tenfourfox/dom/media/webaudio/AudioNodeStream.cpp
Cameron Kaiser c9b2922b70 hello FPR
2017-04-19 00:56:45 -07:00

784 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioNodeStream.h"
#include "MediaStreamGraphImpl.h"
#include "AudioNodeEngine.h"
#include "ThreeDPoint.h"
#include "AudioChannelFormat.h"
#include "AudioParamTimeline.h"
#include "AudioContext.h"
#include "nsMathUtils.h"
using namespace mozilla::dom;
namespace mozilla {
/**
* An AudioNodeStream produces a single audio track with ID
* AUDIO_TRACK. This track has rate AudioContext::sIdealAudioRate
* for regular audio contexts, and the rate requested by the web content
* for offline audio contexts.
* Each chunk in the track is a single block of WEBAUDIO_BLOCK_SIZE samples.
* Note: This must be a different value than MEDIA_STREAM_DEST_TRACK_ID
*/
AudioNodeStream::AudioNodeStream(AudioNodeEngine* aEngine,
Flags aFlags,
TrackRate aSampleRate)
: ProcessedMediaStream(nullptr),
mEngine(aEngine),
mSampleRate(aSampleRate),
mFlags(aFlags),
mNumberOfInputChannels(2),
mIsActive(aEngine->IsActive()),
mMarkAsFinishedAfterThisBlock(false),
mAudioParamStream(false),
mPassThrough(false)
{
MOZ_ASSERT(NS_IsMainThread());
mSuspendedCount = !(mIsActive || mFlags & EXTERNAL_OUTPUT);
mChannelCountMode = ChannelCountMode::Max;
mChannelInterpretation = ChannelInterpretation::Speakers;
// AudioNodes are always producing data
mHasCurrentData = true;
mLastChunks.SetLength(std::max(uint16_t(1), mEngine->OutputCount()));
MOZ_COUNT_CTOR(AudioNodeStream);
}
AudioNodeStream::~AudioNodeStream()
{
MOZ_ASSERT(mActiveInputCount == 0);
MOZ_COUNT_DTOR(AudioNodeStream);
}
void
AudioNodeStream::DestroyImpl()
{
// These are graph thread objects, so clean up on graph thread.
mInputChunks.Clear();
mLastChunks.Clear();
ProcessedMediaStream::DestroyImpl();
}
/* static */ already_AddRefed<AudioNodeStream>
AudioNodeStream::Create(AudioContext* aCtx, AudioNodeEngine* aEngine,
Flags aFlags, MediaStreamGraph* aGraph)
{
MOZ_ASSERT(NS_IsMainThread());
// MediaRecorders use an AudioNodeStream, but no AudioNode
AudioNode* node = aEngine->NodeMainThread();
MediaStreamGraph* graph = aGraph ? aGraph : aCtx->Graph();
MOZ_ASSERT(graph->GraphRate() == aCtx->SampleRate());
RefPtr<AudioNodeStream> stream =
new AudioNodeStream(aEngine, aFlags, graph->GraphRate());
stream->mSuspendedCount += aCtx->ShouldSuspendNewStream();
if (node) {
stream->SetChannelMixingParametersImpl(node->ChannelCount(),
node->ChannelCountModeValue(),
node->ChannelInterpretationValue());
}
graph->AddStream(stream);
return stream.forget();
}
size_t
AudioNodeStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t amount = 0;
// Not reported:
// - mEngine
amount += ProcessedMediaStream::SizeOfExcludingThis(aMallocSizeOf);
amount += mLastChunks.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (size_t i = 0; i < mLastChunks.Length(); i++) {
// NB: This is currently unshared only as there are instances of
// double reporting in DMD otherwise.
amount += mLastChunks[i].SizeOfExcludingThisIfUnshared(aMallocSizeOf);
}
return amount;
}
size_t
AudioNodeStream::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
void
AudioNodeStream::SizeOfAudioNodesIncludingThis(MallocSizeOf aMallocSizeOf,
AudioNodeSizes& aUsage) const
{
// Explicitly separate out the stream memory.
aUsage.mStream = SizeOfIncludingThis(aMallocSizeOf);
if (mEngine) {
// This will fill out the rest of |aUsage|.
mEngine->SizeOfIncludingThis(aMallocSizeOf, aUsage);
}
}
void
AudioNodeStream::SetStreamTimeParameter(uint32_t aIndex, AudioContext* aContext,
double aStreamTime)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
: ControlMessage(aStream), mStreamTime(aStreamTime),
mRelativeToStream(aRelativeToStream), mIndex(aIndex)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->
SetStreamTimeParameterImpl(mIndex, mRelativeToStream, mStreamTime);
}
double mStreamTime;
MediaStream* mRelativeToStream;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex,
aContext->DestinationStream(),
aStreamTime));
}
void
AudioNodeStream::SetStreamTimeParameterImpl(uint32_t aIndex, MediaStream* aRelativeToStream,
double aStreamTime)
{
StreamTime ticks = aRelativeToStream->SecondsToNearestStreamTime(aStreamTime);
mEngine->SetStreamTimeParameter(aIndex, ticks);
}
void
AudioNodeStream::SetDoubleParameter(uint32_t aIndex, double aValue)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, double aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetDoubleParameter(mIndex, mValue);
}
double mValue;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetInt32Parameter(uint32_t aIndex, int32_t aValue)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, int32_t aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetInt32Parameter(mIndex, mValue);
}
int32_t mValue;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SendTimelineEvent(uint32_t aIndex,
const AudioTimelineEvent& aEvent)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream, uint32_t aIndex,
const AudioTimelineEvent& aEvent)
: ControlMessage(aStream),
mEvent(aEvent),
mSampleRate(aStream->SampleRate()),
mIndex(aIndex)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
RecvTimelineEvent(mIndex, mEvent);
}
AudioTimelineEvent mEvent;
TrackRate mSampleRate;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex, aEvent));
}
void
AudioNodeStream::SetThreeDPointParameter(uint32_t aIndex, const ThreeDPoint& aValue)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream, uint32_t aIndex, const ThreeDPoint& aValue)
: ControlMessage(aStream), mValue(aValue), mIndex(aIndex)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetThreeDPointParameter(mIndex, mValue);
}
ThreeDPoint mValue;
uint32_t mIndex;
};
GraphImpl()->AppendMessage(new Message(this, aIndex, aValue));
}
void
AudioNodeStream::SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList>&& aBuffer)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream,
already_AddRefed<ThreadSharedFloatArrayBufferList>& aBuffer)
: ControlMessage(aStream), mBuffer(aBuffer)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->Engine()->
SetBuffer(mBuffer.forget());
}
RefPtr<ThreadSharedFloatArrayBufferList> mBuffer;
};
GraphImpl()->AppendMessage(new Message(this, aBuffer));
}
void
AudioNodeStream::SetRawArrayData(nsTArray<float>& aData)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream,
nsTArray<float>& aData)
: ControlMessage(aStream)
{
mData.SwapElements(aData);
}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->Engine()->SetRawArrayData(mData);
}
nsTArray<float> mData;
};
GraphImpl()->AppendMessage(new Message(this, aData));
}
void
AudioNodeStream::SetChannelMixingParameters(uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream,
uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
: ControlMessage(aStream),
mNumberOfChannels(aNumberOfChannels),
mChannelCountMode(aChannelCountMode),
mChannelInterpretation(aChannelInterpretation)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->
SetChannelMixingParametersImpl(mNumberOfChannels, mChannelCountMode,
mChannelInterpretation);
}
uint32_t mNumberOfChannels;
ChannelCountMode mChannelCountMode;
ChannelInterpretation mChannelInterpretation;
};
GraphImpl()->AppendMessage(new Message(this, aNumberOfChannels,
aChannelCountMode,
aChannelInterpretation));
}
void
AudioNodeStream::SetPassThrough(bool aPassThrough)
{
class Message final : public ControlMessage
{
public:
Message(AudioNodeStream* aStream, bool aPassThrough)
: ControlMessage(aStream), mPassThrough(aPassThrough)
{}
virtual void Run() override
{
static_cast<AudioNodeStream*>(mStream)->mPassThrough = mPassThrough;
}
bool mPassThrough;
};
GraphImpl()->AppendMessage(new Message(this, aPassThrough));
}
void
AudioNodeStream::SetChannelMixingParametersImpl(uint32_t aNumberOfChannels,
ChannelCountMode aChannelCountMode,
ChannelInterpretation aChannelInterpretation)
{
// Make sure that we're not clobbering any significant bits by fitting these
// values in 16 bits.
MOZ_ASSERT(int(aChannelCountMode) < INT16_MAX);
MOZ_ASSERT(int(aChannelInterpretation) < INT16_MAX);
mNumberOfInputChannels = aNumberOfChannels;
mChannelCountMode = aChannelCountMode;
mChannelInterpretation = aChannelInterpretation;
}
uint32_t
AudioNodeStream::ComputedNumberOfChannels(uint32_t aInputChannelCount)
{
switch (mChannelCountMode) {
case ChannelCountMode::Explicit:
// Disregard the channel count we've calculated from inputs, and just use
// mNumberOfInputChannels.
return mNumberOfInputChannels;
case ChannelCountMode::Clamped_max:
// Clamp the computed output channel count to mNumberOfInputChannels.
return std::min(aInputChannelCount, mNumberOfInputChannels);
default:
case ChannelCountMode::Max:
// Nothing to do here, just shut up the compiler warning.
return aInputChannelCount;
}
}
class AudioNodeStream::AdvanceAndResumeMessage final : public ControlMessage {
public:
AdvanceAndResumeMessage(AudioNodeStream* aStream, StreamTime aAdvance) :
ControlMessage(aStream), mAdvance(aAdvance) {}
virtual void Run() override
{
auto ns = static_cast<AudioNodeStream*>(mStream);
ns->mBufferStartTime -= mAdvance;
StreamBuffer::Track* track = ns->EnsureTrack(AUDIO_TRACK);
track->Get<AudioSegment>()->AppendNullData(mAdvance);
ns->GraphImpl()->DecrementSuspendCount(mStream);
}
private:
StreamTime mAdvance;
};
void
AudioNodeStream::AdvanceAndResume(StreamTime aAdvance)
{
mMainThreadCurrentTime += aAdvance;
GraphImpl()->AppendMessage(new AdvanceAndResumeMessage(this, aAdvance));
}
void
AudioNodeStream::ObtainInputBlock(AudioBlock& aTmpChunk,
uint32_t aPortIndex)
{
uint32_t inputCount = mInputs.Length();
uint32_t outputChannelCount = 1;
nsAutoTArray<const AudioBlock*,250> inputChunks;
for (uint32_t i = 0; i < inputCount; ++i) {
if (aPortIndex != mInputs[i]->InputNumber()) {
// This input is connected to a different port
continue;
}
MediaStream* s = mInputs[i]->GetSource();
AudioNodeStream* a = static_cast<AudioNodeStream*>(s);
MOZ_ASSERT(a == s->AsAudioNodeStream());
if (a->IsAudioParamStream()) {
continue;
}
const AudioBlock* chunk = &a->mLastChunks[mInputs[i]->OutputNumber()];
MOZ_ASSERT(chunk);
if (chunk->IsNull() || chunk->mChannelData.IsEmpty()) {
continue;
}
inputChunks.AppendElement(chunk);
outputChannelCount =
GetAudioChannelsSuperset(outputChannelCount, chunk->ChannelCount());
}
outputChannelCount = ComputedNumberOfChannels(outputChannelCount);
uint32_t inputChunkCount = inputChunks.Length();
if (inputChunkCount == 0 ||
(inputChunkCount == 1 && inputChunks[0]->ChannelCount() == 0)) {
aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
if (inputChunkCount == 1 &&
inputChunks[0]->ChannelCount() == outputChannelCount) {
aTmpChunk = *inputChunks[0];
return;
}
if (outputChannelCount == 0) {
aTmpChunk.SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
aTmpChunk.AllocateChannels(outputChannelCount);
// The static storage here should be 1KB, so it's fine
nsAutoTArray<float, GUESS_AUDIO_CHANNELS*WEBAUDIO_BLOCK_SIZE> downmixBuffer;
for (uint32_t i = 0; i < inputChunkCount; ++i) {
AccumulateInputChunk(i, *inputChunks[i], &aTmpChunk, &downmixBuffer);
}
}
void
AudioNodeStream::AccumulateInputChunk(uint32_t aInputIndex,
const AudioBlock& aChunk,
AudioBlock* aBlock,
nsTArray<float>* aDownmixBuffer)
{
nsAutoTArray<const float*,GUESS_AUDIO_CHANNELS> channels;
UpMixDownMixChunk(&aChunk, aBlock->ChannelCount(), channels, *aDownmixBuffer);
for (uint32_t c = 0; c < channels.Length(); ++c) {
const float* inputData = static_cast<const float*>(channels[c]);
float* outputData = aBlock->ChannelFloatsForWrite(c);
if (inputData) {
if (aInputIndex == 0) {
AudioBlockCopyChannelWithScale(inputData, aChunk.mVolume, outputData);
} else {
AudioBlockAddChannelWithScale(inputData, aChunk.mVolume, outputData);
}
} else {
if (aInputIndex == 0) {
PodZero(outputData, WEBAUDIO_BLOCK_SIZE);
}
}
}
}
void
AudioNodeStream::UpMixDownMixChunk(const AudioBlock* aChunk,
uint32_t aOutputChannelCount,
nsTArray<const float*>& aOutputChannels,
nsTArray<float>& aDownmixBuffer)
{
for (uint32_t i = 0; i < aChunk->ChannelCount(); i++) {
aOutputChannels.AppendElement(static_cast<const float*>(aChunk->mChannelData[i]));
}
if (aOutputChannels.Length() < aOutputChannelCount) {
if (mChannelInterpretation == ChannelInterpretation::Speakers) {
AudioChannelsUpMix<float>(&aOutputChannels, aOutputChannelCount, nullptr);
NS_ASSERTION(aOutputChannelCount == aOutputChannels.Length(),
"We called GetAudioChannelsSuperset to avoid this");
} else {
// Fill up the remaining aOutputChannels by zeros
for (uint32_t j = aOutputChannels.Length(); j < aOutputChannelCount; ++j) {
aOutputChannels.AppendElement(nullptr);
}
}
} else if (aOutputChannels.Length() > aOutputChannelCount) {
if (mChannelInterpretation == ChannelInterpretation::Speakers) {
nsAutoTArray<float*,GUESS_AUDIO_CHANNELS> outputChannels;
outputChannels.SetLength(aOutputChannelCount);
aDownmixBuffer.SetLength(aOutputChannelCount * WEBAUDIO_BLOCK_SIZE);
for (uint32_t j = 0; j < aOutputChannelCount; ++j) {
outputChannels[j] = &aDownmixBuffer[j * WEBAUDIO_BLOCK_SIZE];
}
AudioChannelsDownMix(aOutputChannels, outputChannels.Elements(),
aOutputChannelCount, WEBAUDIO_BLOCK_SIZE);
aOutputChannels.SetLength(aOutputChannelCount);
for (uint32_t j = 0; j < aOutputChannels.Length(); ++j) {
aOutputChannels[j] = outputChannels[j];
}
} else {
// Drop the remaining aOutputChannels
aOutputChannels.RemoveElementsAt(aOutputChannelCount,
aOutputChannels.Length() - aOutputChannelCount);
}
}
}
// The MediaStreamGraph guarantees that this is actually one block, for
// AudioNodeStreams.
void
AudioNodeStream::ProcessInput(GraphTime aFrom, GraphTime aTo, uint32_t aFlags)
{
uint16_t outputCount = mLastChunks.Length();
MOZ_ASSERT(outputCount == std::max(uint16_t(1), mEngine->OutputCount()));
if (!mIsActive) {
// mLastChunks are already null.
#ifdef DEBUG
for (const auto& chunk : mLastChunks) {
MOZ_ASSERT(chunk.IsNull());
}
#endif
} else if (InMutedCycle()) {
mInputChunks.Clear();
for (uint16_t i = 0; i < outputCount; ++i) {
mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE);
}
} else {
// We need to generate at least one input
uint16_t maxInputs = std::max(uint16_t(1), mEngine->InputCount());
mInputChunks.SetLength(maxInputs);
for (uint16_t i = 0; i < maxInputs; ++i) {
ObtainInputBlock(mInputChunks[i], i);
}
bool finished = false;
if (mPassThrough) {
MOZ_ASSERT(outputCount == 1, "For now, we only support nodes that have one output port");
mLastChunks[0] = mInputChunks[0];
} else {
if (maxInputs <= 1 && outputCount <= 1) {
mEngine->ProcessBlock(this, aFrom,
mInputChunks[0], &mLastChunks[0], &finished);
} else {
mEngine->ProcessBlocksOnPorts(this, mInputChunks, mLastChunks, &finished);
}
}
for (uint16_t i = 0; i < outputCount; ++i) {
NS_ASSERTION(mLastChunks[i].GetDuration() == WEBAUDIO_BLOCK_SIZE,
"Invalid WebAudio chunk size");
}
if (finished) {
mMarkAsFinishedAfterThisBlock = true;
if (mIsActive) {
ScheduleCheckForInactive();
}
}
if (mDisabledTrackIDs.Contains(static_cast<TrackID>(AUDIO_TRACK))) {
for (uint32_t i = 0; i < outputCount; ++i) {
mLastChunks[i].SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
}
if (!mFinished) {
// Don't output anything while finished
if (mFlags & EXTERNAL_OUTPUT) {
AdvanceOutputSegment();
}
if (mMarkAsFinishedAfterThisBlock && (aFlags & ALLOW_FINISH)) {
// This stream was finished the last time that we looked at it, and all
// of the depending streams have finished their output as well, so now
// it's time to mark this stream as finished.
if (mFlags & EXTERNAL_OUTPUT) {
FinishOutput();
}
FinishOnGraphThread();
}
}
}
void
AudioNodeStream::ProduceOutputBeforeInput(GraphTime aFrom)
{
MOZ_ASSERT(mEngine->AsDelayNodeEngine());
MOZ_ASSERT(mEngine->OutputCount() == 1,
"DelayNodeEngine output count should be 1");
MOZ_ASSERT(!InMutedCycle(), "DelayNodes should break cycles");
MOZ_ASSERT(mLastChunks.Length() == 1);
if (!mIsActive) {
mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
} else {
mEngine->ProduceBlockBeforeInput(this, aFrom, &mLastChunks[0]);
NS_ASSERTION(mLastChunks[0].GetDuration() == WEBAUDIO_BLOCK_SIZE,
"Invalid WebAudio chunk size");
if (mDisabledTrackIDs.Contains(static_cast<TrackID>(AUDIO_TRACK))) {
mLastChunks[0].SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
}
void
AudioNodeStream::AdvanceOutputSegment()
{
StreamBuffer::Track* track = EnsureTrack(AUDIO_TRACK);
// No more tracks will be coming
mBuffer.AdvanceKnownTracksTime(STREAM_TIME_MAX);
AudioSegment* segment = track->Get<AudioSegment>();
if (!mLastChunks[0].IsNull()) {
segment->AppendAndConsumeChunk(mLastChunks[0].AsMutableChunk());
} else {
segment->AppendNullData(mLastChunks[0].GetDuration());
}
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
MediaStreamListener* l = mListeners[j];
AudioChunk copyChunk = mLastChunks[0].AsAudioChunk();
AudioSegment tmpSegment;
tmpSegment.AppendAndConsumeChunk(&copyChunk);
l->NotifyQueuedTrackChanges(Graph(), AUDIO_TRACK,
segment->GetDuration(), 0, tmpSegment);
}
}
void
AudioNodeStream::FinishOutput()
{
StreamBuffer::Track* track = EnsureTrack(AUDIO_TRACK);
track->SetEnded();
for (uint32_t j = 0; j < mListeners.Length(); ++j) {
MediaStreamListener* l = mListeners[j];
AudioSegment emptySegment;
l->NotifyQueuedTrackChanges(Graph(), AUDIO_TRACK,
track->GetSegment()->GetDuration(),
MediaStreamListener::TRACK_EVENT_ENDED, emptySegment);
}
}
void
AudioNodeStream::AddInput(MediaInputPort* aPort)
{
ProcessedMediaStream::AddInput(aPort);
AudioNodeStream* ns = aPort->GetSource()->AsAudioNodeStream();
// Streams that are not AudioNodeStreams are considered active.
if (!ns || (ns->mIsActive && !ns->IsAudioParamStream())) {
IncrementActiveInputCount();
}
}
void
AudioNodeStream::RemoveInput(MediaInputPort* aPort)
{
ProcessedMediaStream::RemoveInput(aPort);
AudioNodeStream* ns = aPort->GetSource()->AsAudioNodeStream();
// Streams that are not AudioNodeStreams are considered active.
if (!ns || (ns->mIsActive && !ns->IsAudioParamStream())) {
DecrementActiveInputCount();
}
}
void
AudioNodeStream::SetActive()
{
if (mIsActive || mMarkAsFinishedAfterThisBlock) {
return;
}
mIsActive = true;
if (!(mFlags & EXTERNAL_OUTPUT)) {
GraphImpl()->DecrementSuspendCount(this);
}
if (IsAudioParamStream()) {
// Consumers merely influence stream order.
// They do not read from the stream.
return;
}
for (const auto& consumer : mConsumers) {
AudioNodeStream* ns = consumer->GetDestination()->AsAudioNodeStream();
if (ns) {
ns->IncrementActiveInputCount();
}
}
}
class AudioNodeStream::CheckForInactiveMessage final : public ControlMessage
{
public:
explicit CheckForInactiveMessage(AudioNodeStream* aStream) :
ControlMessage(aStream) {}
virtual void Run() override
{
auto ns = static_cast<AudioNodeStream*>(mStream);
ns->CheckForInactive();
}
};
void
AudioNodeStream::ScheduleCheckForInactive()
{
if (mActiveInputCount > 0 && !mMarkAsFinishedAfterThisBlock) {
return;
}
nsAutoPtr<CheckForInactiveMessage> message(new CheckForInactiveMessage(this));
GraphImpl()->RunMessageAfterProcessing(Move(message));
}
void
AudioNodeStream::CheckForInactive()
{
if (((mActiveInputCount > 0 || mEngine->IsActive()) &&
!mMarkAsFinishedAfterThisBlock) ||
!mIsActive) {
return;
}
mIsActive = false;
mInputChunks.Clear(); // not required for foreseeable future
for (auto& chunk : mLastChunks) {
chunk.SetNull(WEBAUDIO_BLOCK_SIZE);
}
if (!(mFlags & EXTERNAL_OUTPUT)) {
GraphImpl()->IncrementSuspendCount(this);
}
if (IsAudioParamStream()) {
return;
}
for (const auto& consumer : mConsumers) {
AudioNodeStream* ns = consumer->GetDestination()->AsAudioNodeStream();
if (ns) {
ns->DecrementActiveInputCount();
}
}
}
void
AudioNodeStream::IncrementActiveInputCount()
{
++mActiveInputCount;
SetActive();
}
void
AudioNodeStream::DecrementActiveInputCount()
{
MOZ_ASSERT(mActiveInputCount > 0);
--mActiveInputCount;
CheckForInactive();
}
} // namespace mozilla