mirror of
https://github.com/classilla/tenfourfox.git
synced 2025-01-03 20:30:00 +00:00
520 lines
19 KiB
C++
520 lines
19 KiB
C++
/*
|
|
* Copyright (c) 2013, Linux Foundation. All rights reserved
|
|
*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "base/basictypes.h"
|
|
#include "mozilla/Hal.h"
|
|
#include "mozilla/unused.h"
|
|
#include "nsIScreen.h"
|
|
#include "nsIScreenManager.h"
|
|
#include "OrientationObserver.h"
|
|
#include "ProcessOrientation.h"
|
|
#include "mozilla/HalSensor.h"
|
|
#include "math.h"
|
|
#include "limits.h"
|
|
#include "android/log.h"
|
|
|
|
#if 0
|
|
#define LOGD(args...) __android_log_print(ANDROID_LOG_DEBUG, "ProcessOrientation" , ## args)
|
|
#else
|
|
#define LOGD(args...)
|
|
#endif
|
|
|
|
namespace mozilla {
|
|
|
|
// We work with all angles in degrees in this class.
|
|
#define RADIANS_TO_DEGREES (180/M_PI)
|
|
|
|
// Number of nanoseconds per millisecond.
|
|
#define NANOS_PER_MS 1000000
|
|
|
|
// Indices into SensorEvent.values for the accelerometer sensor.
|
|
#define ACCELEROMETER_DATA_X 0
|
|
#define ACCELEROMETER_DATA_Y 1
|
|
#define ACCELEROMETER_DATA_Z 2
|
|
|
|
// The minimum amount of time that a predicted rotation must be stable before
|
|
// it is accepted as a valid rotation proposal. This value can be quite small
|
|
// because the low-pass filter already suppresses most of the noise so we're
|
|
// really just looking for quick confirmation that the last few samples are in
|
|
// agreement as to the desired orientation.
|
|
#define PROPOSAL_SETTLE_TIME_NANOS (40*NANOS_PER_MS)
|
|
|
|
// The minimum amount of time that must have elapsed since the device last
|
|
// exited the flat state (time since it was picked up) before the proposed
|
|
// rotation can change.
|
|
#define PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS (500*NANOS_PER_MS)
|
|
|
|
// The minimum amount of time that must have elapsed since the device stopped
|
|
// swinging (time since device appeared to be in the process of being put down
|
|
// or put away into a pocket) before the proposed rotation can change.
|
|
#define PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS (300*NANOS_PER_MS)
|
|
|
|
// The minimum amount of time that must have elapsed since the device stopped
|
|
// undergoing external acceleration before the proposed rotation can change.
|
|
#define PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS (500*NANOS_PER_MS)
|
|
|
|
// If the tilt angle remains greater than the specified angle for a minimum of
|
|
// the specified time, then the device is deemed to be lying flat
|
|
// (just chillin' on a table).
|
|
#define FLAT_ANGLE 75
|
|
#define FLAT_TIME_NANOS (1000*NANOS_PER_MS)
|
|
|
|
// If the tilt angle has increased by at least delta degrees within the
|
|
// specified amount of time, then the device is deemed to be swinging away
|
|
// from the user down towards flat (tilt = 90).
|
|
#define SWING_AWAY_ANGLE_DELTA 20
|
|
#define SWING_TIME_NANOS (300*NANOS_PER_MS)
|
|
|
|
// The maximum sample inter-arrival time in milliseconds. If the acceleration
|
|
// samples are further apart than this amount in time, we reset the state of
|
|
// the low-pass filter and orientation properties. This helps to handle
|
|
// boundary conditions when the device is turned on, wakes from suspend or
|
|
// there is a significant gap in samples.
|
|
#define MAX_FILTER_DELTA_TIME_NANOS (1000*NANOS_PER_MS)
|
|
|
|
// The acceleration filter time constant.
|
|
//
|
|
// This time constant is used to tune the acceleration filter such that
|
|
// impulses and vibrational noise (think car dock) is suppressed before we try
|
|
// to calculate the tilt and orientation angles.
|
|
//
|
|
// The filter time constant is related to the filter cutoff frequency, which
|
|
// is the frequency at which signals are attenuated by 3dB (half the passband
|
|
// power). Each successive octave beyond this frequency is attenuated by an
|
|
// additional 6dB.
|
|
//
|
|
// Given a time constant t in seconds, the filter cutoff frequency Fc in Hertz
|
|
// is given by Fc = 1 / (2pi * t).
|
|
//
|
|
// The higher the time constant, the lower the cutoff frequency, so more noise
|
|
// will be suppressed.
|
|
//
|
|
// Filtering adds latency proportional the time constant (inversely
|
|
// proportional to the cutoff frequency) so we don't want to make the time
|
|
// constant too large or we can lose responsiveness. Likewise we don't want
|
|
// to make it too small or we do a poor job suppressing acceleration spikes.
|
|
// Empirically, 100ms seems to be too small and 500ms is too large. Android
|
|
// default is 200.
|
|
#define FILTER_TIME_CONSTANT_MS 200.0f
|
|
|
|
// State for orientation detection. Thresholds for minimum and maximum
|
|
// allowable deviation from gravity.
|
|
//
|
|
// If the device is undergoing external acceleration (being bumped, in a car
|
|
// that is turning around a corner or a plane taking off) then the magnitude
|
|
// may be substantially more or less than gravity. This can skew our
|
|
// orientation detection by making us think that up is pointed in a different
|
|
// direction.
|
|
//
|
|
// Conversely, if the device is in freefall, then there will be no gravity to
|
|
// measure at all. This is problematic because we cannot detect the orientation
|
|
// without gravity to tell us which way is up. A magnitude near 0 produces
|
|
// singularities in the tilt and orientation calculations.
|
|
//
|
|
// In both cases, we postpone choosing an orientation.
|
|
//
|
|
// However, we need to tolerate some acceleration because the angular momentum
|
|
// of turning the device can skew the observed acceleration for a short period
|
|
// of time.
|
|
#define NEAR_ZERO_MAGNITUDE 1 // m/s^2
|
|
#define ACCELERATION_TOLERANCE 4 // m/s^2
|
|
#define STANDARD_GRAVITY 9.80665f
|
|
#define MIN_ACCELERATION_MAGNITUDE (STANDARD_GRAVITY-ACCELERATION_TOLERANCE)
|
|
#define MAX_ACCELERATION_MAGNITUDE (STANDARD_GRAVITY+ACCELERATION_TOLERANCE)
|
|
|
|
// Maximum absolute tilt angle at which to consider orientation data. Beyond
|
|
// this (i.e. when screen is facing the sky or ground), we completely ignore
|
|
// orientation data.
|
|
#define MAX_TILT 75
|
|
|
|
// The gap angle in degrees between adjacent orientation angles for
|
|
// hysteresis.This creates a "dead zone" between the current orientation and a
|
|
// proposed adjacent orientation. No orientation proposal is made when the
|
|
// orientation angle is within the gap between the current orientation and the
|
|
// adjacent orientation.
|
|
#define ADJACENT_ORIENTATION_ANGLE_GAP 45
|
|
|
|
const int
|
|
ProcessOrientation::tiltTolerance[][4] = {
|
|
{-25, 70}, // ROTATION_0
|
|
{-25, 65}, // ROTATION_90
|
|
{-25, 60}, // ROTATION_180
|
|
{-25, 65} // ROTATION_270
|
|
};
|
|
|
|
int
|
|
ProcessOrientation::GetProposedRotation()
|
|
{
|
|
return mProposedRotation;
|
|
}
|
|
|
|
int
|
|
ProcessOrientation::OnSensorChanged(const SensorData& event,
|
|
int deviceCurrentRotation)
|
|
{
|
|
// The vector given in the SensorEvent points straight up (towards the sky)
|
|
// under ideal conditions (the phone is not accelerating). I'll call this up
|
|
// vector elsewhere.
|
|
const InfallibleTArray<float>& values = event.values();
|
|
float x = values[ACCELEROMETER_DATA_X];
|
|
float y = values[ACCELEROMETER_DATA_Y];
|
|
float z = values[ACCELEROMETER_DATA_Z];
|
|
|
|
LOGD
|
|
("ProcessOrientation: Raw acceleration vector: x = %f, y = %f, z = %f,"
|
|
"magnitude = %f\n", x, y, z, sqrt(x * x + y * y + z * z));
|
|
// Apply a low-pass filter to the acceleration up vector in cartesian space.
|
|
// Reset the orientation listener state if the samples are too far apart in
|
|
// time or when we see values of (0, 0, 0) which indicates that we polled the
|
|
// accelerometer too soon after turning it on and we don't have any data yet.
|
|
const int64_t now = (int64_t) event.timestamp();
|
|
const int64_t then = mLastFilteredTimestampNanos;
|
|
const float timeDeltaMS = (now - then) * 0.000001f;
|
|
bool skipSample = false;
|
|
if (now < then
|
|
|| now > then + MAX_FILTER_DELTA_TIME_NANOS
|
|
|| (x == 0 && y == 0 && z == 0)) {
|
|
LOGD
|
|
("ProcessOrientation: Resetting orientation listener.");
|
|
Reset();
|
|
skipSample = true;
|
|
} else {
|
|
const float alpha = timeDeltaMS / (FILTER_TIME_CONSTANT_MS + timeDeltaMS);
|
|
x = alpha * (x - mLastFilteredX) + mLastFilteredX;
|
|
y = alpha * (y - mLastFilteredY) + mLastFilteredY;
|
|
z = alpha * (z - mLastFilteredZ) + mLastFilteredZ;
|
|
LOGD
|
|
("ProcessOrientation: Filtered acceleration vector: x=%f, y=%f, z=%f,"
|
|
"magnitude=%f", z, y, z, sqrt(x * x + y * y + z * z));
|
|
skipSample = false;
|
|
}
|
|
mLastFilteredTimestampNanos = now;
|
|
mLastFilteredX = x;
|
|
mLastFilteredY = y;
|
|
mLastFilteredZ = z;
|
|
|
|
bool isAccelerating = false;
|
|
bool isFlat = false;
|
|
bool isSwinging = false;
|
|
if (skipSample) {
|
|
return -1;
|
|
}
|
|
|
|
// Calculate the magnitude of the acceleration vector.
|
|
const float magnitude = sqrt(x * x + y * y + z * z);
|
|
if (magnitude < NEAR_ZERO_MAGNITUDE) {
|
|
LOGD
|
|
("ProcessOrientation: Ignoring sensor data, magnitude too close to"
|
|
" zero.");
|
|
ClearPredictedRotation();
|
|
} else {
|
|
// Determine whether the device appears to be undergoing external
|
|
// acceleration.
|
|
if (this->IsAccelerating(magnitude)) {
|
|
isAccelerating = true;
|
|
mAccelerationTimestampNanos = now;
|
|
}
|
|
// Calculate the tilt angle. This is the angle between the up vector and
|
|
// the x-y plane (the plane of the screen) in a range of [-90, 90]
|
|
// degrees.
|
|
// -90 degrees: screen horizontal and facing the ground (overhead)
|
|
// 0 degrees: screen vertical
|
|
// 90 degrees: screen horizontal and facing the sky (on table)
|
|
const int tiltAngle =
|
|
static_cast<int>(roundf(asin(z / magnitude) * RADIANS_TO_DEGREES));
|
|
AddTiltHistoryEntry(now, tiltAngle);
|
|
|
|
// Determine whether the device appears to be flat or swinging.
|
|
if (this->IsFlat(now)) {
|
|
isFlat = true;
|
|
mFlatTimestampNanos = now;
|
|
}
|
|
if (this->IsSwinging(now, tiltAngle)) {
|
|
isSwinging = true;
|
|
mSwingTimestampNanos = now;
|
|
}
|
|
// If the tilt angle is too close to horizontal then we cannot determine
|
|
// the orientation angle of the screen.
|
|
if (abs(tiltAngle) > MAX_TILT) {
|
|
LOGD
|
|
("ProcessOrientation: Ignoring sensor data, tilt angle too high:"
|
|
" tiltAngle=%d", tiltAngle);
|
|
ClearPredictedRotation();
|
|
} else {
|
|
// Calculate the orientation angle.
|
|
// This is the angle between the x-y projection of the up vector onto
|
|
// the +y-axis, increasing clockwise in a range of [0, 360] degrees.
|
|
int orientationAngle =
|
|
static_cast<int>(roundf(-atan2f(-x, y) * RADIANS_TO_DEGREES));
|
|
if (orientationAngle < 0) {
|
|
// atan2 returns [-180, 180]; normalize to [0, 360]
|
|
orientationAngle += 360;
|
|
}
|
|
// Find the nearest rotation.
|
|
int nearestRotation = (orientationAngle + 45) / 90;
|
|
if (nearestRotation == 4) {
|
|
nearestRotation = 0;
|
|
}
|
|
// Determine the predicted orientation.
|
|
if (IsTiltAngleAcceptable(nearestRotation, tiltAngle)
|
|
&&
|
|
IsOrientationAngleAcceptable
|
|
(nearestRotation, orientationAngle, deviceCurrentRotation)) {
|
|
UpdatePredictedRotation(now, nearestRotation);
|
|
LOGD
|
|
("ProcessOrientation: Predicted: tiltAngle=%d, orientationAngle=%d,"
|
|
" predictedRotation=%d, predictedRotationAgeMS=%f",
|
|
tiltAngle,
|
|
orientationAngle,
|
|
mPredictedRotation,
|
|
((now - mPredictedRotationTimestampNanos) * 0.000001f));
|
|
} else {
|
|
LOGD
|
|
("ProcessOrientation: Ignoring sensor data, no predicted rotation:"
|
|
" tiltAngle=%d, orientationAngle=%d",
|
|
tiltAngle,
|
|
orientationAngle);
|
|
ClearPredictedRotation();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine new proposed rotation.
|
|
const int oldProposedRotation = mProposedRotation;
|
|
if (mPredictedRotation < 0 || IsPredictedRotationAcceptable(now)) {
|
|
mProposedRotation = mPredictedRotation;
|
|
}
|
|
// Write final statistics about where we are in the orientation detection
|
|
// process.
|
|
LOGD
|
|
("ProcessOrientation: Result: oldProposedRotation=%d,currentRotation=%d, "
|
|
"proposedRotation=%d, predictedRotation=%d, timeDeltaMS=%f, "
|
|
"isAccelerating=%d, isFlat=%d, isSwinging=%d, timeUntilSettledMS=%f, "
|
|
"timeUntilAccelerationDelayExpiredMS=%f, timeUntilFlatDelayExpiredMS=%f, "
|
|
"timeUntilSwingDelayExpiredMS=%f",
|
|
oldProposedRotation,
|
|
deviceCurrentRotation, mProposedRotation,
|
|
mPredictedRotation, timeDeltaMS, isAccelerating, isFlat,
|
|
isSwinging, RemainingMS(now,
|
|
mPredictedRotationTimestampNanos +
|
|
PROPOSAL_SETTLE_TIME_NANOS),
|
|
RemainingMS(now,
|
|
mAccelerationTimestampNanos +
|
|
PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS),
|
|
RemainingMS(now,
|
|
mFlatTimestampNanos +
|
|
PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS),
|
|
RemainingMS(now,
|
|
mSwingTimestampNanos +
|
|
PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS));
|
|
|
|
// Avoid unused-but-set compile warnings for these variables, when LOGD is
|
|
// a no-op, as it is by default:
|
|
Unused << isAccelerating;
|
|
Unused << isFlat;
|
|
Unused << isSwinging;
|
|
|
|
// Tell the listener.
|
|
if (mProposedRotation != oldProposedRotation && mProposedRotation >= 0) {
|
|
LOGD
|
|
("ProcessOrientation: Proposed rotation changed! proposedRotation=%d, "
|
|
"oldProposedRotation=%d",
|
|
mProposedRotation,
|
|
oldProposedRotation);
|
|
return mProposedRotation;
|
|
}
|
|
// Don't rotate screen
|
|
return -1;
|
|
}
|
|
|
|
bool
|
|
ProcessOrientation::IsTiltAngleAcceptable(int rotation, int tiltAngle)
|
|
{
|
|
return (tiltAngle >= tiltTolerance[rotation][0]
|
|
&& tiltAngle <= tiltTolerance[rotation][1]);
|
|
}
|
|
|
|
bool
|
|
ProcessOrientation::IsOrientationAngleAcceptable(int rotation,
|
|
int orientationAngle,
|
|
int currentRotation)
|
|
{
|
|
// If there is no current rotation, then there is no gap.
|
|
// The gap is used only to introduce hysteresis among advertised orientation
|
|
// changes to avoid flapping.
|
|
if (currentRotation < 0) {
|
|
return true;
|
|
}
|
|
// If the specified rotation is the same or is counter-clockwise adjacent
|
|
// to the current rotation, then we set a lower bound on the orientation
|
|
// angle. For example, if currentRotation is ROTATION_0 and proposed is
|
|
// ROTATION_90, then we want to check orientationAngle > 45 + GAP / 2.
|
|
if (rotation == currentRotation || rotation == (currentRotation + 1) % 4) {
|
|
int lowerBound = rotation * 90 - 45 + ADJACENT_ORIENTATION_ANGLE_GAP / 2;
|
|
if (rotation == 0) {
|
|
if (orientationAngle >= 315 && orientationAngle < lowerBound + 360) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (orientationAngle < lowerBound) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
// If the specified rotation is the same or is clockwise adjacent, then we
|
|
// set an upper bound on the orientation angle. For example, if
|
|
// currentRotation is ROTATION_0 and rotation is ROTATION_270, then we want
|
|
// to check orientationAngle < 315 - GAP / 2.
|
|
if (rotation == currentRotation || rotation == (currentRotation + 3) % 4) {
|
|
int upperBound = rotation * 90 + 45 - ADJACENT_ORIENTATION_ANGLE_GAP / 2;
|
|
if (rotation == 0) {
|
|
if (orientationAngle <= 45 && orientationAngle > upperBound) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (orientationAngle > upperBound) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ProcessOrientation::IsPredictedRotationAcceptable(int64_t now)
|
|
{
|
|
// The predicted rotation must have settled long enough.
|
|
if (now < mPredictedRotationTimestampNanos + PROPOSAL_SETTLE_TIME_NANOS) {
|
|
return false;
|
|
}
|
|
// The last flat state (time since picked up) must have been sufficiently long
|
|
// ago.
|
|
if (now < mFlatTimestampNanos + PROPOSAL_MIN_TIME_SINCE_FLAT_ENDED_NANOS) {
|
|
return false;
|
|
}
|
|
// The last swing state (time since last movement to put down) must have been
|
|
// sufficiently long ago.
|
|
if (now < mSwingTimestampNanos + PROPOSAL_MIN_TIME_SINCE_SWING_ENDED_NANOS) {
|
|
return false;
|
|
}
|
|
// The last acceleration state must have been sufficiently long ago.
|
|
if (now < mAccelerationTimestampNanos
|
|
+ PROPOSAL_MIN_TIME_SINCE_ACCELERATION_ENDED_NANOS) {
|
|
return false;
|
|
}
|
|
// Looks good!
|
|
return true;
|
|
}
|
|
|
|
int
|
|
ProcessOrientation::Reset()
|
|
{
|
|
mLastFilteredTimestampNanos = std::numeric_limits<int64_t>::min();
|
|
mProposedRotation = -1;
|
|
mFlatTimestampNanos = std::numeric_limits<int64_t>::min();
|
|
mSwingTimestampNanos = std::numeric_limits<int64_t>::min();
|
|
mAccelerationTimestampNanos = std::numeric_limits<int64_t>::min();
|
|
ClearPredictedRotation();
|
|
ClearTiltHistory();
|
|
return -1;
|
|
}
|
|
|
|
void
|
|
ProcessOrientation::ClearPredictedRotation()
|
|
{
|
|
mPredictedRotation = -1;
|
|
mPredictedRotationTimestampNanos = std::numeric_limits<int64_t>::min();
|
|
}
|
|
|
|
void
|
|
ProcessOrientation::UpdatePredictedRotation(int64_t now, int rotation)
|
|
{
|
|
if (mPredictedRotation != rotation) {
|
|
mPredictedRotation = rotation;
|
|
mPredictedRotationTimestampNanos = now;
|
|
}
|
|
}
|
|
|
|
bool
|
|
ProcessOrientation::IsAccelerating(float magnitude)
|
|
{
|
|
return magnitude < MIN_ACCELERATION_MAGNITUDE
|
|
|| magnitude > MAX_ACCELERATION_MAGNITUDE;
|
|
}
|
|
|
|
void
|
|
ProcessOrientation::ClearTiltHistory()
|
|
{
|
|
mTiltHistory.history[0].timestampNanos = std::numeric_limits<int64_t>::min();
|
|
mTiltHistory.index = 1;
|
|
}
|
|
|
|
void
|
|
ProcessOrientation::AddTiltHistoryEntry(int64_t now, float tilt)
|
|
{
|
|
mTiltHistory.history[mTiltHistory.index].tiltAngle = tilt;
|
|
mTiltHistory.history[mTiltHistory.index].timestampNanos = now;
|
|
mTiltHistory.index = (mTiltHistory.index + 1) % TILT_HISTORY_SIZE;
|
|
mTiltHistory.history[mTiltHistory.index].timestampNanos = std::numeric_limits<int64_t>::min();
|
|
}
|
|
|
|
bool
|
|
ProcessOrientation::IsFlat(int64_t now)
|
|
{
|
|
for (int i = mTiltHistory.index; (i = NextTiltHistoryIndex(i)) >= 0;) {
|
|
if (mTiltHistory.history[i].tiltAngle < FLAT_ANGLE) {
|
|
break;
|
|
}
|
|
if (mTiltHistory.history[i].timestampNanos + FLAT_TIME_NANOS <= now) {
|
|
// Tilt has remained greater than FLAT_TILT_ANGLE for FLAT_TIME_NANOS.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
ProcessOrientation::IsSwinging(int64_t now, float tilt)
|
|
{
|
|
for (int i = mTiltHistory.index; (i = NextTiltHistoryIndex(i)) >= 0;) {
|
|
if (mTiltHistory.history[i].timestampNanos + SWING_TIME_NANOS < now) {
|
|
break;
|
|
}
|
|
if (mTiltHistory.history[i].tiltAngle + SWING_AWAY_ANGLE_DELTA <= tilt) {
|
|
// Tilted away by SWING_AWAY_ANGLE_DELTA within SWING_TIME_NANOS.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int
|
|
ProcessOrientation::NextTiltHistoryIndex(int index)
|
|
{
|
|
index = (index == 0 ? TILT_HISTORY_SIZE : index) - 1;
|
|
return mTiltHistory.history[index].timestampNanos != std::numeric_limits<int64_t>::min() ? index : -1;
|
|
}
|
|
|
|
float
|
|
ProcessOrientation::RemainingMS(int64_t now, int64_t until)
|
|
{
|
|
return now >= until ? 0 : (until - now) * 0.000001f;
|
|
}
|
|
|
|
} // namespace mozilla
|