});
}
Result
SignedData(Reader& input, /*out*/ Reader& tbs,
/*out*/ SignedDataWithSignature& signedData)
{
Reader::Mark mark(input.GetMark());
Result rv;
rv = ExpectTagAndGetValue(input, SEQUENCE, tbs);
if (rv != Success) {
return rv;
}
rv = input.GetInput(mark, signedData.data);
if (rv != Success) {
return rv;
}
rv = ExpectTagAndGetValue(input, der::SEQUENCE, signedData.algorithm);
if (rv != Success) {
return rv;
}
rv = BitStringWithNoUnusedBits(input, signedData.signature);
if (rv == Result::ERROR_BAD_DER) {
rv = Result::ERROR_BAD_SIGNATURE;
}
return rv;
}
Result
BitStringWithNoUnusedBits(Reader& input, /*out*/ Input& value)
{
Reader valueWithUnusedBits;
Result rv = ExpectTagAndGetValue(input, BIT_STRING, valueWithUnusedBits);
if (rv != Success) {
return rv;
}
uint8_t unusedBitsAtEnd;
if (valueWithUnusedBits.Read(unusedBitsAtEnd) != Success) {
return Result::ERROR_BAD_DER;
}
// XXX: Really the constraint should be that unusedBitsAtEnd must be less
// than 7. But, we suspect there are no real-world values in OCSP responses
// or certificates with non-zero unused bits. It seems like NSS assumes this
// in various places, so we enforce it too in order to simplify this code. If
// we find compatibility issues, we'll know we're wrong and we'll have to
// figure out how to shift the bits around.
if (unusedBitsAtEnd != 0) {
return Result::ERROR_BAD_DER;
}
return valueWithUnusedBits.SkipToEnd(value);
}
static inline Result
ReadDigit(Reader& input, /*out*/ unsigned int& value)
{
uint8_t b;
if (input.Read(b) != Success) {
return Result::ERROR_INVALID_DER_TIME;
}
if (b < '0' || b > '9') {
return Result::ERROR_INVALID_DER_TIME;
}
value = static_cast<unsigned int>(b - static_cast<uint8_t>('0'));
return Success;
}
static inline Result
ReadTwoDigits(Reader& input, unsigned int minValue, unsigned int maxValue,
/*out*/ unsigned int& value)
{
unsigned int hi;
Result rv = ReadDigit(input, hi);
if (rv != Success) {
return rv;
}
unsigned int lo;
rv = ReadDigit(input, lo);
if (rv != Success) {
return rv;
}
value = (hi * 10) + lo;
if (value < minValue || value > maxValue) {
return Result::ERROR_INVALID_DER_TIME;
}
return Success;
}
namespace internal {
// We parse GeneralizedTime and UTCTime according to RFC 5280 and we do not
// accept all time formats allowed in the ASN.1 spec. That is,
// GeneralizedTime must always be in the format YYYYMMDDHHMMSSZ and UTCTime
// must always be in the format YYMMDDHHMMSSZ. Timezone formats of the form
// +HH:MM or -HH:MM or NOT accepted.
Result
TimeChoice(Reader& tagged, uint8_t expectedTag, /*out*/ Time& time)
{
unsigned int days;
Reader input;
Result rv = ExpectTagAndGetValue(tagged, expectedTag, input);
if (rv != Success) {
return rv;
}
unsigned int yearHi;
unsigned int yearLo;
if (expectedTag == GENERALIZED_TIME) {
rv = ReadTwoDigits(input, 0, 99, yearHi);
if (rv != Success) {
return rv;
}
rv = ReadTwoDigits(input, 0, 99, yearLo);
if (rv != Success) {
return rv;
}
} else if (expectedTag == UTCTime) {
rv = ReadTwoDigits(input, 0, 99, yearLo);
if (rv != Success) {
return rv;
}
yearHi = yearLo >= 50u ? 19u : 20u;
} else {
return NotReached("invalid tag given to TimeChoice",
Result::ERROR_INVALID_DER_TIME);
}
unsigned int year = (yearHi * 100u) + yearLo;
if (year < 1970u) {
// We don't support dates before January 1, 1970 because that is the epoch.
return Result::ERROR_INVALID_DER_TIME;
}
days = DaysBeforeYear(year);
unsigned int month;
rv = ReadTwoDigits(input, 1u, 12u, month);
if (rv != Success) {
return rv;
}
unsigned int daysInMonth;
static const unsigned int jan = 31u;
const unsigned int feb = ((year % 4u == 0u) &&
((year % 100u != 0u) || (year % 400u == 0u)))
? 29u
: 28u;
static const unsigned int mar = 31u;
static const unsigned int apr = 30u;
static const unsigned int may = 31u;
static const unsigned int jun = 30u;
static const unsigned int jul = 31u;
static const unsigned int aug = 31u;
static const unsigned int sep = 30u;
static const unsigned int oct = 31u;
static const unsigned int nov = 30u;
static const unsigned int dec = 31u;
switch (month) {
case 1: daysInMonth = jan; break;
case 2: daysInMonth = feb; days += jan; break;
case 3: daysInMonth = mar; days += jan + feb; break;
case 4: daysInMonth = apr; days += jan + feb + mar; break;
case 5: daysInMonth = may; days += jan + feb + mar + apr; break;
case 6: daysInMonth = jun; days += jan + feb + mar + apr + may; break;
case 7: daysInMonth = jul; days += jan + feb + mar + apr + may + jun;
break;
case 8: daysInMonth = aug; days += jan + feb + mar + apr + may + jun +
jul;
break;
case 9: daysInMonth = sep; days += jan + feb + mar + apr + may + jun +
jul + aug;
break;
case 10: daysInMonth = oct; days += jan + feb + mar + apr + may + jun +
jul + aug + sep;
break;
case 11: daysInMonth = nov; days += jan + feb + mar + apr + may + jun +
jul + aug + sep + oct;
break;
case 12: daysInMonth = dec; days += jan + feb + mar + apr + may + jun +
jul + aug + sep + oct + nov;
break;
default:
return NotReached("month already bounds-checked by ReadTwoDigits",
Result::FATAL_ERROR_INVALID_STATE);
}
unsigned int dayOfMonth;
rv = ReadTwoDigits(input, 1u, daysInMonth, dayOfMonth);
if (rv != Success) {
return rv;
}
days += dayOfMonth - 1;
unsigned int hours;
rv = ReadTwoDigits(input, 0u, 23u, hours);
if (rv != Success) {
return rv;
}
unsigned int minutes;
rv = ReadTwoDigits(input, 0u, 59u, minutes);
if (rv != Success) {
return rv;
}
unsigned int seconds;
rv = ReadTwoDigits(input, 0u, 59u, seconds);
if (rv != Success) {
return rv;
}
uint8_t b;
if (input.Read(b) != Success) {
return Result::ERROR_INVALID_DER_TIME;
}
if (b != 'Z') {
return Result::ERROR_INVALID_DER_TIME;
}
if (End(input) != Success) {
return Result::ERROR_INVALID_DER_TIME;
}
uint64_t totalSeconds = (static_cast<uint64_t>(days) * 24u * 60u * 60u) +
(static_cast<uint64_t>(hours) * 60u * 60u) +
(static_cast<uint64_t>(minutes) * 60u) +
seconds;
time = TimeFromElapsedSecondsAD(totalSeconds);
return Success;
}
Result
IntegralBytes(Reader& input, uint8_t tag,
IntegralValueRestriction valueRestriction,
/*out*/ Input& value,
/*optional out*/ Input::size_type* significantBytes)
{
Result rv = ExpectTagAndGetValue(input, tag, value);
if (rv != Success) {
return rv;
}
Reader reader(value);
// There must be at least one byte in the value. (Zero is encoded with a
// single 0x00 value byte.)
uint8_t firstByte;
rv = reader.Read(firstByte);
if (rv != Success) {
return rv;
}
// If there is a byte after an initial 0x00/0xFF, then the initial byte
// indicates a positive/negative integer value with its high bit set/unset.
bool prefixed = !reader.AtEnd() && (firstByte == 0 || firstByte == 0xff);
if (prefixed) {
uint8_t nextByte;
if (reader.Read(nextByte) != Success) {
return NotReached("Read of one byte failed but not at end.",
Result::FATAL_ERROR_LIBRARY_FAILURE);
}
if ((firstByte & 0x80) == (nextByte & 0x80)) {
return Result::ERROR_BAD_DER;
}
}
switch (valueRestriction) {
case IntegralValueRestriction::MustBe0To127:
if (value.GetLength() != 1 || (firstByte & 0x80) != 0) {
return Result::ERROR_BAD_DER;
}
break;
case IntegralValueRestriction::MustBePositive:
if ((value.GetLength() == 1 && firstByte == 0) ||
(firstByte & 0x80) != 0) {
return Result::ERROR_BAD_DER;
}
break;
case IntegralValueRestriction::NoRestriction:
break;
}
if (significantBytes) {
*significantBytes = value.GetLength();
if (prefixed) {
assert(*significantBytes > 1);
--*significantBytes;
}
assert(*significantBytes > 0);
}
return Success;
}
// This parser will only parse values between 0..127. If this range is
// increased then callers will need to be changed.
Result
IntegralValue(Reader& input, uint8_t tag, /*out*/ uint8_t& value)
{
// Conveniently, all the Integers that we actually have to be able to parse
// are positive and very small. Consequently, this parser is *much* simpler
// than a general Integer parser would need to be.
Input valueBytes;
Result rv = IntegralBytes(input, tag, IntegralValueRestriction::MustBe0To127,
valueBytes, nullptr);
if (rv != Success) {
return rv;
}
Reader valueReader(valueBytes);
rv = valueReader.Read(value);
if (rv != Success) {
return NotReached("IntegralBytes already validated the value.", rv);
}
rv = End(valueReader);
assert(rv == Success); // guaranteed by IntegralBytes's range checks.
return rv;
}
} // namespace internal
Result
OptionalVersion(Reader& input, /*out*/ Version& version)
{
static const uint8_t TAG = CONTEXT_SPECIFIC | CONSTRUCTED | 0;
if (!input.Peek(TAG)) {
version = Version::v1;
return Success;
}
return Nested(input, TAG, [&version](Reader& value) -> Result {
uint8_t integerValue;
Result rv = Integer(value, integerValue);
if (rv != Success) {
return rv;
}
// XXX(bug 1031093): We shouldn't accept an explicit encoding of v1,
// but we do here for compatibility reasons.
switch (integerValue) {
case static_cast<uint8_t>(Version::v3): version = Version::v3; break;
case static_cast<uint8_t>(Version::v2): version = Version::v2; break;
case static_cast<uint8_t>(Version::v1): version = Version::v1; break;
case static_cast<uint8_t>(Version::v4): version = Version::v4; break;
default:
return Result::ERROR_BAD_DER;
}
return Success;
});
}
} } } // namespace mozilla::pkix::der