tenfourfox/xpcom/tests/TestTArray.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

1233 lines
33 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ArrayUtils.h"
#include "mozilla/unused.h"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "nsTArray.h"
#include "nsAutoPtr.h"
#include "nsStringAPI.h"
#include "nsDirectoryServiceDefs.h"
#include "nsDirectoryServiceUtils.h"
#include "nsComponentManagerUtils.h"
#include "nsXPCOM.h"
#include "nsIFile.h"
using namespace mozilla;
namespace TestTArray {
// Define this so we can use test_basic_array in test_comptr_array
template <class T>
inline bool operator<(const nsCOMPtr<T>& lhs, const nsCOMPtr<T>& rhs) {
return lhs.get() < rhs.get();
}
//----
template <class ElementType>
static bool test_basic_array(ElementType *data,
size_t dataLen,
const ElementType& extra) {
nsTArray<ElementType> ary;
ary.AppendElements(data, dataLen);
if (ary.Length() != dataLen) {
return false;
}
if (!(ary == ary)) {
return false;
}
size_t i;
for (i = 0; i < ary.Length(); ++i) {
if (ary[i] != data[i])
return false;
}
for (i = 0; i < ary.Length(); ++i) {
if (ary.SafeElementAt(i, extra) != data[i])
return false;
}
if (ary.SafeElementAt(ary.Length(), extra) != extra ||
ary.SafeElementAt(ary.Length() * 10, extra) != extra)
return false;
// ensure sort results in ascending order
ary.Sort();
size_t j = 0, k = ary.IndexOfFirstElementGt(extra);
if (k != 0 && ary[k-1] == extra)
return false;
for (i = 0; i < ary.Length(); ++i) {
k = ary.IndexOfFirstElementGt(ary[i]);
if (k == 0 || ary[k-1] != ary[i])
return false;
if (k < j)
return false;
j = k;
}
for (i = ary.Length(); --i; ) {
if (ary[i] < ary[i - 1])
return false;
if (ary[i] == ary[i - 1])
ary.RemoveElementAt(i);
}
if (!(ary == ary)) {
return false;
}
for (i = 0; i < ary.Length(); ++i) {
if (ary.BinaryIndexOf(ary[i]) != i)
return false;
}
if (ary.BinaryIndexOf(extra) != ary.NoIndex)
return false;
size_t oldLen = ary.Length();
ary.RemoveElement(data[dataLen / 2]);
if (ary.Length() != (oldLen - 1))
return false;
if (!(ary == ary))
return false;
size_t index = ary.Length() / 2;
if (!ary.InsertElementAt(index, extra))
return false;
if (!(ary == ary))
return false;
if (ary[index] != extra)
return false;
if (ary.IndexOf(extra) == ary.NoIndex)
return false;
if (ary.LastIndexOf(extra) == ary.NoIndex)
return false;
// ensure proper searching
if (ary.IndexOf(extra) > ary.LastIndexOf(extra))
return false;
if (ary.IndexOf(extra, index) != ary.LastIndexOf(extra, index))
return false;
nsTArray<ElementType> copy(ary);
if (!(ary == copy))
return false;
for (i = 0; i < copy.Length(); ++i) {
if (ary[i] != copy[i])
return false;
}
if (!ary.AppendElements(copy))
return false;
size_t cap = ary.Capacity();
ary.RemoveElementsAt(copy.Length(), copy.Length());
ary.Compact();
if (ary.Capacity() == cap)
return false;
ary.Clear();
if (ary.IndexOf(extra) != ary.NoIndex)
return false;
if (ary.LastIndexOf(extra) != ary.NoIndex)
return false;
ary.Clear();
if (!ary.IsEmpty() || ary.Elements() == nullptr)
return false;
if (!(ary == nsTArray<ElementType>()))
return false;
if (ary == copy)
return false;
if (ary.SafeElementAt(0, extra) != extra ||
ary.SafeElementAt(10, extra) != extra)
return false;
ary = copy;
if (!(ary == copy))
return false;
for (i = 0; i < copy.Length(); ++i) {
if (ary[i] != copy[i])
return false;
}
if (!ary.InsertElementsAt(0, copy))
return false;
if (ary == copy)
return false;
ary.RemoveElementsAt(0, copy.Length());
for (i = 0; i < copy.Length(); ++i) {
if (ary[i] != copy[i])
return false;
}
// These shouldn't crash!
nsTArray<ElementType> empty;
ary.AppendElements(reinterpret_cast<ElementType *>(0), 0);
ary.AppendElements(empty);
// See bug 324981
ary.RemoveElement(extra);
ary.RemoveElement(extra);
return true;
}
static bool test_int_array() {
int data[] = {4,6,8,2,4,1,5,7,3};
return test_basic_array(data, ArrayLength(data), int(14));
}
static bool test_int64_array() {
int64_t data[] = {4,6,8,2,4,1,5,7,3};
return test_basic_array(data, ArrayLength(data), int64_t(14));
}
static bool test_char_array() {
char data[] = {4,6,8,2,4,1,5,7,3};
return test_basic_array(data, ArrayLength(data), char(14));
}
static bool test_uint32_array() {
uint32_t data[] = {4,6,8,2,4,1,5,7,3};
return test_basic_array(data, ArrayLength(data), uint32_t(14));
}
//----
class Object {
public:
Object() : mNum(0) {
}
Object(const char *str, uint32_t num) : mStr(str), mNum(num) {
}
Object(const Object& other) : mStr(other.mStr), mNum(other.mNum) {
}
~Object() {}
Object& operator=(const Object& other) {
mStr = other.mStr;
mNum = other.mNum;
return *this;
}
bool operator==(const Object& other) const {
return mStr == other.mStr && mNum == other.mNum;
}
bool operator<(const Object& other) const {
// sort based on mStr only
return mStr.Compare(other.mStr) < 0;
}
const char *Str() const { return mStr.get(); }
uint32_t Num() const { return mNum; }
private:
nsCString mStr;
uint32_t mNum;
};
static bool test_object_array() {
nsTArray<Object> objArray;
const char kdata[] = "hello world";
size_t i;
for (i = 0; i < ArrayLength(kdata); ++i) {
char x[] = {kdata[i],'\0'};
if (!objArray.AppendElement(Object(x, i)))
return false;
}
for (i = 0; i < ArrayLength(kdata); ++i) {
if (objArray[i].Str()[0] != kdata[i])
return false;
if (objArray[i].Num() != i)
return false;
}
objArray.Sort();
const char ksorted[] = "\0 dehllloorw";
for (i = 0; i < ArrayLength(kdata)-1; ++i) {
if (objArray[i].Str()[0] != ksorted[i])
return false;
}
return true;
}
class Countable {
static uint32_t sCount;
public:
Countable()
{
sCount++;
}
Countable(const Countable& aOther)
{
sCount++;
}
static uint32_t Count() { return sCount; }
};
class Moveable {
static uint32_t sCount;
public:
Moveable()
{
sCount++;
}
Moveable(const Moveable& aOther)
{
sCount++;
}
Moveable(Moveable&& aOther)
{
// Do not increment sCount
}
static uint32_t Count() { return sCount; }
};
/* static */ uint32_t Countable::sCount = 0;
/* static */ uint32_t Moveable::sCount = 0;
static nsTArray<int> returns_by_value() {
nsTArray<int> result;
return result;
}
static bool test_return_by_value() {
nsTArray<int> result = returns_by_value();
return true;
}
static bool test_move_array() {
nsTArray<Countable> countableArray;
uint32_t i;
for (i = 0; i < 4; ++i) {
if (!countableArray.AppendElement(Countable()))
return false;
}
if (Countable::Count() != 8)
return false;
const nsTArray<Countable>& constRefCountableArray = countableArray;
if (Countable::Count() != 8)
return false;
nsTArray<Countable> copyCountableArray(constRefCountableArray);
if (Countable::Count() != 12)
return false;
nsTArray<Countable>&& moveRefCountableArray = Move(countableArray);
moveRefCountableArray.Length(); // Make compilers happy.
if (Countable::Count() != 12)
return false;
nsTArray<Countable> movedCountableArray(Move(countableArray));
if (Countable::Count() != 12)
return false;
// Test ctor
FallibleTArray<Countable> differentAllocatorCountableArray(Move(copyCountableArray));
// operator=
copyCountableArray = Move(differentAllocatorCountableArray);
differentAllocatorCountableArray = Move(copyCountableArray);
// And the other ctor
nsTArray<Countable> copyCountableArray2(Move(differentAllocatorCountableArray));
// with auto
nsAutoTArray<Countable, 3> autoCountableArray(Move(copyCountableArray2));
// operator=
copyCountableArray2 = Move(autoCountableArray);
// Mix with FallibleTArray
FallibleTArray<Countable> differentAllocatorCountableArray2(Move(copyCountableArray2));
nsAutoTArray<Countable, 4> autoCountableArray2(Move(differentAllocatorCountableArray2));
differentAllocatorCountableArray2 = Move(autoCountableArray2);
if (Countable::Count() != 12)
return false;
nsTArray<Moveable> moveableArray;
for (i = 0; i < 4; ++i) {
if (!moveableArray.AppendElement(Moveable()))
return false;
}
if (Moveable::Count() != 4)
return false;
const nsTArray<Moveable>& constRefMoveableArray = moveableArray;
if (Moveable::Count() != 4)
return false;
nsTArray<Moveable> copyMoveableArray(constRefMoveableArray);
if (Moveable::Count() != 8)
return false;
nsTArray<Moveable>&& moveRefMoveableArray = Move(moveableArray);
moveRefMoveableArray.Length(); // Make compilers happy.
if (Moveable::Count() != 8)
return false;
nsTArray<Moveable> movedMoveableArray(Move(moveableArray));
if (Moveable::Count() != 8)
return false;
// Test ctor
FallibleTArray<Moveable> differentAllocatorMoveableArray(Move(copyMoveableArray));
// operator=
copyMoveableArray = Move(differentAllocatorMoveableArray);
differentAllocatorMoveableArray = Move(copyMoveableArray);
// And the other ctor
nsTArray<Moveable> copyMoveableArray2(Move(differentAllocatorMoveableArray));
// with auto
nsAutoTArray<Moveable, 3> autoMoveableArray(Move(copyMoveableArray2));
// operator=
copyMoveableArray2 = Move(autoMoveableArray);
// Mix with FallibleTArray
FallibleTArray<Moveable> differentAllocatorMoveableArray2(Move(copyMoveableArray2));
nsAutoTArray<Moveable, 4> autoMoveableArray2(Move(differentAllocatorMoveableArray2));
differentAllocatorMoveableArray2 = Move(autoMoveableArray2);
if (Moveable::Count() != 8)
return false;
return true;
}
// nsTArray<nsAutoPtr<T>> is not supported
#if 0
static bool test_autoptr_array() {
nsTArray< nsAutoPtr<Object> > objArray;
const char kdata[] = "hello world";
for (size_t i = 0; i < ArrayLength(kdata); ++i) {
char x[] = {kdata[i],'\0'};
nsAutoPtr<Object> obj(new Object(x,i));
if (!objArray.AppendElement(obj)) // XXX does not call copy-constructor for nsAutoPtr!!!
return false;
if (obj.get() == nullptr)
return false;
obj.forget(); // the array now owns the reference
}
for (size_t i = 0; i < ArrayLength(kdata); ++i) {
if (objArray[i]->Str()[0] != kdata[i])
return false;
if (objArray[i]->Num() != i)
return false;
}
return true;
}
#endif
//----
static bool test_string_array() {
nsTArray<nsCString> strArray;
const char kdata[] = "hello world";
size_t i;
for (i = 0; i < ArrayLength(kdata); ++i) {
nsCString str;
str.Assign(kdata[i]);
if (!strArray.AppendElement(str))
return false;
}
for (i = 0; i < ArrayLength(kdata); ++i) {
if (strArray[i].CharAt(0) != kdata[i])
return false;
}
const char kextra[] = "foo bar";
size_t oldLen = strArray.Length();
if (!strArray.AppendElement(kextra))
return false;
strArray.RemoveElement(kextra);
if (oldLen != strArray.Length())
return false;
if (strArray.IndexOf("e") != 1)
return false;
strArray.Sort();
const char ksorted[] = "\0 dehllloorw";
for (i = ArrayLength(kdata); i--; ) {
if (strArray[i].CharAt(0) != ksorted[i])
return false;
if (i > 0 && strArray[i] == strArray[i - 1])
strArray.RemoveElementAt(i);
}
for (i = 0; i < strArray.Length(); ++i) {
if (strArray.BinaryIndexOf(strArray[i]) != i)
return false;
}
if (strArray.BinaryIndexOf(EmptyCString()) != strArray.NoIndex)
return false;
nsCString rawArray[MOZ_ARRAY_LENGTH(kdata) - 1];
for (i = 0; i < ArrayLength(rawArray); ++i)
rawArray[i].Assign(kdata + i); // substrings of kdata
return test_basic_array(rawArray, ArrayLength(rawArray),
nsCString("foopy"));
}
//----
typedef nsCOMPtr<nsIFile> FilePointer;
class nsFileNameComparator {
public:
bool Equals(const FilePointer &a, const char *b) const {
nsAutoCString name;
a->GetNativeLeafName(name);
return name.Equals(b);
}
};
static bool test_comptr_array() {
FilePointer tmpDir;
NS_GetSpecialDirectory(NS_OS_TEMP_DIR, getter_AddRefs(tmpDir));
if (!tmpDir)
return false;
const char *kNames[] = {
"foo.txt", "bar.html", "baz.gif"
};
nsTArray<FilePointer> fileArray;
size_t i;
for (i = 0; i < ArrayLength(kNames); ++i) {
FilePointer f;
tmpDir->Clone(getter_AddRefs(f));
if (!f)
return false;
if (NS_FAILED(f->AppendNative(nsDependentCString(kNames[i]))))
return false;
fileArray.AppendElement(f);
}
if (fileArray.IndexOf(kNames[1], 0, nsFileNameComparator()) != 1)
return false;
// It's unclear what 'operator<' means for nsCOMPtr, but whatever...
return test_basic_array(fileArray.Elements(), fileArray.Length(),
tmpDir);
}
//----
class RefcountedObject {
public:
RefcountedObject() : rc(0) {}
void AddRef() {
++rc;
}
void Release() {
if (--rc == 0)
delete this;
}
~RefcountedObject() {}
private:
int32_t rc;
};
static bool test_refptr_array() {
bool rv = true;
nsTArray< RefPtr<RefcountedObject> > objArray;
RefcountedObject *a = new RefcountedObject(); a->AddRef();
RefcountedObject *b = new RefcountedObject(); b->AddRef();
RefcountedObject *c = new RefcountedObject(); c->AddRef();
objArray.AppendElement(a);
objArray.AppendElement(b);
objArray.AppendElement(c);
if (objArray.IndexOf(b) != 1)
rv = false;
a->Release();
b->Release();
c->Release();
return rv;
}
//----
static bool test_ptrarray() {
nsTArray<uint32_t*> ary;
if (ary.SafeElementAt(0) != nullptr)
return false;
if (ary.SafeElementAt(1000) != nullptr)
return false;
uint32_t a = 10;
ary.AppendElement(&a);
if (*ary[0] != a)
return false;
if (*ary.SafeElementAt(0) != a)
return false;
nsTArray<const uint32_t*> cary;
if (cary.SafeElementAt(0) != nullptr)
return false;
if (cary.SafeElementAt(1000) != nullptr)
return false;
const uint32_t b = 14;
cary.AppendElement(&a);
cary.AppendElement(&b);
if (*cary[0] != a || *cary[1] != b)
return false;
if (*cary.SafeElementAt(0) != a || *cary.SafeElementAt(1) != b)
return false;
return true;
}
//----
// This test relies too heavily on the existence of DebugGetHeader to be
// useful in non-debug builds.
#ifdef DEBUG
static bool test_autoarray() {
uint32_t data[] = {4,6,8,2,4,1,5,7,3};
nsAutoTArray<uint32_t, MOZ_ARRAY_LENGTH(data)> array;
void* hdr = array.DebugGetHeader();
if (hdr == nsTArray<uint32_t>().DebugGetHeader())
return false;
if (hdr == nsAutoTArray<uint32_t, MOZ_ARRAY_LENGTH(data)>().DebugGetHeader())
return false;
array.AppendElement(1u);
if (hdr != array.DebugGetHeader())
return false;
array.RemoveElement(1u);
array.AppendElements(data, ArrayLength(data));
if (hdr != array.DebugGetHeader())
return false;
array.AppendElement(2u);
if (hdr == array.DebugGetHeader())
return false;
array.Clear();
array.Compact();
if (hdr != array.DebugGetHeader())
return false;
array.AppendElements(data, ArrayLength(data));
if (hdr != array.DebugGetHeader())
return false;
nsTArray<uint32_t> array2;
void* emptyHdr = array2.DebugGetHeader();
array.SwapElements(array2);
if (emptyHdr == array.DebugGetHeader())
return false;
if (hdr == array2.DebugGetHeader())
return false;
size_t i;
for (i = 0; i < ArrayLength(data); ++i) {
if (array2[i] != data[i])
return false;
}
if (!array.IsEmpty())
return false;
array.Compact();
array.AppendElements(data, ArrayLength(data));
uint32_t data3[] = {5, 7, 11};
nsAutoTArray<uint32_t, MOZ_ARRAY_LENGTH(data3)> array3;
array3.AppendElements(data3, ArrayLength(data3));
array.SwapElements(array3);
for (i = 0; i < ArrayLength(data); ++i) {
if (array3[i] != data[i])
return false;
}
for (i = 0; i < ArrayLength(data3); ++i) {
if (array[i] != data3[i])
return false;
}
return true;
}
#endif
//----
// IndexOf used to potentially scan beyond the end of the array. Test for
// this incorrect behavior by adding a value (5), removing it, then seeing
// if IndexOf finds it.
static bool test_indexof() {
nsTArray<int> array;
array.AppendElement(0);
// add and remove the 5
array.AppendElement(5);
array.RemoveElementAt(1);
// we should not find the 5!
return array.IndexOf(5, 1) == array.NoIndex;
}
//----
template <class Array>
static bool is_heap(const Array& ary, size_t len) {
size_t index = 1;
while (index < len) {
if (ary[index] > ary[(index - 1) >> 1])
return false;
index++;
}
return true;
}
static bool test_heap() {
const int data[] = {4,6,8,2,4,1,5,7,3};
nsTArray<int> ary;
ary.AppendElements(data, ArrayLength(data));
// make a heap and make sure it's a heap
ary.MakeHeap();
if (!is_heap(ary, ArrayLength(data)))
return false;
// pop the root and make sure it's still a heap
int root = ary[0];
ary.PopHeap();
if (!is_heap(ary, ArrayLength(data) - 1))
return false;
// push the previously poped value back on and make sure it's still a heap
ary.PushHeap(root);
if (!is_heap(ary, ArrayLength(data)))
return false;
// make sure the heap looks like what we expect
const int expected_data[] = {8,7,5,6,4,1,4,2,3};
size_t index;
for (index = 0; index < ArrayLength(data); index++)
if (ary[index] != expected_data[index])
return false;
return true;
}
//----
// An array |arr| is using its auto buffer if |&arr < arr.Elements()| and
// |arr.Elements() - &arr| is small.
#define IS_USING_AUTO(arr) \
((uintptr_t) &(arr) < (uintptr_t) arr.Elements() && \
((ptrdiff_t)arr.Elements() - (ptrdiff_t)&arr) <= 16)
#define CHECK_IS_USING_AUTO(arr) \
do { \
if (!(IS_USING_AUTO(arr))) { \
printf("%s:%d CHECK_IS_USING_AUTO(%s) failed.\n", \
__FILE__, __LINE__, #arr); \
return false; \
} \
} while(0)
#define CHECK_NOT_USING_AUTO(arr) \
do { \
if (IS_USING_AUTO(arr)) { \
printf("%s:%d CHECK_NOT_USING_AUTO(%s) failed.\n", \
__FILE__, __LINE__, #arr); \
return false; \
} \
} while(0)
#define CHECK_USES_SHARED_EMPTY_HDR(arr) \
do { \
nsTArray<int> _empty; \
if (_empty.Elements() != arr.Elements()) { \
printf("%s:%d CHECK_USES_EMPTY_HDR(%s) failed.\n", \
__FILE__, __LINE__, #arr); \
return false; \
} \
} while(0)
#define CHECK_EQ_INT(actual, expected) \
do { \
if ((actual) != (expected)) { \
std::cout << __FILE__ << ":" << __LINE__ << " CHECK_EQ_INT(" \
<< #actual << "=" << (actual) << ", " \
<< #expected << "=" << (expected) << ") failed." \
<< std::endl; \
return false; \
} \
} while(0)
#define CHECK_ARRAY(arr, data) \
do { \
CHECK_EQ_INT((arr).Length(), (size_t)ArrayLength(data)); \
for (size_t _i = 0; _i < ArrayLength(data); _i++) { \
CHECK_EQ_INT((arr)[_i], (data)[_i]); \
} \
} while(0)
static bool test_swap() {
// Test nsTArray::SwapElements. Unfortunately there are many cases.
int data1[] = {8, 6, 7, 5};
int data2[] = {3, 0, 9};
// Swap two auto arrays.
{
nsAutoTArray<int, 8> a;
nsAutoTArray<int, 6> b;
a.AppendElements(data1, ArrayLength(data1));
b.AppendElements(data2, ArrayLength(data2));
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
CHECK_ARRAY(a, data2);
CHECK_ARRAY(b, data1);
}
// Swap two auto arrays -- one whose data lives on the heap, the other whose
// data lives on the stack -- which each fits into the other's auto storage.
{
nsAutoTArray<int, 3> a;
nsAutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
a.RemoveElementAt(3);
b.AppendElements(data2, ArrayLength(data2));
// Here and elsewhere, we assert that if we start with an auto array
// capable of storing N elements, we store N+1 elements into the array, and
// then we remove one element, that array is still not using its auto
// buffer.
//
// This isn't at all required by the TArray API. It would be fine if, when
// we shrink back to N elements, the TArray frees its heap storage and goes
// back to using its stack storage. But we assert here as a check that the
// test does what we expect. If the TArray implementation changes, just
// change the failing assertions.
CHECK_NOT_USING_AUTO(a);
// This check had better not change, though.
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_IS_USING_AUTO(b);
CHECK_ARRAY(a, data2);
int expectedB[] = {8, 6, 7};
CHECK_ARRAY(b, expectedB);
}
// Swap two auto arrays which are using heap storage such that one fits into
// the other's auto storage, but the other needs to stay on the heap.
{
nsAutoTArray<int, 3> a;
nsAutoTArray<int, 2> b;
a.AppendElements(data1, ArrayLength(data1));
a.RemoveElementAt(3);
b.AppendElements(data2, ArrayLength(data2));
b.RemoveElementAt(2);
CHECK_NOT_USING_AUTO(a);
CHECK_NOT_USING_AUTO(b);
a.SwapElements(b);
CHECK_NOT_USING_AUTO(b);
int expected1[] = {3, 0};
int expected2[] = {8, 6, 7};
CHECK_ARRAY(a, expected1);
CHECK_ARRAY(b, expected2);
}
// Swap two arrays, neither of which fits into the other's auto-storage.
{
nsAutoTArray<int, 1> a;
nsAutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
b.AppendElements(data2, ArrayLength(data2));
a.SwapElements(b);
CHECK_ARRAY(a, data2);
CHECK_ARRAY(b, data1);
}
// Swap an empty nsTArray with a non-empty nsAutoTArray.
{
nsTArray<int> a;
nsAutoTArray<int, 3> b;
b.AppendElements(data2, ArrayLength(data2));
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_ARRAY(a, data2);
CHECK_EQ_INT(b.Length(), 0);
CHECK_IS_USING_AUTO(b);
}
// Swap two big auto arrays.
{
const unsigned size = 8192;
nsAutoTArray<unsigned, size> a;
nsAutoTArray<unsigned, size> b;
for (unsigned i = 0; i < size; i++) {
a.AppendElement(i);
b.AppendElement(i + 1);
}
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
CHECK_EQ_INT(a.Length(), size);
CHECK_EQ_INT(b.Length(), size);
for (unsigned i = 0; i < size; i++) {
CHECK_EQ_INT(a[i], i + 1);
CHECK_EQ_INT(b[i], i);
}
}
// Swap two arrays and make sure that their capacities don't increase
// unnecessarily.
{
nsTArray<int> a;
nsTArray<int> b;
b.AppendElements(data2, ArrayLength(data2));
CHECK_EQ_INT(a.Capacity(), 0);
size_t bCapacity = b.Capacity();
a.SwapElements(b);
// Make sure that we didn't increase the capacity of either array.
CHECK_ARRAY(a, data2);
CHECK_EQ_INT(b.Length(), 0);
CHECK_EQ_INT(b.Capacity(), 0);
CHECK_EQ_INT(a.Capacity(), bCapacity);
}
// Swap an auto array with a TArray, then clear the auto array and make sure
// it doesn't forget the fact that it has an auto buffer.
{
nsTArray<int> a;
nsAutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
a.SwapElements(b);
CHECK_EQ_INT(a.Length(), 0);
CHECK_ARRAY(b, data1);
b.Clear();
CHECK_USES_SHARED_EMPTY_HDR(a);
CHECK_IS_USING_AUTO(b);
}
// Same thing as the previous test, but with more auto arrays.
{
nsAutoTArray<int, 16> a;
nsAutoTArray<int, 3> b;
a.AppendElements(data1, ArrayLength(data1));
a.SwapElements(b);
CHECK_EQ_INT(a.Length(), 0);
CHECK_ARRAY(b, data1);
b.Clear();
CHECK_IS_USING_AUTO(a);
CHECK_IS_USING_AUTO(b);
}
// Swap an empty nsTArray and an empty nsAutoTArray.
{
nsAutoTArray<int, 8> a;
nsTArray<int> b;
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_NOT_USING_AUTO(b);
CHECK_EQ_INT(a.Length(), 0);
CHECK_EQ_INT(b.Length(), 0);
}
// Swap empty auto array with non-empty nsAutoTArray using malloc'ed storage.
// I promise, all these tests have a point.
{
nsAutoTArray<int, 2> a;
nsAutoTArray<int, 1> b;
a.AppendElements(data1, ArrayLength(data1));
a.SwapElements(b);
CHECK_IS_USING_AUTO(a);
CHECK_NOT_USING_AUTO(b);
CHECK_ARRAY(b, data1);
CHECK_EQ_INT(a.Length(), 0);
}
return true;
}
static bool test_fallible()
{
// Test that FallibleTArray works properly; that is, it never OOMs, but
// instead eventually returns false.
//
// This test is only meaningful on 32-bit systems. On a 64-bit system, we
// might never OOM.
if (sizeof(void*) > 4) {
return true;
}
// Allocate a bunch of 128MB arrays. Larger allocations will fail on some
// platforms without actually hitting OOM.
//
// 36 * 128MB > 4GB, so we should definitely OOM by the 36th array.
const unsigned numArrays = 36;
FallibleTArray<char> arrays[numArrays];
for (size_t i = 0; i < numArrays; i++) {
// SetCapacity allocates the requested capacity + a header, and we want to
// avoid allocating more than 128MB overall because of the size padding it
// will cause, which depends on allocator behavior, so use 128MB - an
// arbitrary size larger than the array header, so that chances are good
// that allocations will always be 128MB.
bool success = arrays[i].SetCapacity(128 * 1024 * 1024 - 1024, fallible);
if (!success) {
// We got our OOM. Check that it didn't come too early.
if (i < 7) {
printf("test_fallible: Got OOM on iteration %d. Too early!\n", int(i));
return false;
}
return true;
}
}
// No OOM? That's...weird.
printf("test_fallible: Didn't OOM or crash? nsTArray::SetCapacity "
"must be lying.\n");
return false;
}
static bool test_conversion_operator() {
FallibleTArray<int> f;
const FallibleTArray<int> fconst;
AutoFallibleTArray<int, 8> fauto;
const AutoFallibleTArray<int, 8> fautoconst;
InfallibleTArray<int> i;
const InfallibleTArray<int> iconst;
AutoInfallibleTArray<int, 8> iauto;
const AutoInfallibleTArray<int, 8> iautoconst;
nsTArray<int> t;
const nsTArray<int> tconst;
nsAutoTArray<int, 8> tauto;
const nsAutoTArray<int, 8> tautoconst;
#define CHECK_ARRAY_CAST(type) \
do { \
const type<int>& z1 = f; \
if ((void*)&z1 != (void*)&f) return false; \
const type<int>& z2 = fconst; \
if ((void*)&z2 != (void*)&fconst) return false; \
const type<int>& z3 = fauto; \
if ((void*)&z3 != (void*)&fauto) return false; \
const type<int>& z4 = fautoconst; \
if ((void*)&z4 != (void*)&fautoconst) return false; \
const type<int>& z5 = i; \
if ((void*)&z5 != (void*)&i) return false; \
const type<int>& z6 = iconst; \
if ((void*)&z6 != (void*)&iconst) return false; \
const type<int>& z7 = iauto; \
if ((void*)&z7 != (void*)&iauto) return false; \
const type<int>& z8 = iautoconst; \
if ((void*)&z8 != (void*)&iautoconst) return false; \
const type<int>& z9 = t; \
if ((void*)&z9 != (void*)&t) return false; \
const type<int>& z10 = tconst; \
if ((void*)&z10 != (void*)&tconst) return false; \
const type<int>& z11 = tauto; \
if ((void*)&z11 != (void*)&tauto) return false; \
const type<int>& z12 = tautoconst; \
if ((void*)&z12 != (void*)&tautoconst) return false; \
} while (0)
CHECK_ARRAY_CAST(FallibleTArray);
CHECK_ARRAY_CAST(InfallibleTArray);
CHECK_ARRAY_CAST(nsTArray);
#undef CHECK_ARRAY_CAST
return true;
}
template<class T>
struct BufAccessor : public T
{
void* GetHdr() { return T::mHdr; }
};
static bool test_SetLengthAndRetainStorage_no_ctor() {
// 1050 because sizeof(int)*1050 is more than a page typically.
const int N = 1050;
FallibleTArray<int> f;
AutoFallibleTArray<int, N> fauto;
InfallibleTArray<int> i;
AutoInfallibleTArray<int, N> iauto;
nsTArray<int> t;
nsAutoTArray<int, N> tauto;
#define LPAREN (
#define RPAREN )
#define FOR_EACH(pre, post) \
do { \
pre f post; \
pre fauto post; \
pre i post; \
pre iauto post; \
pre t post; \
pre tauto post; \
} while (0)
// Setup test arrays.
FOR_EACH(; Unused << , .SetLength(N, fallible));
for (int n = 0; n < N; ++n) {
FOR_EACH(;, [n] = n);
}
void* initial_Hdrs[] = {
static_cast<BufAccessor<FallibleTArray<int> >&>(f).GetHdr(),
static_cast<BufAccessor<AutoFallibleTArray<int, N> >&>(fauto).GetHdr(),
static_cast<BufAccessor<InfallibleTArray<int> >&>(i).GetHdr(),
static_cast<BufAccessor<AutoInfallibleTArray<int, N> >&>(iauto).GetHdr(),
static_cast<BufAccessor<nsTArray<int> >&>(t).GetHdr(),
static_cast<BufAccessor<nsAutoTArray<int, N> >&>(tauto).GetHdr(),
nullptr
};
// SetLengthAndRetainStorage(n), should NOT overwrite memory when T hasn't
// a default constructor.
FOR_EACH(;, .SetLengthAndRetainStorage(8));
FOR_EACH(;, .SetLengthAndRetainStorage(12));
for (int n = 0; n < 12; ++n) {
FOR_EACH(if LPAREN, [n] != n RPAREN return false);
}
FOR_EACH(;, .SetLengthAndRetainStorage(0));
FOR_EACH(;, .SetLengthAndRetainStorage(N));
for (int n = 0; n < N; ++n) {
FOR_EACH(if LPAREN, [n] != n RPAREN return false);
}
void* current_Hdrs[] = {
static_cast<BufAccessor<FallibleTArray<int> >&>(f).GetHdr(),
static_cast<BufAccessor<AutoFallibleTArray<int, N> >&>(fauto).GetHdr(),
static_cast<BufAccessor<InfallibleTArray<int> >&>(i).GetHdr(),
static_cast<BufAccessor<AutoInfallibleTArray<int, N> >&>(iauto).GetHdr(),
static_cast<BufAccessor<nsTArray<int> >&>(t).GetHdr(),
static_cast<BufAccessor<nsAutoTArray<int, N> >&>(tauto).GetHdr(),
nullptr
};
// SetLengthAndRetainStorage(n) should NOT have reallocated the internal
// memory.
if (sizeof(initial_Hdrs) != sizeof(current_Hdrs)) return false;
for (size_t n = 0; n < sizeof(current_Hdrs) / sizeof(current_Hdrs[0]); ++n) {
if (current_Hdrs[n] != initial_Hdrs[n]) {
return false;
}
}
#undef FOR_EACH
#undef LPAREN
#undef RPAREN
return true;
}
//----
typedef bool (*TestFunc)();
#define DECL_TEST(name) { #name, name }
static const struct Test {
const char* name;
TestFunc func;
} tests[] = {
DECL_TEST(test_int_array),
DECL_TEST(test_int64_array),
DECL_TEST(test_char_array),
DECL_TEST(test_uint32_array),
DECL_TEST(test_object_array),
DECL_TEST(test_return_by_value),
DECL_TEST(test_move_array),
DECL_TEST(test_string_array),
DECL_TEST(test_comptr_array),
DECL_TEST(test_refptr_array),
DECL_TEST(test_ptrarray),
#ifdef DEBUG
DECL_TEST(test_autoarray),
#endif
DECL_TEST(test_indexof),
DECL_TEST(test_heap),
DECL_TEST(test_swap),
DECL_TEST(test_fallible),
DECL_TEST(test_conversion_operator),
DECL_TEST(test_SetLengthAndRetainStorage_no_ctor),
{ nullptr, nullptr }
};
} // namespace TestTArray
using namespace TestTArray;
int main(int argc, char **argv) {
int count = 1;
if (argc > 1)
count = atoi(argv[1]);
if (NS_FAILED(NS_InitXPCOM2(nullptr, nullptr, nullptr)))
return -1;
bool success = true;
while (count--) {
for (const Test* t = tests; t->name != nullptr; ++t) {
bool test_result = t->func();
printf("%25s : %s\n", t->name, test_result ? "SUCCESS" : "FAILURE");
if (!test_result)
success = false;
}
}
NS_ShutdownXPCOM(nullptr);
return success ? 0 : -1;
}