tenfourfox/ipc/ipdl/ipdl/type.py
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

2174 lines
74 KiB
Python

# vim: set ts=4 sw=4 tw=99 et:
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import os, sys
from ipdl.ast import CxxInclude, Decl, Loc, QualifiedId, State, StructDecl, TransitionStmt
from ipdl.ast import TypeSpec, UnionDecl, UsingStmt, Visitor
from ipdl.ast import ASYNC, SYNC, INTR
from ipdl.ast import IN, OUT, INOUT, ANSWER, CALL, RECV, SEND
from ipdl.ast import NORMAL_PRIORITY, HIGH_PRIORITY, URGENT_PRIORITY
import ipdl.builtin as builtin
_DELETE_MSG = '__delete__'
def _otherside(side):
if side == 'parent': return 'child'
elif side == 'child': return 'parent'
else: assert 0 and 'unknown side "%s"'% (side)
def unique_pairs(s):
n = len(s)
for i, e1 in enumerate(s):
for j in xrange(i+1, n):
yield (e1, s[j])
def cartesian_product(s1, s2):
for e1 in s1:
for e2 in s2:
yield (e1, e2)
class TypeVisitor:
def __init__(self):
self.visited = set()
def defaultVisit(self, node, *args):
raise Exception, "INTERNAL ERROR: no visitor for node type `%s'"% (
node.__class__.__name__)
def visitVoidType(self, v, *args):
pass
def visitBuiltinCxxType(self, t, *args):
pass
def visitImportedCxxType(self, t, *args):
pass
def visitStateType(self, s, *args):
pass
def visitMessageType(self, m, *args):
for param in m.params:
param.accept(self, *args)
for ret in m.returns:
ret.accept(self, *args)
if m.cdtype is not None:
m.cdtype.accept(self, *args)
def visitProtocolType(self, p, *args):
# NB: don't visit manager and manages. a naive default impl
# could result in an infinite loop
pass
def visitActorType(self, a, *args):
a.protocol.accept(self, *args)
a.state.accept(self, *args)
def visitStructType(self, s, *args):
if s in self.visited:
return
self.visited.add(s)
for field in s.fields:
field.accept(self, *args)
def visitUnionType(self, u, *args):
if u in self.visited:
return
self.visited.add(u)
for component in u.components:
component.accept(self, *args)
def visitArrayType(self, a, *args):
a.basetype.accept(self, *args)
def visitShmemType(self, s, *args):
pass
def visitShmemChmodType(self, c, *args):
c.shmem.accept(self)
def visitFDType(self, s, *args):
pass
class Type:
def __cmp__(self, o):
return cmp(self.fullname(), o.fullname())
def __eq__(self, o):
return (self.__class__ == o.__class__
and self.fullname() == o.fullname())
def __hash__(self):
return hash(self.fullname())
# Is this a C++ type?
def isCxx(self):
return False
# Is this an IPDL type?
def isIPDL(self):
return False
# Is this type neither compound nor an array?
def isAtom(self):
return False
# Can this type appear in IPDL programs?
def isVisible(self):
return False
def isVoid(self):
return False
def typename(self):
return self.__class__.__name__
def name(self): raise Exception, 'NYI'
def fullname(self): raise Exception, 'NYI'
def accept(self, visitor, *args):
visit = getattr(visitor, 'visit'+ self.__class__.__name__, None)
if visit is None:
return getattr(visitor, 'defaultVisit')(self, *args)
return visit(self, *args)
class VoidType(Type):
def isCxx(self):
return True
def isIPDL(self):
return False
def isAtom(self):
return True
def isVisible(self):
return False
def isVoid(self):
return True
def name(self): return 'void'
def fullname(self): return 'void'
VOID = VoidType()
##--------------------
class CxxType(Type):
def isCxx(self):
return True
def isAtom(self):
return True
def isBuiltin(self):
return False
def isImported(self):
return False
def isGenerated(self):
return False
def isVisible(self):
return True
class BuiltinCxxType(CxxType):
def __init__(self, qname):
assert isinstance(qname, QualifiedId)
self.loc = qname.loc
self.qname = qname
def isBuiltin(self): return True
def name(self):
return self.qname.baseid
def fullname(self):
return str(self.qname)
class ImportedCxxType(CxxType):
def __init__(self, qname):
assert isinstance(qname, QualifiedId)
self.loc = qname.loc
self.qname = qname
def isImported(self): return True
def name(self):
return self.qname.baseid
def fullname(self):
return str(self.qname)
##--------------------
class IPDLType(Type):
def isIPDL(self): return True
def isVisible(self): return True
def isState(self): return False
def isMessage(self): return False
def isProtocol(self): return False
def isActor(self): return False
def isStruct(self): return False
def isUnion(self): return False
def isArray(self): return False
def isAtom(self): return True
def isCompound(self): return False
def isShmem(self): return False
def isChmod(self): return False
def isFD(self): return False
def isAsync(self): return self.sendSemantics == ASYNC
def isSync(self): return self.sendSemantics == SYNC
def isInterrupt(self): return self.sendSemantics is INTR
def hasReply(self): return (self.isSync() or self.isInterrupt())
@classmethod
def convertsTo(cls, lesser, greater):
if (lesser.priorityRange[0] < greater.priorityRange[0] or
lesser.priorityRange[1] > greater.priorityRange[1]):
return False
# Protocols that use intr semantics are not allowed to use
# message priorities.
if (greater.isInterrupt() and
lesser.priorityRange != (NORMAL_PRIORITY, NORMAL_PRIORITY)):
return False
if lesser.isAsync():
return True
elif lesser.isSync() and not greater.isAsync():
return True
elif greater.isInterrupt():
return True
return False
def needsMoreJuiceThan(self, o):
return not IPDLType.convertsTo(self, o)
class StateType(IPDLType):
def __init__(self, protocol, name, start=False):
self.protocol = protocol
self.name = name
self.start = start
def isState(self): return True
def name(self):
return self.name
def fullname(self):
return self.name()
class MessageType(IPDLType):
def __init__(self, priority, sendSemantics, direction,
ctor=False, dtor=False, cdtype=None, compress=False):
assert not (ctor and dtor)
assert not (ctor or dtor) or type is not None
self.priority = priority
self.priorityRange = (priority, priority)
self.sendSemantics = sendSemantics
self.direction = direction
self.params = [ ]
self.returns = [ ]
self.ctor = ctor
self.dtor = dtor
self.cdtype = cdtype
self.compress = compress
def isMessage(self): return True
def isCtor(self): return self.ctor
def isDtor(self): return self.dtor
def constructedType(self): return self.cdtype
def isIn(self): return self.direction is IN
def isOut(self): return self.direction is OUT
def isInout(self): return self.direction is INOUT
def hasImplicitActorParam(self):
return self.isCtor() or self.isDtor()
class Bridge:
def __init__(self, parentPtype, childPtype):
assert parentPtype.isToplevel() and childPtype.isToplevel()
self.parent = parentPtype
self.child = childPtype
def __cmp__(self, o):
return cmp(self.parent, o.parent) or cmp(self.child, o.child)
def __eq__(self, o):
return self.parent == o.parent and self.child == o.child
def __hash__(self):
return hash(self.parent) + hash(self.child)
class ProtocolType(IPDLType):
def __init__(self, qname, priorityRange, sendSemantics, stateless=False):
self.qname = qname
self.priorityRange = priorityRange
self.sendSemantics = sendSemantics
self.spawns = set() # ProtocolType
self.opens = set() # ProtocolType
self.managers = [] # ProtocolType
self.manages = [ ]
self.stateless = stateless
self.hasDelete = False
self.hasReentrantDelete = False
def isProtocol(self): return True
def name(self):
return self.qname.baseid
def fullname(self):
return str(self.qname)
def addManager(self, mgrtype):
assert mgrtype.isIPDL() and mgrtype.isProtocol()
self.managers.append(mgrtype)
def addSpawn(self, ptype):
assert self.isToplevel() and ptype.isToplevel()
self.spawns.add(ptype)
def addOpen(self, ptype):
assert self.isToplevel() and ptype.isToplevel()
self.opens.add(ptype)
def managedBy(self, mgr):
self.managers = list(mgr)
def toplevel(self):
if self.isToplevel():
return self
for mgr in self.managers:
if mgr is not self:
return mgr.toplevel()
def toplevels(self):
if self.isToplevel():
return [self]
toplevels = list()
for mgr in self.managers:
if mgr is not self:
toplevels.extend(mgr.toplevels())
return set(toplevels)
def isManagerOf(self, pt):
for managed in self.manages:
if pt is managed:
return True
return False
def isManagedBy(self, pt):
return pt in self.managers
def isManager(self):
return len(self.manages) > 0
def isManaged(self):
return 0 < len(self.managers)
def isToplevel(self):
return not self.isManaged()
def manager(self):
assert 1 == len(self.managers)
for mgr in self.managers: return mgr
class ActorType(IPDLType):
def __init__(self, protocol, state=None, nullable=0):
self.protocol = protocol
self.state = state
self.nullable = nullable
def isActor(self): return True
def name(self):
return self.protocol.name()
def fullname(self):
return self.protocol.fullname()
class _CompoundType(IPDLType):
def __init__(self):
self.defined = False # bool
self.mutualRec = set() # set(_CompoundType | ArrayType)
def isAtom(self):
return False
def isCompound(self):
return True
def itercomponents(self):
raise Exception('"pure virtual" method')
def mutuallyRecursiveWith(self, t, exploring=None):
'''|self| is mutually recursive with |t| iff |self| and |t|
are in a cycle in the type graph rooted at |self|. This function
looks for such a cycle and returns True if found.'''
if exploring is None:
exploring = set()
if t.isAtom():
return False
elif t is self or t in self.mutualRec:
return True
elif t.isArray():
isrec = self.mutuallyRecursiveWith(t.basetype, exploring)
if isrec: self.mutualRec.add(t)
return isrec
elif t in exploring:
return False
exploring.add(t)
for c in t.itercomponents():
if self.mutuallyRecursiveWith(c, exploring):
self.mutualRec.add(c)
return True
exploring.remove(t)
return False
class StructType(_CompoundType):
def __init__(self, qname, fields):
_CompoundType.__init__(self)
self.qname = qname
self.fields = fields # [ Type ]
def isStruct(self): return True
def itercomponents(self):
for f in self.fields:
yield f
def name(self): return self.qname.baseid
def fullname(self): return str(self.qname)
class UnionType(_CompoundType):
def __init__(self, qname, components):
_CompoundType.__init__(self)
self.qname = qname
self.components = components # [ Type ]
def isUnion(self): return True
def itercomponents(self):
for c in self.components:
yield c
def name(self): return self.qname.baseid
def fullname(self): return str(self.qname)
class ArrayType(IPDLType):
def __init__(self, basetype):
self.basetype = basetype
def isAtom(self): return False
def isArray(self): return True
def name(self): return self.basetype.name() +'[]'
def fullname(self): return self.basetype.fullname() +'[]'
class ShmemType(IPDLType):
def __init__(self, qname):
self.qname = qname
def isShmem(self): return True
def name(self):
return self.qname.baseid
def fullname(self):
return str(self.qname)
class FDType(IPDLType):
def __init__(self, qname):
self.qname = qname
def isFD(self): return True
def name(self):
return self.qname.baseid
def fullname(self):
return str(self.qname)
def iteractortypes(t, visited=None):
"""Iterate over any actor(s) buried in |type|."""
if visited is None:
visited = set()
# XXX |yield| semantics makes it hard to use TypeVisitor
if not t.isIPDL():
return
elif t.isActor():
yield t
elif t.isArray():
for actor in iteractortypes(t.basetype, visited):
yield actor
elif t.isCompound() and t not in visited:
visited.add(t)
for c in t.itercomponents():
for actor in iteractortypes(c, visited):
yield actor
def hasactor(type):
"""Return true iff |type| is an actor or has one buried within."""
for _ in iteractortypes(type): return True
return False
def hasshmem(type):
"""Return true iff |type| is shmem or has it buried within."""
class found: pass
class findShmem(TypeVisitor):
def visitShmemType(self, s): raise found()
try:
type.accept(findShmem())
except found:
return True
return False
def hasfd(type):
"""Return true iff |type| is fd or has it buried within."""
class found: pass
class findFD(TypeVisitor):
def visitFDType(self, s): raise found()
try:
type.accept(findFD())
except found:
return True
return False
##--------------------
_builtinloc = Loc('<builtin>', 0)
def makeBuiltinUsing(tname):
quals = tname.split('::')
base = quals.pop()
quals = quals[0:]
return UsingStmt(_builtinloc,
TypeSpec(_builtinloc,
QualifiedId(_builtinloc, base, quals)))
builtinUsing = [ makeBuiltinUsing(t) for t in builtin.Types ]
builtinHeaderIncludes = [ CxxInclude(_builtinloc, f) for f in builtin.HeaderIncludes ]
def errormsg(loc, fmt, *args):
while not isinstance(loc, Loc):
if loc is None: loc = Loc.NONE
else: loc = loc.loc
return '%s: error: %s'% (str(loc), fmt % args)
##--------------------
class SymbolTable:
def __init__(self, errors):
self.errors = errors
self.scopes = [ { } ] # stack({})
self.globalScope = self.scopes[0]
self.currentScope = self.globalScope
def enterScope(self, node):
assert (isinstance(self.scopes[0], dict)
and self.globalScope is self.scopes[0])
assert (isinstance(self.currentScope, dict))
if not hasattr(node, 'symtab'):
node.symtab = { }
self.scopes.append(node.symtab)
self.currentScope = self.scopes[-1]
def exitScope(self, node):
symtab = self.scopes.pop()
assert self.currentScope is symtab
self.currentScope = self.scopes[-1]
assert (isinstance(self.scopes[0], dict)
and self.globalScope is self.scopes[0])
assert isinstance(self.currentScope, dict)
def lookup(self, sym):
# NB: since IPDL doesn't allow any aliased names of different types,
# it doesn't matter in which order we walk the scope chain to resolve
# |sym|
for scope in self.scopes:
decl = scope.get(sym, None)
if decl is not None: return decl
return None
def declare(self, decl):
assert decl.progname or decl.shortname or decl.fullname
assert decl.loc
assert decl.type
def tryadd(name):
olddecl = self.lookup(name)
if olddecl is not None:
self.errors.append(errormsg(
decl.loc,
"redeclaration of symbol `%s', first declared at %s",
name, olddecl.loc))
return
self.currentScope[name] = decl
decl.scope = self.currentScope
if decl.progname: tryadd(decl.progname)
if decl.shortname: tryadd(decl.shortname)
if decl.fullname: tryadd(decl.fullname)
class TypeCheck:
'''This pass sets the .type attribute of every AST node. For some
nodes, the type is meaningless and it is set to "VOID." This pass
also sets the .decl attribute of AST nodes for which that is relevant;
a decl says where, with what type, and under what name(s) a node was
declared.
With this information, it finally type checks the AST.'''
def __init__(self):
# NB: no IPDL compile will EVER print a warning. A program has
# one of two attributes: it is either well typed, or not well typed.
self.errors = [ ] # [ string ]
def check(self, tu, errout=sys.stderr):
def runpass(tcheckpass):
tu.accept(tcheckpass)
if len(self.errors):
self.reportErrors(errout)
return False
return True
# tag each relevant node with "decl" information, giving type, name,
# and location of declaration
if not runpass(GatherDecls(builtinUsing, self.errors)):
return False
# now that the nodes have decls, type checking is much easier.
if not runpass(CheckTypes(self.errors)):
return False
if not (runpass(BuildProcessGraph(self.errors))
and runpass(CheckProcessGraph(self.errors))):
return False
if (tu.protocol
and len(tu.protocol.startStates)
and not runpass(CheckStateMachine(self.errors))):
return False
return True
def reportErrors(self, errout):
for error in self.errors:
print >>errout, error
class TcheckVisitor(Visitor):
def __init__(self, symtab, errors):
self.symtab = symtab
self.errors = errors
def error(self, loc, fmt, *args):
self.errors.append(errormsg(loc, fmt, *args))
def declare(self, loc, type, shortname=None, fullname=None, progname=None):
d = Decl(loc)
d.type = type
d.progname = progname
d.shortname = shortname
d.fullname = fullname
self.symtab.declare(d)
return d
class GatherDecls(TcheckVisitor):
def __init__(self, builtinUsing, errors):
# |self.symtab| is the symbol table for the translation unit
# currently being visited
TcheckVisitor.__init__(self, None, errors)
self.builtinUsing = builtinUsing
def visitTranslationUnit(self, tu):
# all TranslationUnits declare symbols in global scope
if hasattr(tu, 'symtab'):
return
tu.symtab = SymbolTable(self.errors)
savedSymtab = self.symtab
self.symtab = tu.symtab
# pretend like the translation unit "using"-ed these for the
# sake of type checking and C++ code generation
tu.builtinUsing = self.builtinUsing
# for everyone's sanity, enforce that the filename and tu name
# match
basefilename = os.path.basename(tu.filename)
expectedfilename = '%s.ipdl'% (tu.name)
if not tu.protocol:
# header
expectedfilename += 'h'
if basefilename != expectedfilename:
self.error(tu.loc,
"expected file for translation unit `%s' to be named `%s'; instead it's named `%s'",
tu.name, expectedfilename, basefilename)
if tu.protocol:
assert tu.name == tu.protocol.name
p = tu.protocol
# FIXME/cjones: it's a little weird and counterintuitive
# to put both the namespace and non-namespaced name in the
# global scope. try to figure out something better; maybe
# a type-neutral |using| that works for C++ and protocol
# types?
qname = p.qname()
if 0 == len(qname.quals):
fullname = None
else:
fullname = str(qname)
p.decl = self.declare(
loc=p.loc,
type=ProtocolType(qname, p.priorityRange, p.sendSemantics,
stateless=(0 == len(p.transitionStmts))),
shortname=p.name,
fullname=fullname)
# XXX ugh, this sucks. but we need this information to compute
# what friend decls we need in generated C++
p.decl.type._ast = p
# make sure we have decls for all dependent protocols
for pinc in tu.includes:
pinc.accept(self)
# declare imported (and builtin) C++ types
for using in tu.builtinUsing:
using.accept(self)
for using in tu.using:
using.accept(self)
# first pass to "forward-declare" all structs and unions in
# order to support recursive definitions
for su in tu.structsAndUnions:
self.declareStructOrUnion(su)
# second pass to check each definition
for su in tu.structsAndUnions:
su.accept(self)
for inc in tu.includes:
if inc.tu.filetype == 'header':
for su in inc.tu.structsAndUnions:
su.accept(self)
if tu.protocol:
# grab symbols in the protocol itself
p.accept(self)
tu.type = VOID
self.symtab = savedSymtab
def declareStructOrUnion(self, su):
if hasattr(su, 'decl'):
self.symtab.declare(su.decl)
return
qname = su.qname()
if 0 == len(qname.quals):
fullname = None
else:
fullname = str(qname)
if isinstance(su, StructDecl):
sutype = StructType(qname, [ ])
elif isinstance(su, UnionDecl):
sutype = UnionType(qname, [ ])
else: assert 0 and 'unknown type'
# XXX more suckage. this time for pickling structs/unions
# declared in headers.
sutype._ast = su
su.decl = self.declare(
loc=su.loc,
type=sutype,
shortname=su.name,
fullname=fullname)
def visitInclude(self, inc):
if inc.tu is None:
self.error(
inc.loc,
"(type checking here will be unreliable because of an earlier error)")
return
inc.tu.accept(self)
if inc.tu.protocol:
self.symtab.declare(inc.tu.protocol.decl)
else:
# This is a header. Import its "exported" globals into
# our scope.
for using in inc.tu.using:
using.accept(self)
for su in inc.tu.structsAndUnions:
self.declareStructOrUnion(su)
def visitStructDecl(self, sd):
# If we've already processed this struct, don't do it again.
if hasattr(sd, 'symtab'):
return
stype = sd.decl.type
self.symtab.enterScope(sd)
for f in sd.fields:
ftypedecl = self.symtab.lookup(str(f.typespec))
if ftypedecl is None:
self.error(f.loc, "field `%s' of struct `%s' has unknown type `%s'",
f.name, sd.name, str(f.typespec))
continue
f.decl = self.declare(
loc=f.loc,
type=self._canonicalType(ftypedecl.type, f.typespec),
shortname=f.name,
fullname=None)
stype.fields.append(f.decl.type)
self.symtab.exitScope(sd)
def visitUnionDecl(self, ud):
utype = ud.decl.type
# If we've already processed this union, don't do it again.
if len(utype.components):
return
for c in ud.components:
cdecl = self.symtab.lookup(str(c))
if cdecl is None:
self.error(c.loc, "unknown component type `%s' of union `%s'",
str(c), ud.name)
continue
utype.components.append(self._canonicalType(cdecl.type, c))
def visitUsingStmt(self, using):
fullname = str(using.type)
if using.type.basename() == fullname:
fullname = None
if fullname == 'mozilla::ipc::Shmem':
ipdltype = ShmemType(using.type.spec)
elif fullname == 'mozilla::ipc::FileDescriptor':
ipdltype = FDType(using.type.spec)
else:
ipdltype = ImportedCxxType(using.type.spec)
existingType = self.symtab.lookup(ipdltype.fullname())
if existingType and existingType.fullname == ipdltype.fullname():
using.decl = existingType
return
using.decl = self.declare(
loc=using.loc,
type=ipdltype,
shortname=using.type.basename(),
fullname=fullname)
def visitProtocol(self, p):
# protocol scope
self.symtab.enterScope(p)
for spawns in p.spawnsStmts:
spawns.accept(self)
for bridges in p.bridgesStmts:
bridges.accept(self)
for opens in p.opensStmts:
opens.accept(self)
seenmgrs = set()
for mgr in p.managers:
if mgr.name in seenmgrs:
self.error(mgr.loc, "manager `%s' appears multiple times",
mgr.name)
continue
seenmgrs.add(mgr.name)
mgr.of = p
mgr.accept(self)
for managed in p.managesStmts:
managed.manager = p
managed.accept(self)
if 0 == len(p.managers) and 0 == len(p.messageDecls):
self.error(p.loc,
"top-level protocol `%s' cannot be empty",
p.name)
setattr(self, 'currentProtocolDecl', p.decl)
for msg in p.messageDecls:
msg.accept(self)
del self.currentProtocolDecl
p.decl.type.hasDelete = (not not self.symtab.lookup(_DELETE_MSG))
if not (p.decl.type.hasDelete or p.decl.type.isToplevel()):
self.error(
p.loc,
"destructor declaration `%s(...)' required for managed protocol `%s'",
_DELETE_MSG, p.name)
p.decl.type.hasReentrantDelete = p.decl.type.hasDelete and self.symtab.lookup(_DELETE_MSG).type.isInterrupt()
for managed in p.managesStmts:
mgdname = managed.name
ctordecl = self.symtab.lookup(mgdname +'Constructor')
if not (ctordecl and ctordecl.type.isCtor()):
self.error(
managed.loc,
"constructor declaration required for managed protocol `%s' (managed by protocol `%s')",
mgdname, p.name)
p.states = { }
if len(p.transitionStmts):
p.startStates = [ ts for ts in p.transitionStmts
if ts.state.start ]
if 0 == len(p.startStates):
p.startStates = [ p.transitionStmts[0] ]
# declare implicit "any", "dead", and "dying" states
self.declare(loc=State.ANY.loc,
type=StateType(p.decl.type, State.ANY.name, start=False),
progname=State.ANY.name)
self.declare(loc=State.DEAD.loc,
type=StateType(p.decl.type, State.DEAD.name, start=False),
progname=State.DEAD.name)
if p.decl.type.hasReentrantDelete:
self.declare(loc=State.DYING.loc,
type=StateType(p.decl.type, State.DYING.name, start=False),
progname=State.DYING.name)
# declare each state before decorating their mention
for trans in p.transitionStmts:
p.states[trans.state] = trans
trans.state.decl = self.declare(
loc=trans.state.loc,
type=StateType(p.decl.type, trans.state, trans.state.start),
progname=trans.state.name)
for trans in p.transitionStmts:
self.seentriggers = set()
trans.accept(self)
if not (p.decl.type.stateless
or (p.decl.type.isToplevel()
and None is self.symtab.lookup(_DELETE_MSG))):
# add a special state |state DEAD: null goto DEAD;|
deadtrans = TransitionStmt.makeNullStmt(State.DEAD)
p.states[State.DEAD] = deadtrans
if p.decl.type.hasReentrantDelete:
dyingtrans = TransitionStmt.makeNullStmt(State.DYING)
p.states[State.DYING] = dyingtrans
# visit the message decls once more and resolve the state names
# attached to actor params and returns
def resolvestate(loc, actortype):
assert actortype.isIPDL() and actortype.isActor()
# already resolved this guy's state
if isinstance(actortype.state, Decl):
return
if actortype.state is None:
# we thought this was a C++ type until type checking,
# when we realized it was an IPDL actor type. But
# that means that the actor wasn't specified to be in
# any particular state
actortype.state = State.ANY
statename = actortype.state.name
# FIXME/cjones: this is just wrong. we need the symbol table
# of the protocol this actor refers to. low priority bug
# since nobody's using this feature yet
statedecl = self.symtab.lookup(statename)
if statedecl is None:
self.error(
loc,
"protocol `%s' does not have the state `%s'",
actortype.protocol.name(),
statename)
elif not statedecl.type.isState():
self.error(
loc,
"tag `%s' is supposed to be of state type, but is instead of type `%s'",
statename,
statedecl.type.typename())
else:
actortype.state = statedecl.type
for msg in p.messageDecls:
for iparam in msg.inParams:
loc = iparam.loc
for actortype in iteractortypes(iparam.type):
resolvestate(loc, actortype)
for oparam in msg.outParams:
loc = oparam.loc
for actortype in iteractortypes(oparam.type):
resolvestate(loc, actortype)
# FIXME/cjones declare all the little C++ thingies that will
# be generated. they're not relevant to IPDL itself, but
# those ("invisible") symbols can clash with others in the
# IPDL spec, and we'd like to catch those before C++ compilers
# are allowed to obfuscate the error
self.symtab.exitScope(p)
def visitSpawnsStmt(self, spawns):
pname = spawns.proto
spawns.proto = self.symtab.lookup(pname)
if spawns.proto is None:
self.error(spawns.loc,
"spawned protocol `%s' has not been declared",
pname)
def visitBridgesStmt(self, bridges):
def lookup(p):
decl = self.symtab.lookup(p)
if decl is None:
self.error(bridges.loc,
"bridged protocol `%s' has not been declared", p)
return decl
bridges.parentSide = lookup(bridges.parentSide)
bridges.childSide = lookup(bridges.childSide)
def visitOpensStmt(self, opens):
pname = opens.proto
opens.proto = self.symtab.lookup(pname)
if opens.proto is None:
self.error(opens.loc,
"opened protocol `%s' has not been declared",
pname)
def visitManager(self, mgr):
mgrdecl = self.symtab.lookup(mgr.name)
pdecl = mgr.of.decl
assert pdecl
pname, mgrname = pdecl.shortname, mgr.name
loc = mgr.loc
if mgrdecl is None:
self.error(
loc,
"protocol `%s' referenced as |manager| of `%s' has not been declared",
mgrname, pname)
elif not isinstance(mgrdecl.type, ProtocolType):
self.error(
loc,
"entity `%s' referenced as |manager| of `%s' is not of `protocol' type; instead it is of type `%s'",
mgrname, pname, mgrdecl.type.typename())
else:
mgr.decl = mgrdecl
pdecl.type.addManager(mgrdecl.type)
def visitManagesStmt(self, mgs):
mgsdecl = self.symtab.lookup(mgs.name)
pdecl = mgs.manager.decl
assert pdecl
pname, mgsname = pdecl.shortname, mgs.name
loc = mgs.loc
if mgsdecl is None:
self.error(loc,
"protocol `%s', managed by `%s', has not been declared",
mgsname, pname)
elif not isinstance(mgsdecl.type, ProtocolType):
self.error(
loc,
"%s declares itself managing a non-`protocol' entity `%s' of type `%s'",
pname, mgsname, mgsdecl.type.typename())
else:
mgs.decl = mgsdecl
pdecl.type.manages.append(mgsdecl.type)
def visitMessageDecl(self, md):
msgname = md.name
loc = md.loc
isctor = False
isdtor = False
cdtype = None
decl = self.symtab.lookup(msgname)
if decl is not None and decl.type.isProtocol():
# probably a ctor. we'll check validity later.
msgname += 'Constructor'
isctor = True
cdtype = decl.type
elif decl is not None:
self.error(loc, "message name `%s' already declared as `%s'",
msgname, decl.type.typename())
# if we error here, no big deal; move on to find more
if _DELETE_MSG == msgname:
isdtor = True
cdtype = self.currentProtocolDecl.type
# enter message scope
self.symtab.enterScope(md)
msgtype = MessageType(md.priority, md.sendSemantics, md.direction,
ctor=isctor, dtor=isdtor, cdtype=cdtype,
compress=md.compress)
# replace inparam Param nodes with proper Decls
def paramToDecl(param):
ptname = param.typespec.basename()
ploc = param.typespec.loc
ptdecl = self.symtab.lookup(ptname)
if ptdecl is None:
self.error(
ploc,
"argument typename `%s' of message `%s' has not been declared",
ptname, msgname)
ptype = VOID
else:
ptype = self._canonicalType(ptdecl.type, param.typespec,
chmodallowed=1)
return self.declare(loc=ploc,
type=ptype,
progname=param.name)
for i, inparam in enumerate(md.inParams):
pdecl = paramToDecl(inparam)
msgtype.params.append(pdecl.type)
md.inParams[i] = pdecl
for i, outparam in enumerate(md.outParams):
pdecl = paramToDecl(outparam)
msgtype.returns.append(pdecl.type)
md.outParams[i] = pdecl
self.symtab.exitScope(md)
md.decl = self.declare(
loc=loc,
type=msgtype,
progname=msgname)
md.protocolDecl = self.currentProtocolDecl
md.decl._md = md
def visitTransitionStmt(self, ts):
self.seentriggers = set()
TcheckVisitor.visitTransitionStmt(self, ts)
def visitTransition(self, t):
loc = t.loc
# check the trigger message
mname = t.msg
if t in self.seentriggers:
self.error(loc, "trigger `%s' appears multiple times", t.msg)
self.seentriggers.add(t)
mdecl = self.symtab.lookup(mname)
if mdecl is not None and mdecl.type.isIPDL() and mdecl.type.isProtocol():
mdecl = self.symtab.lookup(mname +'Constructor')
if mdecl is None:
self.error(loc, "message `%s' has not been declared", mname)
elif not mdecl.type.isMessage():
self.error(
loc,
"`%s' should have message type, but instead has type `%s'",
mname, mdecl.type.typename())
else:
t.msg = mdecl
# check the to-states
seenstates = set()
for toState in t.toStates:
sname = toState.name
sdecl = self.symtab.lookup(sname)
if sname in seenstates:
self.error(loc, "to-state `%s' appears multiple times", sname)
seenstates.add(sname)
if sdecl is None:
self.error(loc, "state `%s' has not been declared", sname)
elif not sdecl.type.isState():
self.error(
loc, "`%s' should have state type, but instead has type `%s'",
sname, sdecl.type.typename())
else:
toState.decl = sdecl
toState.start = sdecl.type.start
t.toStates = set(t.toStates)
def _canonicalType(self, itype, typespec, chmodallowed=0):
loc = typespec.loc
if itype.isIPDL():
if itype.isProtocol():
itype = ActorType(itype,
state=typespec.state,
nullable=typespec.nullable)
# FIXME/cjones: ShmemChmod is disabled until bug 524193
if 0 and chmodallowed and itype.isShmem():
itype = ShmemChmodType(
itype,
myChmod=typespec.myChmod,
otherChmod=typespec.otherChmod)
if ((typespec.myChmod or typespec.otherChmod)
and not (itype.isIPDL() and (itype.isShmem() or itype.isChmod()))):
self.error(
loc,
"fine-grained access controls make no sense for type `%s'",
itype.name())
if not chmodallowed and (typespec.myChmod or typespec.otherChmod):
self.error(loc, "fine-grained access controls not allowed here")
if typespec.nullable and not (itype.isIPDL() and itype.isActor()):
self.error(
loc,
"`nullable' qualifier for type `%s' makes no sense",
itype.name())
if typespec.array:
itype = ArrayType(itype)
return itype
##-----------------------------------------------------------------------------
def checkcycles(p, stack=None):
cycles = []
if stack is None:
stack = []
for cp in p.manages:
# special case for self-managed protocols
if cp is p:
continue
if cp in stack:
return [stack + [p, cp]]
cycles += checkcycles(cp, stack + [p])
return cycles
def formatcycles(cycles):
r = []
for cycle in cycles:
s = " -> ".join([ptype.name() for ptype in cycle])
r.append("`%s'" % s)
return ", ".join(r)
def fullyDefined(t, exploring=None):
'''The rules for "full definition" of a type are
defined(atom) := true
defined(array basetype) := defined(basetype)
defined(struct f1 f2...) := defined(f1) and defined(f2) and ...
defined(union c1 c2 ...) := defined(c1) or defined(c2) or ...
'''
if exploring is None:
exploring = set()
if t.isAtom():
return True
elif t.isArray():
return fullyDefined(t.basetype, exploring)
elif t.defined:
return True
assert t.isCompound()
if t in exploring:
return False
exploring.add(t)
for c in t.itercomponents():
cdefined = fullyDefined(c, exploring)
if t.isStruct() and not cdefined:
t.defined = False
break
elif t.isUnion() and cdefined:
t.defined = True
break
else:
if t.isStruct(): t.defined = True
elif t.isUnion(): t.defined = False
exploring.remove(t)
return t.defined
class CheckTypes(TcheckVisitor):
def __init__(self, errors):
# don't need the symbol table, we just want the error reporting
TcheckVisitor.__init__(self, None, errors)
self.visited = set()
self.ptype = None
def visitInclude(self, inc):
if inc.tu.filename in self.visited:
return
self.visited.add(inc.tu.filename)
if inc.tu.protocol:
inc.tu.protocol.accept(self)
def visitStructDecl(self, sd):
if not fullyDefined(sd.decl.type):
self.error(sd.decl.loc,
"struct `%s' is only partially defined", sd.name)
def visitUnionDecl(self, ud):
if not fullyDefined(ud.decl.type):
self.error(ud.decl.loc,
"union `%s' is only partially defined", ud.name)
def visitProtocol(self, p):
self.ptype = p.decl.type
# check that we require no more "power" than our manager protocols
ptype, pname = p.decl.type, p.decl.shortname
if len(p.spawnsStmts) and not ptype.isToplevel():
self.error(p.decl.loc,
"protocol `%s' is not top-level and so cannot declare |spawns|",
pname)
if len(p.bridgesStmts) and not ptype.isToplevel():
self.error(p.decl.loc,
"protocol `%s' is not top-level and so cannot declare |bridges|",
pname)
if len(p.opensStmts) and not ptype.isToplevel():
self.error(p.decl.loc,
"protocol `%s' is not top-level and so cannot declare |opens|",
pname)
for mgrtype in ptype.managers:
if mgrtype is not None and ptype.needsMoreJuiceThan(mgrtype):
self.error(
p.decl.loc,
"protocol `%s' requires more powerful send semantics than its manager `%s' provides",
pname, mgrtype.name())
# XXX currently we don't require a delete() message of top-level
# actors. need to let experience guide this decision
if not ptype.isToplevel():
for md in p.messageDecls:
if _DELETE_MSG == md.name: break
else:
self.error(
p.decl.loc,
"managed protocol `%s' requires a `delete()' message to be declared",
p.name)
else:
cycles = checkcycles(p.decl.type)
if cycles:
self.error(
p.decl.loc,
"cycle(s) detected in manager/manages heirarchy: %s",
formatcycles(cycles))
if 1 == len(ptype.managers) and ptype is ptype.manager():
self.error(
p.decl.loc,
"top-level protocol `%s' cannot manage itself",
p.name)
return Visitor.visitProtocol(self, p)
def visitSpawnsStmt(self, spawns):
if not self.ptype.isToplevel():
self.error(spawns.loc,
"only top-level protocols can have |spawns| statements; `%s' cannot",
self.ptype.name())
return
spawnedType = spawns.proto.type
if not (spawnedType.isIPDL() and spawnedType.isProtocol()
and spawnedType.isToplevel()):
self.error(spawns.loc,
"cannot spawn non-top-level-protocol `%s'",
spawnedType.name())
else:
self.ptype.addSpawn(spawnedType)
def visitBridgesStmt(self, bridges):
if not self.ptype.isToplevel():
self.error(bridges.loc,
"only top-level protocols can have |bridges| statements; `%s' cannot",
self.ptype.name())
return
parentType = bridges.parentSide.type
childType = bridges.childSide.type
if not (parentType.isIPDL() and parentType.isProtocol()
and childType.isIPDL() and childType.isProtocol()
and parentType.isToplevel() and childType.isToplevel()):
self.error(bridges.loc,
"cannot bridge non-top-level-protocol(s) `%s' and `%s'",
parentType.name(), childType.name())
def visitOpensStmt(self, opens):
if not self.ptype.isToplevel():
self.error(opens.loc,
"only top-level protocols can have |opens| statements; `%s' cannot",
self.ptype.name())
return
openedType = opens.proto.type
if not (openedType.isIPDL() and openedType.isProtocol()
and openedType.isToplevel()):
self.error(opens.loc,
"cannot open non-top-level-protocol `%s'",
openedType.name())
else:
self.ptype.addOpen(openedType)
def visitManagesStmt(self, mgs):
pdecl = mgs.manager.decl
ptype, pname = pdecl.type, pdecl.shortname
mgsdecl = mgs.decl
mgstype, mgsname = mgsdecl.type, mgsdecl.shortname
loc = mgs.loc
# we added this information; sanity check it
assert ptype.isManagerOf(mgstype)
# check that the "managed" protocol agrees
if not mgstype.isManagedBy(ptype):
self.error(
loc,
"|manages| declaration in protocol `%s' does not match any |manager| declaration in protocol `%s'",
pname, mgsname)
def visitManager(self, mgr):
# FIXME/bug 541126: check that the protocol graph is acyclic
pdecl = mgr.of.decl
ptype, pname = pdecl.type, pdecl.shortname
mgrdecl = mgr.decl
mgrtype, mgrname = mgrdecl.type, mgrdecl.shortname
# we added this information; sanity check it
assert ptype.isManagedBy(mgrtype)
loc = mgr.loc
# check that the "manager" protocol agrees
if not mgrtype.isManagerOf(ptype):
self.error(
loc,
"|manager| declaration in protocol `%s' does not match any |manages| declaration in protocol `%s'",
pname, mgrname)
def visitMessageDecl(self, md):
mtype, mname = md.decl.type, md.decl.progname
ptype, pname = md.protocolDecl.type, md.protocolDecl.shortname
loc = md.decl.loc
if mtype.priority == HIGH_PRIORITY and not mtype.isSync():
self.error(
loc,
"high priority messages must be sync (here, message `%s' in protocol `%s')",
mname, pname)
if mtype.priority == URGENT_PRIORITY and (mtype.isOut() or mtype.isInout()):
self.error(
loc,
"urgent parent-to-child messages are verboten (here, message `%s' in protocol `%s')",
mname, pname)
# We allow high priority sync messages to be sent from the
# parent. Normal and urgent sync messages can only come from
# the child.
if mtype.isSync() and mtype.priority == NORMAL_PRIORITY and (mtype.isOut() or mtype.isInout()):
self.error(
loc,
"sync parent-to-child messages are verboten (here, message `%s' in protocol `%s')",
mname, pname)
if mtype.needsMoreJuiceThan(ptype):
self.error(
loc,
"message `%s' requires more powerful send semantics than its protocol `%s' provides",
mname, pname)
if mtype.isAsync() and len(mtype.returns):
# XXX/cjones could modify grammar to disallow this ...
self.error(loc,
"asynchronous message `%s' declares return values",
mname)
if (mtype.compress and
(not mtype.isAsync() or mtype.isCtor() or mtype.isDtor())):
self.error(
loc,
"message `%s' in protocol `%s' requests compression but is not async or is special (ctor or dtor)",
mname[:-len('constructor')], pname)
if mtype.isCtor() and not ptype.isManagerOf(mtype.constructedType()):
self.error(
loc,
"ctor for protocol `%s', which is not managed by protocol `%s'",
mname[:-len('constructor')], pname)
def visitTransition(self, t):
_YNC = [ ASYNC, SYNC ]
loc = t.loc
impliedDirection, impliedSems = {
SEND: [ OUT, _YNC ], RECV: [ IN, _YNC ],
CALL: [ OUT, INTR ], ANSWER: [ IN, INTR ],
} [t.trigger]
if (OUT is impliedDirection and t.msg.type.isIn()
or IN is impliedDirection and t.msg.type.isOut()
or _YNC is impliedSems and t.msg.type.isInterrupt()
or INTR is impliedSems and (not t.msg.type.isInterrupt())):
mtype = t.msg.type
self.error(
loc, "%s %s message `%s' is not `%s'd",
mtype.sendSemantics.pretty, mtype.direction.pretty,
t.msg.progname,
t.trigger.pretty)
##-----------------------------------------------------------------------------
class Process:
def __init__(self):
self.actors = set() # set(Actor)
self.edges = { } # Actor -> [ SpawnsEdge ]
self.spawn = set() # set(Actor)
def edge(self, spawner, spawn):
if spawner not in self.edges: self.edges[spawner] = [ ]
self.edges[spawner].append(SpawnsEdge(spawner, spawn))
self.spawn.add(spawn)
def iteredges(self):
for edgelist in self.edges.itervalues():
for edge in edgelist:
yield edge
def merge(self, o):
'Merge the Process |o| into this Process'
if self == o:
return
for actor in o.actors:
ProcessGraph.actorToProcess[actor] = self
self.actors.update(o.actors)
self.edges.update(o.edges)
self.spawn.update(o.spawn)
ProcessGraph.processes.remove(o)
def spawns(self, actor):
return actor in self.spawn
def __cmp__(self, o): return cmp(self.actors, o.actors)
def __eq__(self, o): return self.actors == o.actors
def __hash__(self): return hash(id(self))
def __repr__(self):
return reduce(lambda a, x: str(a) + str(x) +'|', self.actors, '|')
def __str__(self): return repr(self)
class Actor:
def __init__(self, ptype, side):
self.ptype = ptype
self.side = side
def asType(self):
return ActorType(self.ptype)
def other(self):
return Actor(self.ptype, _otherside(self.side))
def __cmp__(self, o):
return cmp(self.ptype, o.ptype) or cmp(self.side, o.side)
def __eq__(self, o):
return self.ptype == o.ptype and self.side == o.side
def __hash__(self): return hash(repr(self))
def __repr__(self): return '%s%s'% (self.ptype.name(), self.side.title())
def __str__(self): return repr(self)
class SpawnsEdge:
def __init__(self, spawner, spawn):
self.spawner = spawner # Actor
self.spawn = spawn # Actor
def __repr__(self):
return '(%r)--spawns-->(%r)'% (self.spawner, self.spawn)
def __str__(self): return repr(self)
class BridgeEdge:
def __init__(self, bridgeProto, parent, child):
self.bridgeProto = bridgeProto # ProtocolType
self.parent = parent # Actor
self.child = child # Actor
def __repr__(self):
return '(%r)--%s bridge-->(%r)'% (
self.parent, self.bridgeProto.name(), self.child)
def __str__(self): return repr(self)
class OpensEdge:
def __init__(self, opener, openedProto):
self.opener = opener # Actor
self.openedProto = openedProto # ProtocolType
def __repr__(self):
return '(%r)--opens-->(%s)'% (self.opener, self.openedProto.name())
def __str__(self): return repr(self)
# "singleton" class with state that persists across type checking of
# all protocols
class ProcessGraph:
processes = set() # set(Process)
bridges = { } # ProtocolType -> [ BridgeEdge ]
opens = { } # ProtocolType -> [ OpensEdge ]
actorToProcess = { } # Actor -> Process
visitedSpawns = set() # set(ActorType)
visitedBridges = set() # set(ActorType)
@classmethod
def findProcess(cls, actor):
return cls.actorToProcess.get(actor, None)
@classmethod
def getProcess(cls, actor):
if actor not in cls.actorToProcess:
p = Process()
p.actors.add(actor)
cls.processes.add(p)
cls.actorToProcess[actor] = p
return cls.actorToProcess[actor]
@classmethod
def bridgesOf(cls, bridgeP):
return cls.bridges.get(bridgeP, [])
@classmethod
def bridgeEndpointsOf(cls, ptype, side):
actor = Actor(ptype, side)
endpoints = []
for b in cls.iterbridges():
if b.parent == actor:
endpoints.append(Actor(b.bridgeProto, 'parent'))
if b.child == actor:
endpoints.append(Actor(b.bridgeProto, 'child'))
return endpoints
@classmethod
def iterbridges(cls):
for edges in cls.bridges.itervalues():
for bridge in edges:
yield bridge
@classmethod
def opensOf(cls, openedP):
return cls.opens.get(openedP, [])
@classmethod
def opensEndpointsOf(cls, ptype, side):
actor = Actor(ptype, side)
endpoints = []
for o in cls.iteropens():
if actor == o.opener:
endpoints.append(Actor(o.openedProto, o.opener.side))
elif actor == o.opener.other():
endpoints.append(Actor(o.openedProto, o.opener.other().side))
return endpoints
@classmethod
def iteropens(cls):
for edges in cls.opens.itervalues():
for opens in edges:
yield opens
@classmethod
def spawn(cls, spawner, remoteSpawn):
localSpawn = remoteSpawn.other()
spawnerProcess = ProcessGraph.getProcess(spawner)
spawnerProcess.merge(ProcessGraph.getProcess(localSpawn))
spawnerProcess.edge(spawner, remoteSpawn)
@classmethod
def bridge(cls, parent, child, bridgeP):
bridgeParent = Actor(bridgeP, 'parent')
parentProcess = ProcessGraph.getProcess(parent)
parentProcess.merge(ProcessGraph.getProcess(bridgeParent))
bridgeChild = Actor(bridgeP, 'child')
childProcess = ProcessGraph.getProcess(child)
childProcess.merge(ProcessGraph.getProcess(bridgeChild))
if bridgeP not in cls.bridges:
cls.bridges[bridgeP] = [ ]
cls.bridges[bridgeP].append(BridgeEdge(bridgeP, parent, child))
@classmethod
def open(cls, opener, opened, openedP):
remoteOpener, remoteOpened, = opener.other(), opened.other()
openerProcess = ProcessGraph.getProcess(opener)
openerProcess.merge(ProcessGraph.getProcess(opened))
remoteOpenerProcess = ProcessGraph.getProcess(remoteOpener)
remoteOpenerProcess.merge(ProcessGraph.getProcess(remoteOpened))
if openedP not in cls.opens:
cls.opens[openedP] = [ ]
cls.opens[openedP].append(OpensEdge(opener, openedP))
class BuildProcessGraph(TcheckVisitor):
class findSpawns(TcheckVisitor):
def __init__(self, errors):
TcheckVisitor.__init__(self, None, errors)
def visitTranslationUnit(self, tu):
TcheckVisitor.visitTranslationUnit(self, tu)
def visitInclude(self, inc):
if inc.tu.protocol:
inc.tu.protocol.accept(self)
def visitProtocol(self, p):
ptype = p.decl.type
# non-top-level protocols don't add any information
if not ptype.isToplevel() or ptype in ProcessGraph.visitedSpawns:
return
ProcessGraph.visitedSpawns.add(ptype)
self.visiting = ptype
ProcessGraph.getProcess(Actor(ptype, 'parent'))
ProcessGraph.getProcess(Actor(ptype, 'child'))
return TcheckVisitor.visitProtocol(self, p)
def visitSpawnsStmt(self, spawns):
# The picture here is:
# [ spawner | localSpawn | ??? ] (process 1)
# |
# |
# [ remoteSpawn | ???] (process 2)
#
# A spawns stmt tells us that |spawner| and |localSpawn|
# are in the same process.
spawner = Actor(self.visiting, spawns.side)
remoteSpawn = Actor(spawns.proto.type, spawns.spawnedAs)
ProcessGraph.spawn(spawner, remoteSpawn)
def __init__(self, errors):
TcheckVisitor.__init__(self, None, errors)
self.visiting = None # ActorType
self.visited = set() # set(ActorType)
def visitTranslationUnit(self, tu):
tu.accept(self.findSpawns(self.errors))
TcheckVisitor.visitTranslationUnit(self, tu)
def visitInclude(self, inc):
if inc.tu.protocol:
inc.tu.protocol.accept(self)
def visitProtocol(self, p):
ptype = p.decl.type
# non-top-level protocols don't add any information
if not ptype.isToplevel() or ptype in ProcessGraph.visitedBridges:
return
ProcessGraph.visitedBridges.add(ptype)
self.visiting = ptype
return TcheckVisitor.visitProtocol(self, p)
def visitBridgesStmt(self, bridges):
bridgeProto = self.visiting
parentSideProto = bridges.parentSide.type
childSideProto = bridges.childSide.type
# the picture here is:
# (process 1|
# [ parentSide(Parent|Child) | childSide(Parent|Child) | ... ]
# | |
# | (process 2| |
# [ parentSide(Child|Parent) | bridgeParent ] |
# | |
# | | (process 3|
# [ bridgeChild | childSide(Child|Parent) ]
#
# First we have to figure out which parentSide/childSide
# actors live in the same process. The possibilities are {
# parent, child } x { parent, child }. (Multiple matches
# aren't allowed yet.) Then we make ProcessGraph aware of the
# new bridge.
parentSideActor, childSideActor = None, None
pc = ( 'parent', 'child' )
for parentSide, childSide in cartesian_product(pc, pc):
pactor = Actor(parentSideProto, parentSide)
pproc = ProcessGraph.findProcess(pactor)
cactor = Actor(childSideProto, childSide)
cproc = ProcessGraph.findProcess(cactor)
assert pproc and cproc
if pproc == cproc:
if parentSideActor is not None:
if parentSideProto != childSideProto:
self.error(bridges.loc,
"ambiguous bridge `%s' between `%s' and `%s'",
bridgeProto.name(),
parentSideProto.name(),
childSideProto.name())
else:
parentSideActor, childSideActor = pactor.other(), cactor.other()
if parentSideActor is None:
self.error(bridges.loc,
"`%s' and `%s' cannot be bridged by `%s' ",
parentSideProto.name(), childSideProto.name(),
bridgeProto.name())
ProcessGraph.bridge(parentSideActor, childSideActor, bridgeProto)
def visitOpensStmt(self, opens):
openedP = opens.proto.type
opener = Actor(self.visiting, opens.side)
opened = Actor(openedP, opens.side)
# The picture here is:
# [ opener | opened ] (process 1)
# | |
# | |
# [ remoteOpener | remoteOpened ] (process 2)
#
# An opens stmt tells us that the pairs |opener|/|opened|
# and |remoteOpener|/|remoteOpened| are each in the same
# process.
ProcessGraph.open(opener, opened, openedP)
class CheckProcessGraph(TcheckVisitor):
def __init__(self, errors):
TcheckVisitor.__init__(self, None, errors)
# TODO: verify spawns-per-process assumption and check that graph
# is a dag
def visitTranslationUnit(self, tu):
if 0:
print 'Processes'
for process in ProcessGraph.processes:
print ' ', process
for edge in process.iteredges():
print ' ', edge
print 'Bridges'
for bridgeList in ProcessGraph.bridges.itervalues():
for bridge in bridgeList:
print ' ', bridge
print 'Opens'
for opensList in ProcessGraph.opens.itervalues():
for opens in opensList:
print ' ', opens
##-----------------------------------------------------------------------------
class CheckStateMachine(TcheckVisitor):
def __init__(self, errors):
# don't need the symbol table, we just want the error reporting
TcheckVisitor.__init__(self, None, errors)
self.p = None
def visitProtocol(self, p):
self.p = p
self.checkReachability(p)
for ts in p.transitionStmts:
ts.accept(self)
def visitTransitionStmt(self, ts):
# We want to disallow "race conditions" in protocols. These
# can occur when a protocol state machine has a state that
# allows triggers of opposite direction. That declaration
# allows the parent to send the child a message at the
# exact instance the child sends the parent a message. One of
# those messages would (probably) violate the state machine
# and cause the child to be terminated. It's obviously very
# nice if we can forbid this at the level of IPDL state
# machines, rather than resorting to static or dynamic
# checking of C++ implementation code.
#
# An easy way to avoid this problem in IPDL is to only allow
# "unidirectional" protocol states; that is, from each state,
# only send or only recv triggers are allowed. This approach
# is taken by the Singularity project's "contract-based
# message channels." However, this can be something of a
# notational burden for stateful protocols.
#
# If two messages race, the effect is that the parent's and
# child's states get temporarily out of sync. Informally,
# IPDL allows this *only if* the state machines get out of
# sync for only *one* step (state machine transition), then
# sync back up. This is a design decision: the states could
# be allowd to get out of sync for any constant k number of
# steps. (If k is unbounded, there's no point in presenting
# the abstraction of parent and child actor states being
# "entangled".) The working hypothesis is that the more steps
# the states are allowed to be out of sync, the harder it is
# to reason about the protocol.
#
# Slightly less informally, two messages are allowed to race
# only if processing them in either order leaves the protocol
# in the same state. That is, messages A and B are allowed to
# race only if processing A then B leaves the protocol in
# state S, *and* processing B then A also leaves the protocol
# in state S. Technically, if this holds, then messages A and
# B could be called "commutative" wrt to actor state.
#
# "Formally", state machine definitions must adhere to two
# rules.
#
# *Rule 1*: from a state S, all sync triggers must be of the same
# "direction," i.e. only |send| or only |recv|
#
# (Pairs of sync messages can't commute, because otherwise
# deadlock can occur from simultaneously in-flight sync
# requests.)
#
# *Rule 2*: the "Diamond Rule".
# from a state S,
# for any pair of triggers t1 and t2,
# where t1 and t2 have opposite direction,
# and t1 transitions to state T1 and t2 to T2,
# then the following must be true:
# (T2 allows the trigger t1, transitioning to state U)
# and
# (T1 allows the trigger t2, transitioning to state U)
# and
# (
# (
# (all of T1's triggers have the same direction as t2)
# and
# (all of T2's triggers have the same direction as t1)
# )
# or
# (T1, T2, and U are the same "terminal state")
# )
#
# A "terminal state" S is one from which all triggers
# transition back to S itself.
#
# The presence of triggers with multiple out states complicates
# this check slightly, but doesn't fundamentally change it.
#
# from a state S,
# for any pair of triggers t1 and t2,
# where t1 and t2 have opposite direction,
# for each pair of states (T1, T2) \in t1_out x t2_out,
# where t1_out is the set of outstates from t1
# t2_out is the set of outstates from t2
# t1_out x t2_out is their Cartesian product
# and t1 transitions to state T1 and t2 to T2,
# then the following must be true:
# (T2 allows the trigger t1, with out-state set { U })
# and
# (T1 allows the trigger t2, with out-state set { U })
# and
# (
# (
# (all of T1's triggers have the same direction as t2)
# and
# (all of T2's triggers have the same direction as t1)
# )
# or
# (T1, T2, and U are the same "terminal state")
# )
# check Rule 1
syncdirection = None
syncok = True
for trans in ts.transitions:
if not trans.msg.type.isSync(): continue
if syncdirection is None:
syncdirection = trans.trigger.direction()
elif syncdirection is not trans.trigger.direction():
self.error(
trans.loc,
"sync trigger at state `%s' in protocol `%s' has different direction from earlier sync trigger at same state",
ts.state.name, self.p.name)
syncok = False
# don't check the Diamond Rule if Rule 1 doesn't hold
if not syncok:
return
# helper functions
def triggerTargets(S, t):
'''Return the set of states transitioned to from state |S|
upon trigger |t|, or { } if |t| is not a trigger in |S|.'''
for trans in self.p.states[S].transitions:
if t.trigger is trans.trigger and t.msg is trans.msg:
return trans.toStates
return set()
def allTriggersSameDirectionAs(S, t):
'''Return true iff all the triggers from state |S| have the same
direction as trigger |t|'''
direction = t.direction()
for trans in self.p.states[S].transitions:
if direction != trans.trigger.direction():
return False
return True
def terminalState(S):
'''Return true iff |S| is a "terminal state".'''
for trans in self.p.states[S].transitions:
for S_ in trans.toStates:
if S_ != S: return False
return True
def sameTerminalState(S1, S2, S3):
'''Return true iff states |S1|, |S2|, and |S3| are all the same
"terminal state".'''
if isinstance(S3, set):
assert len(S3) == 1
for S3_ in S3: pass
S3 = S3_
return (S1 == S2 == S3) and terminalState(S1)
S = ts.state.name
# check the Diamond Rule
for (t1, t2) in unique_pairs(ts.transitions):
# if the triggers have the same direction, they can't race,
# since only one endpoint can initiate either (and delivery
# is in-order)
if t1.trigger.direction() == t2.trigger.direction():
continue
loc = t1.loc
t1_out = t1.toStates
t2_out = t2.toStates
for (T1, T2) in cartesian_product(t1_out, t2_out):
# U1 <- { u | T1 --t2--> u }
U1 = triggerTargets(T1, t2)
# U2 <- { u | T2 --t1--> u }
U2 = triggerTargets(T2, t1)
# don't report more than one Diamond Rule violation
# per state. there may be O(n^4) total, way too many
# for a human to parse
#
# XXX/cjones: could set a limit on #printed and stop
# after that limit ...
raceError = False
errT1 = None
errT2 = None
if 0 == len(U1) or 0 == len(U2):
print "******* case 1"
raceError = True
elif 1 < len(U1) or 1 < len(U2):
raceError = True
# there are potentially many unpaired states; just
# pick two
print "******* case 2"
for u1, u2 in cartesian_product(U1, U2):
if u1 != u2:
errT1, errT2 = u1, u2
break
elif U1 != U2:
print "******* case 3"
raceError = True
for errT1 in U1: pass
for errT2 in U2: pass
if raceError:
self.reportRaceError(loc, S,
[ T1, t1, errT1 ],
[ T2, t2, errT2 ])
return
if not ((allTriggersSameDirectionAs(T1, t2.trigger)
and allTriggersSameDirectionAs(T2, t1.trigger))
or sameTerminalState(T1, T2, U1)):
self.reportRunawayError(loc, S, [ T1, t1, None ], [ T2, t2, None ])
return
def checkReachability(self, p):
def explore(ts, visited):
if ts.state in visited:
return
visited.add(ts.state)
for outedge in ts.transitions:
for toState in outedge.toStates:
explore(p.states[toState], visited)
checkfordelete = (State.DEAD in p.states)
allvisited = set() # set(State)
for root in p.startStates:
visited = set()
explore(root, visited)
allvisited.update(visited)
if checkfordelete and State.DEAD not in visited:
self.error(
root.loc,
"when starting from state `%s', actors of protocol `%s' cannot be deleted", root.state.name, p.name)
for ts in p.states.itervalues():
if ts.state is not State.DEAD and ts.state not in allvisited:
self.error(ts.loc,
"unreachable state `%s' in protocol `%s'",
ts.state.name, p.name)
def _normalizeTransitionSequences(self, t1Seq, t2Seq):
T1, M1, U1 = t1Seq
T2, M2, U2 = t2Seq
assert M1 is not None and M2 is not None
# make sure that T1/M1/U1 is the parent side of the race
if M1.trigger is RECV or M1.trigger is ANSWER:
T1, M1, U1, T2, M2, U2 = T2, M2, U2, T1, M1, U1
def stateName(S):
if S: return S.name
return '[error]'
T1 = stateName(T1)
T2 = stateName(T2)
U1 = stateName(U1)
U2 = stateName(U2)
return T1, M1.msg.progname, U1, T2, M2.msg.progname, U2
def reportRaceError(self, loc, S, t1Seq, t2Seq):
T1, M1, U1, T2, M2, U2 = self._normalizeTransitionSequences(t1Seq, t2Seq)
self.error(
loc,
"""in protocol `%(P)s', the sequence of events
parent: +--`send %(M1)s'-->( state `%(T1)s' )--`recv %(M2)s'-->( state %(U1)s )
/
( state `%(S)s' )
\\
child: +--`send %(M2)s'-->( state `%(T2)s' )--`recv %(M1)s'-->( state %(U2)s )
results in error(s) or leaves parent/child state out of sync for more than one step and is thus a race hazard; i.e., triggers `%(M1)s' and `%(M2)s' fail to commute in state `%(S)s'"""% {
'P': self.p.name, 'S': S, 'M1': M1, 'M2': M2,
'T1': T1, 'T2': T2, 'U1': U1, 'U2': U2
})
def reportRunawayError(self, loc, S, t1Seq, t2Seq):
T1, M1, _, T2, M2, __ = self._normalizeTransitionSequences(t1Seq, t2Seq)
self.error(
loc,
"""in protocol `%(P)s', the sequence of events
parent: +--`send %(M1)s'-->( state `%(T1)s' )
/
( state `%(S)s' )
\\
child: +--`send %(M2)s'-->( state `%(T2)s' )
lead to parent/child states in which parent/child state can become more than one step out of sync (though this divergence might not lead to error conditions)"""% {
'P': self.p.name, 'S': S, 'M1': M1, 'M2': M2, 'T1': T1, 'T2': T2
})