Retro68/gcc/gcc/bitmap.cc

2996 lines
70 KiB
C++
Raw Permalink Normal View History

2012-03-27 23:13:14 +00:00
/* Functions to support general ended bitmaps.
Copyright (C) 1997-2022 Free Software Foundation, Inc.
2012-03-27 23:13:14 +00:00
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "bitmap.h"
#include "selftest.h"
2012-03-27 23:13:14 +00:00
2017-04-10 11:32:00 +00:00
/* Memory allocation statistics purpose instance. */
mem_alloc_description<bitmap_usage> bitmap_mem_desc;
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
/* Static zero-initialized bitmap obstack used for default initialization
of bitmap_head. */
bitmap_obstack bitmap_head::crashme;
static bitmap_element *bitmap_tree_listify_from (bitmap, bitmap_element *);
2012-03-27 23:13:14 +00:00
/* Register new bitmap. */
void
bitmap_register (bitmap b MEM_STAT_DECL)
{
static unsigned alloc_descriptor_max_uid = 1;
gcc_assert (b->alloc_descriptor == 0);
b->alloc_descriptor = alloc_descriptor_max_uid++;
bitmap_mem_desc.register_descriptor (b->get_descriptor (), BITMAP_ORIGIN,
false FINAL_PASS_MEM_STAT);
2012-03-27 23:13:14 +00:00
}
/* Account the overhead. */
static void
2017-04-10 11:32:00 +00:00
register_overhead (bitmap b, size_t amount)
2012-03-27 23:13:14 +00:00
{
unsigned *d = b->get_descriptor ();
if (bitmap_mem_desc.contains_descriptor_for_instance (d))
bitmap_mem_desc.register_instance_overhead (amount, d);
}
/* Release the overhead. */
static void
release_overhead (bitmap b, size_t amount, bool remove_from_map)
{
unsigned *d = b->get_descriptor ();
if (bitmap_mem_desc.contains_descriptor_for_instance (d))
bitmap_mem_desc.release_instance_overhead (d, amount, remove_from_map);
2012-03-27 23:13:14 +00:00
}
2012-03-27 23:13:14 +00:00
/* Global data */
bitmap_element bitmap_zero_bits; /* An element of all zero bits. */
bitmap_obstack bitmap_default_obstack; /* The default bitmap obstack. */
static int bitmap_default_obstack_depth;
static GTY((deletable)) bitmap_element *bitmap_ggc_free; /* Freelist of
GC'd elements. */
2019-06-02 15:48:37 +00:00
/* Bitmap memory management. */
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
/* Add ELT to the appropriate freelist. */
2012-03-27 23:13:14 +00:00
static inline void
bitmap_elem_to_freelist (bitmap head, bitmap_element *elt)
{
bitmap_obstack *bit_obstack = head->obstack;
2019-06-02 15:48:37 +00:00
if (GATHER_STATISTICS)
release_overhead (head, sizeof (bitmap_element), false);
2019-06-02 15:48:37 +00:00
2012-03-27 23:13:14 +00:00
elt->next = NULL;
elt->indx = -1;
2012-03-27 23:13:14 +00:00
if (bit_obstack)
{
elt->prev = bit_obstack->elements;
bit_obstack->elements = elt;
}
else
{
elt->prev = bitmap_ggc_free;
bitmap_ggc_free = elt;
}
}
/* Allocate a bitmap element. The bits are cleared, but nothing else is. */
static inline bitmap_element *
bitmap_element_allocate (bitmap head)
{
bitmap_element *element;
bitmap_obstack *bit_obstack = head->obstack;
if (bit_obstack)
{
element = bit_obstack->elements;
if (element)
/* Use up the inner list first before looking at the next
element of the outer list. */
if (element->next)
{
bit_obstack->elements = element->next;
bit_obstack->elements->prev = element->prev;
}
else
/* Inner list was just a singleton. */
bit_obstack->elements = element->prev;
else
element = XOBNEW (&bit_obstack->obstack, bitmap_element);
}
else
{
element = bitmap_ggc_free;
if (element)
/* Use up the inner list first before looking at the next
element of the outer list. */
if (element->next)
{
bitmap_ggc_free = element->next;
bitmap_ggc_free->prev = element->prev;
}
else
/* Inner list was just a singleton. */
bitmap_ggc_free = element->prev;
else
2015-08-28 15:33:40 +00:00
element = ggc_alloc<bitmap_element> ();
2012-03-27 23:13:14 +00:00
}
2014-09-21 17:33:12 +00:00
if (GATHER_STATISTICS)
register_overhead (head, sizeof (bitmap_element));
2012-03-27 23:13:14 +00:00
memset (element->bits, 0, sizeof (element->bits));
return element;
}
2019-06-02 15:48:37 +00:00
/* Remove ELT and all following elements from bitmap HEAD.
Put the released elements in the freelist for HEAD. */
2012-03-27 23:13:14 +00:00
void
bitmap_elt_clear_from (bitmap head, bitmap_element *elt)
{
bitmap_element *prev;
bitmap_obstack *bit_obstack = head->obstack;
2019-06-02 15:48:37 +00:00
if (!elt)
return;
if (head->tree_form)
elt = bitmap_tree_listify_from (head, elt);
2014-09-21 17:33:12 +00:00
if (GATHER_STATISTICS)
{
int n = 0;
for (prev = elt; prev; prev = prev->next)
n++;
release_overhead (head, sizeof (bitmap_element) * n, false);
2014-09-21 17:33:12 +00:00
}
2012-03-27 23:13:14 +00:00
prev = elt->prev;
if (prev)
{
prev->next = NULL;
if (head->current->indx > prev->indx)
{
head->current = prev;
head->indx = prev->indx;
}
}
else
{
head->first = NULL;
head->current = NULL;
head->indx = 0;
}
2019-06-02 15:48:37 +00:00
/* Put the entire list onto the freelist in one operation. */
2012-03-27 23:13:14 +00:00
if (bit_obstack)
{
elt->prev = bit_obstack->elements;
bit_obstack->elements = elt;
}
else
{
2019-06-02 15:48:37 +00:00
elt->prev = bitmap_ggc_free;
bitmap_ggc_free = elt;
}
}
/* Linked-list view of bitmaps.
In this representation, the bitmap elements form a double-linked list
with elements sorted by increasing index. */
/* Link the bitmap element into the current bitmap linked list. */
static inline void
bitmap_list_link_element (bitmap head, bitmap_element *element)
{
unsigned int indx = element->indx;
bitmap_element *ptr;
gcc_checking_assert (!head->tree_form);
/* If this is the first and only element, set it in. */
if (head->first == 0)
{
element->next = element->prev = 0;
head->first = element;
}
/* If this index is less than that of the current element, it goes someplace
before the current element. */
else if (indx < head->indx)
{
for (ptr = head->current;
ptr->prev != 0 && ptr->prev->indx > indx;
ptr = ptr->prev)
;
if (ptr->prev)
ptr->prev->next = element;
else
head->first = element;
element->prev = ptr->prev;
element->next = ptr;
ptr->prev = element;
}
/* Otherwise, it must go someplace after the current element. */
else
{
for (ptr = head->current;
ptr->next != 0 && ptr->next->indx < indx;
ptr = ptr->next)
;
if (ptr->next)
ptr->next->prev = element;
element->next = ptr->next;
element->prev = ptr;
ptr->next = element;
}
/* Set up so this is the first element searched. */
head->current = element;
head->indx = indx;
}
/* Unlink the bitmap element from the current bitmap linked list,
and return it to the freelist. */
static inline void
bitmap_list_unlink_element (bitmap head, bitmap_element *element,
bool to_freelist = true)
2019-06-02 15:48:37 +00:00
{
bitmap_element *next = element->next;
bitmap_element *prev = element->prev;
gcc_checking_assert (!head->tree_form);
if (prev)
prev->next = next;
if (next)
next->prev = prev;
if (head->first == element)
head->first = next;
/* Since the first thing we try is to insert before current,
make current the next entry in preference to the previous. */
if (head->current == element)
{
head->current = next != 0 ? next : prev;
if (head->current)
head->indx = head->current->indx;
else
head->indx = 0;
}
if (to_freelist)
bitmap_elem_to_freelist (head, element);
2019-06-02 15:48:37 +00:00
}
/* Insert a new uninitialized element (or NODE if not NULL) into bitmap
HEAD after element ELT. If ELT is NULL, insert the element at the start.
Return the new element. */
2019-06-02 15:48:37 +00:00
static bitmap_element *
bitmap_list_insert_element_after (bitmap head,
bitmap_element *elt, unsigned int indx,
bitmap_element *node = NULL)
2019-06-02 15:48:37 +00:00
{
if (!node)
node = bitmap_element_allocate (head);
2019-06-02 15:48:37 +00:00
node->indx = indx;
gcc_checking_assert (!head->tree_form);
if (!elt)
{
if (!head->current)
{
head->current = node;
head->indx = indx;
}
node->next = head->first;
if (node->next)
node->next->prev = node;
head->first = node;
node->prev = NULL;
}
else
{
gcc_checking_assert (head->current);
node->next = elt->next;
if (node->next)
node->next->prev = node;
elt->next = node;
node->prev = elt;
}
return node;
}
/* Return the element for INDX, or NULL if the element doesn't exist.
Update the `current' field even if we can't find an element that
would hold the bitmap's bit to make eventual allocation
faster. */
static inline bitmap_element *
bitmap_list_find_element (bitmap head, unsigned int indx)
{
bitmap_element *element;
if (head->current == NULL
|| head->indx == indx)
return head->current;
if (head->current == head->first
&& head->first->next == NULL)
return NULL;
/* Usage can be NULL due to allocated bitmaps for which we do not
call initialize function. */
bitmap_usage *usage = NULL;
if (GATHER_STATISTICS)
usage = bitmap_mem_desc.get_descriptor_for_instance (head);
/* This bitmap has more than one element, and we're going to look
through the elements list. Count that as a search. */
if (GATHER_STATISTICS && usage)
usage->m_nsearches++;
if (head->indx < indx)
/* INDX is beyond head->indx. Search from head->current
forward. */
for (element = head->current;
element->next != 0 && element->indx < indx;
element = element->next)
{
if (GATHER_STATISTICS && usage)
usage->m_search_iter++;
}
else if (head->indx / 2 < indx)
/* INDX is less than head->indx and closer to head->indx than to
0. Search from head->current backward. */
for (element = head->current;
element->prev != 0 && element->indx > indx;
element = element->prev)
{
if (GATHER_STATISTICS && usage)
usage->m_search_iter++;
}
else
/* INDX is less than head->indx and closer to 0 than to
head->indx. Search from head->first forward. */
for (element = head->first;
element->next != 0 && element->indx < indx;
element = element->next)
{
if (GATHER_STATISTICS && usage)
usage->m_search_iter++;
}
/* `element' is the nearest to the one we want. If it's not the one we
want, the one we want doesn't exist. */
gcc_checking_assert (element != NULL);
head->current = element;
head->indx = element->indx;
if (element->indx != indx)
element = 0;
return element;
}
/* Splay-tree view of bitmaps.
This is an almost one-to-one the implementatin of the simple top-down
splay tree in Sleator and Tarjan's "Self-adjusting Binary Search Trees".
It is probably not the most efficient form of splay trees, but it should
be good enough to experiment with this idea of bitmaps-as-trees.
For all functions below, the variable or function argument "t" is a node
in the tree, and "e" is a temporary or new node in the tree. The rest
is sufficiently straigh-forward (and very well explained in the paper)
that comment would only clutter things. */
static inline void
bitmap_tree_link_left (bitmap_element * &t, bitmap_element * &l)
{
l->next = t;
l = t;
t = t->next;
}
static inline void
bitmap_tree_link_right (bitmap_element * &t, bitmap_element * &r)
{
r->prev = t;
r = t;
t = t->prev;
}
static inline void
bitmap_tree_rotate_left (bitmap_element * &t)
{
bitmap_element *e = t->next;
t->next = t->next->prev;
e->prev = t;
t = e;
}
static inline void
bitmap_tree_rotate_right (bitmap_element * &t)
{
bitmap_element *e = t->prev;
t->prev = t->prev->next;
e->next = t;
t = e;
}
static bitmap_element *
bitmap_tree_splay (bitmap head, bitmap_element *t, unsigned int indx)
{
bitmap_element N, *l, *r;
if (t == NULL)
return NULL;
bitmap_usage *usage = NULL;
if (GATHER_STATISTICS)
usage = bitmap_mem_desc.get_descriptor_for_instance (head);
N.prev = N.next = NULL;
l = r = &N;
while (indx != t->indx)
{
if (GATHER_STATISTICS && usage)
usage->m_search_iter++;
if (indx < t->indx)
{
if (t->prev != NULL && indx < t->prev->indx)
bitmap_tree_rotate_right (t);
if (t->prev == NULL)
break;
bitmap_tree_link_right (t, r);
}
else if (indx > t->indx)
{
if (t->next != NULL && indx > t->next->indx)
bitmap_tree_rotate_left (t);
if (t->next == NULL)
break;
bitmap_tree_link_left (t, l);
}
}
l->next = t->prev;
r->prev = t->next;
t->prev = N.next;
t->next = N.prev;
return t;
}
/* Link bitmap element E into the current bitmap splay tree. */
static inline void
bitmap_tree_link_element (bitmap head, bitmap_element *e)
{
if (head->first == NULL)
e->prev = e->next = NULL;
else
{
bitmap_element *t = bitmap_tree_splay (head, head->first, e->indx);
if (e->indx < t->indx)
{
e->prev = t->prev;
e->next = t;
t->prev = NULL;
}
else if (e->indx > t->indx)
{
e->next = t->next;
e->prev = t;
t->next = NULL;
}
else
gcc_unreachable ();
}
head->first = e;
head->current = e;
head->indx = e->indx;
}
/* Unlink bitmap element E from the current bitmap splay tree,
and return it to the freelist. */
static void
bitmap_tree_unlink_element (bitmap head, bitmap_element *e)
{
bitmap_element *t = bitmap_tree_splay (head, head->first, e->indx);
gcc_checking_assert (t == e);
if (e->prev == NULL)
t = e->next;
else
{
t = bitmap_tree_splay (head, e->prev, e->indx);
t->next = e->next;
}
head->first = t;
head->current = t;
head->indx = (t != NULL) ? t->indx : 0;
bitmap_elem_to_freelist (head, e);
}
/* Return the element for INDX, or NULL if the element doesn't exist. */
static inline bitmap_element *
bitmap_tree_find_element (bitmap head, unsigned int indx)
{
if (head->current == NULL
|| head->indx == indx)
return head->current;
/* Usage can be NULL due to allocated bitmaps for which we do not
call initialize function. */
bitmap_usage *usage = NULL;
if (GATHER_STATISTICS)
usage = bitmap_mem_desc.get_descriptor_for_instance (head);
/* This bitmap has more than one element, and we're going to look
through the elements list. Count that as a search. */
if (GATHER_STATISTICS && usage)
usage->m_nsearches++;
bitmap_element *element = bitmap_tree_splay (head, head->first, indx);
gcc_checking_assert (element != NULL);
head->first = element;
head->current = element;
head->indx = element->indx;
if (element->indx != indx)
element = 0;
return element;
}
/* Converting bitmap views from linked-list to tree and vice versa. */
/* Splice element E and all elements with a larger index from
bitmap HEAD, convert the spliced elements to the linked-list
view, and return the head of the list (which should be E again), */
static bitmap_element *
bitmap_tree_listify_from (bitmap head, bitmap_element *e)
{
bitmap_element *t, *erb;
/* Detach the right branch from E (all elements with indx > E->indx),
and splay E to the root. */
erb = e->next;
e->next = NULL;
t = bitmap_tree_splay (head, head->first, e->indx);
gcc_checking_assert (t == e);
/* Because E has no right branch, and we rotated it to the root,
the left branch is the new root. */
t = e->prev;
head->first = t;
head->current = t;
head->indx = (t != NULL) ? t->indx : 0;
/* Detach the tree from E, and re-attach the right branch of E. */
e->prev = NULL;
e->next = erb;
/* The tree is now valid again. Now we need to "un-tree" E.
It is imperative that a non-recursive implementation is used
for this, because splay trees have a worst case depth of O(N)
for a tree with N nodes. A recursive implementation could
result in a stack overflow for a sufficiently large, unbalanced
bitmap tree. */
auto_vec<bitmap_element *, 32> stack;
auto_vec<bitmap_element *, 32> sorted_elements;
bitmap_element *n = e;
while (true)
{
while (n != NULL)
{
stack.safe_push (n);
n = n->prev;
}
if (stack.is_empty ())
break;
n = stack.pop ();
sorted_elements.safe_push (n);
n = n->next;
}
gcc_assert (sorted_elements[0] == e);
bitmap_element *prev = NULL;
unsigned ix;
FOR_EACH_VEC_ELT (sorted_elements, ix, n)
{
if (prev != NULL)
prev->next = n;
n->prev = prev;
n->next = NULL;
prev = n;
}
return e;
}
/* Convert bitmap HEAD from splay-tree view to linked-list view. */
void
bitmap_list_view (bitmap head)
{
bitmap_element *ptr;
gcc_assert (head->tree_form);
ptr = head->first;
if (ptr)
{
while (ptr->prev)
bitmap_tree_rotate_right (ptr);
head->first = ptr;
head->first = bitmap_tree_listify_from (head, ptr);
}
head->tree_form = false;
if (!head->current)
{
head->current = head->first;
head->indx = head->current ? head->current->indx : 0;
}
2019-06-02 15:48:37 +00:00
}
/* Convert bitmap HEAD from linked-list view to splay-tree view.
This is simply a matter of dropping the prev or next pointers
and setting the tree_form flag. The tree will balance itself
if and when it is used. */
void
bitmap_tree_view (bitmap head)
{
bitmap_element *ptr;
gcc_assert (! head->tree_form);
ptr = head->first;
while (ptr)
{
ptr->prev = NULL;
ptr = ptr->next;
2012-03-27 23:13:14 +00:00
}
2019-06-02 15:48:37 +00:00
head->tree_form = true;
}
/* Clear a bitmap by freeing all its elements. */
2012-03-27 23:13:14 +00:00
void
bitmap_clear (bitmap head)
{
2019-06-02 15:48:37 +00:00
if (head->first == NULL)
return;
if (head->tree_form)
{
bitmap_element *e, *t;
for (e = head->first; e->prev; e = e->prev)
/* Loop to find the element with the smallest index. */ ;
t = bitmap_tree_splay (head, head->first, e->indx);
gcc_checking_assert (t == e);
head->first = t;
}
bitmap_elt_clear_from (head, head->first);
2012-03-27 23:13:14 +00:00
}
/* Initialize a bitmap obstack. If BIT_OBSTACK is NULL, initialize
the default bitmap obstack. */
void
bitmap_obstack_initialize (bitmap_obstack *bit_obstack)
{
if (!bit_obstack)
{
if (bitmap_default_obstack_depth++)
return;
bit_obstack = &bitmap_default_obstack;
}
#if !defined(__GNUC__) || (__GNUC__ < 2)
#define __alignof__(type) 0
#endif
bit_obstack->elements = NULL;
bit_obstack->heads = NULL;
obstack_specify_allocation (&bit_obstack->obstack, OBSTACK_CHUNK_SIZE,
__alignof__ (bitmap_element),
obstack_chunk_alloc,
obstack_chunk_free);
}
/* Release the memory from a bitmap obstack. If BIT_OBSTACK is NULL,
release the default bitmap obstack. */
void
bitmap_obstack_release (bitmap_obstack *bit_obstack)
{
if (!bit_obstack)
{
if (--bitmap_default_obstack_depth)
{
gcc_assert (bitmap_default_obstack_depth > 0);
return;
}
bit_obstack = &bitmap_default_obstack;
}
bit_obstack->elements = NULL;
bit_obstack->heads = NULL;
obstack_free (&bit_obstack->obstack, NULL);
}
/* Create a new bitmap on an obstack. If BIT_OBSTACK is NULL, create
it on the default bitmap obstack. */
bitmap
2018-12-28 15:30:48 +00:00
bitmap_alloc (bitmap_obstack *bit_obstack MEM_STAT_DECL)
2012-03-27 23:13:14 +00:00
{
bitmap map;
if (!bit_obstack)
bit_obstack = &bitmap_default_obstack;
map = bit_obstack->heads;
if (map)
bit_obstack->heads = (class bitmap_head *) map->first;
2012-03-27 23:13:14 +00:00
else
map = XOBNEW (&bit_obstack->obstack, bitmap_head);
2018-12-28 15:30:48 +00:00
bitmap_initialize (map, bit_obstack PASS_MEM_STAT);
2014-09-21 17:33:12 +00:00
if (GATHER_STATISTICS)
register_overhead (map, sizeof (bitmap_head));
2012-03-27 23:13:14 +00:00
return map;
}
/* Create a new GCd bitmap. */
bitmap
2018-12-28 15:30:48 +00:00
bitmap_gc_alloc (ALONE_MEM_STAT_DECL)
2012-03-27 23:13:14 +00:00
{
bitmap map;
2015-08-28 15:33:40 +00:00
map = ggc_alloc<bitmap_head> ();
2018-12-28 15:30:48 +00:00
bitmap_initialize (map, NULL PASS_MEM_STAT);
2014-09-21 17:33:12 +00:00
if (GATHER_STATISTICS)
register_overhead (map, sizeof (bitmap_head));
2012-03-27 23:13:14 +00:00
return map;
}
/* Release an obstack allocated bitmap. */
void
bitmap_obstack_free (bitmap map)
{
if (map)
{
bitmap_clear (map);
map->first = (bitmap_element *) map->obstack->heads;
2014-09-21 17:33:12 +00:00
if (GATHER_STATISTICS)
release_overhead (map, sizeof (bitmap_head), true);
2014-09-21 17:33:12 +00:00
2012-03-27 23:13:14 +00:00
map->obstack->heads = map;
}
}
/* Return nonzero if all bits in an element are zero. */
static inline int
bitmap_element_zerop (const bitmap_element *element)
{
#if BITMAP_ELEMENT_WORDS == 2
return (element->bits[0] | element->bits[1]) == 0;
#else
unsigned i;
for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
if (element->bits[i] != 0)
return 0;
return 1;
#endif
}
/* Copy a bitmap to another bitmap. */
void
bitmap_copy (bitmap to, const_bitmap from)
{
const bitmap_element *from_ptr;
bitmap_element *to_ptr = 0;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!to->tree_form && !from->tree_form);
2012-03-27 23:13:14 +00:00
bitmap_clear (to);
/* Copy elements in forward direction one at a time. */
for (from_ptr = from->first; from_ptr; from_ptr = from_ptr->next)
{
bitmap_element *to_elt = bitmap_element_allocate (to);
to_elt->indx = from_ptr->indx;
memcpy (to_elt->bits, from_ptr->bits, sizeof (to_elt->bits));
2019-06-02 15:48:37 +00:00
/* Here we have a special case of bitmap_list_link_element,
for the case where we know the links are being entered
in sequence. */
2012-03-27 23:13:14 +00:00
if (to_ptr == 0)
{
to->first = to->current = to_elt;
to->indx = from_ptr->indx;
to_elt->next = to_elt->prev = 0;
}
else
{
to_elt->prev = to_ptr;
to_elt->next = 0;
to_ptr->next = to_elt;
}
to_ptr = to_elt;
}
}
2017-04-10 11:32:00 +00:00
/* Move a bitmap to another bitmap. */
void
bitmap_move (bitmap to, bitmap from)
{
gcc_assert (to->obstack == from->obstack);
bitmap_clear (to);
size_t sz = 0;
2017-04-10 11:32:00 +00:00
if (GATHER_STATISTICS)
{
for (bitmap_element *e = to->first; e; e = e->next)
sz += sizeof (bitmap_element);
register_overhead (to, sz);
}
*to = *from;
if (GATHER_STATISTICS)
release_overhead (from, sz, false);
2017-04-10 11:32:00 +00:00
}
2012-03-27 23:13:14 +00:00
/* Clear a single bit in a bitmap. Return true if the bit changed. */
bool
bitmap_clear_bit (bitmap head, int bit)
{
2019-06-02 15:48:37 +00:00
unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS;
bitmap_element *ptr;
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
if (!head->tree_form)
ptr = bitmap_list_find_element (head, indx);
else
ptr = bitmap_tree_find_element (head, indx);
2012-03-27 23:13:14 +00:00
if (ptr != 0)
{
unsigned bit_num = bit % BITMAP_WORD_BITS;
unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num;
bool res = (ptr->bits[word_num] & bit_val) != 0;
if (res)
{
ptr->bits[word_num] &= ~bit_val;
/* If we cleared the entire word, free up the element. */
if (!ptr->bits[word_num]
&& bitmap_element_zerop (ptr))
2019-06-02 15:48:37 +00:00
{
if (!head->tree_form)
bitmap_list_unlink_element (head, ptr);
else
bitmap_tree_unlink_element (head, ptr);
}
2012-03-27 23:13:14 +00:00
}
return res;
}
return false;
}
/* Set a single bit in a bitmap. Return true if the bit changed. */
bool
bitmap_set_bit (bitmap head, int bit)
{
2019-06-02 15:48:37 +00:00
unsigned indx = bit / BITMAP_ELEMENT_ALL_BITS;
bitmap_element *ptr;
if (!head->tree_form)
ptr = bitmap_list_find_element (head, indx);
else
ptr = bitmap_tree_find_element (head, indx);
2012-03-27 23:13:14 +00:00
unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
unsigned bit_num = bit % BITMAP_WORD_BITS;
BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num;
2019-06-02 15:48:37 +00:00
if (ptr != 0)
2012-03-27 23:13:14 +00:00
{
bool res = (ptr->bits[word_num] & bit_val) == 0;
if (res)
ptr->bits[word_num] |= bit_val;
return res;
}
2019-06-02 15:48:37 +00:00
ptr = bitmap_element_allocate (head);
ptr->indx = bit / BITMAP_ELEMENT_ALL_BITS;
ptr->bits[word_num] = bit_val;
if (!head->tree_form)
bitmap_list_link_element (head, ptr);
else
bitmap_tree_link_element (head, ptr);
return true;
2012-03-27 23:13:14 +00:00
}
/* Return whether a bit is set within a bitmap. */
bool
bitmap_bit_p (const_bitmap head, int bit)
2012-03-27 23:13:14 +00:00
{
2019-06-02 15:48:37 +00:00
unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS;
const bitmap_element *ptr;
2012-03-27 23:13:14 +00:00
unsigned bit_num;
unsigned word_num;
if (!head->tree_form)
ptr = bitmap_list_find_element (const_cast<bitmap> (head), indx);
else
ptr = bitmap_tree_find_element (const_cast<bitmap> (head), indx);
if (ptr == 0)
return 0;
bit_num = bit % BITMAP_WORD_BITS;
word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
return (ptr->bits[word_num] >> bit_num) & 1;
}
/* Set CHUNK_SIZE bits at a time in bitmap HEAD.
Store CHUNK_VALUE starting at bits CHUNK * chunk_size.
This is the set routine for viewing bitmap as a multi-bit sparse array. */
void
bitmap_set_aligned_chunk (bitmap head, unsigned int chunk,
unsigned int chunk_size, BITMAP_WORD chunk_value)
{
// Ensure chunk size is a power of 2 and fits in BITMAP_WORD.
gcc_checking_assert (pow2p_hwi (chunk_size));
gcc_checking_assert (chunk_size < (sizeof (BITMAP_WORD) * CHAR_BIT));
// Ensure chunk_value is within range of chunk_size bits.
BITMAP_WORD max_value = (1 << chunk_size) - 1;
gcc_checking_assert (chunk_value <= max_value);
unsigned bit = chunk * chunk_size;
unsigned indx = bit / BITMAP_ELEMENT_ALL_BITS;
bitmap_element *ptr;
2019-06-02 15:48:37 +00:00
if (!head->tree_form)
ptr = bitmap_list_find_element (head, indx);
else
ptr = bitmap_tree_find_element (head, indx);
unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
unsigned bit_num = bit % BITMAP_WORD_BITS;
BITMAP_WORD bit_val = chunk_value << bit_num;
BITMAP_WORD mask = ~(max_value << bit_num);
if (ptr != 0)
{
ptr->bits[word_num] &= mask;
ptr->bits[word_num] |= bit_val;
return;
}
ptr = bitmap_element_allocate (head);
ptr->indx = bit / BITMAP_ELEMENT_ALL_BITS;
ptr->bits[word_num] = bit_val;
if (!head->tree_form)
bitmap_list_link_element (head, ptr);
else
bitmap_tree_link_element (head, ptr);
}
/* This is the get routine for viewing bitmap as a multi-bit sparse array.
Return a set of CHUNK_SIZE consecutive bits from HEAD, starting at bit
CHUNK * chunk_size. */
BITMAP_WORD
bitmap_get_aligned_chunk (const_bitmap head, unsigned int chunk,
unsigned int chunk_size)
{
// Ensure chunk size is a power of 2, fits in BITMAP_WORD and is in range.
gcc_checking_assert (pow2p_hwi (chunk_size));
gcc_checking_assert (chunk_size < (sizeof (BITMAP_WORD) * CHAR_BIT));
BITMAP_WORD max_value = (1 << chunk_size) - 1;
unsigned bit = chunk * chunk_size;
unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS;
const bitmap_element *ptr;
unsigned bit_num;
unsigned word_num;
if (!head->tree_form)
ptr = bitmap_list_find_element (const_cast<bitmap> (head), indx);
else
ptr = bitmap_tree_find_element (const_cast<bitmap> (head), indx);
2012-03-27 23:13:14 +00:00
if (ptr == 0)
return 0;
bit_num = bit % BITMAP_WORD_BITS;
word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
// Return 4 bits.
return (ptr->bits[word_num] >> bit_num) & max_value;
2012-03-27 23:13:14 +00:00
}
#if GCC_VERSION < 3400
/* Table of number of set bits in a character, indexed by value of char. */
static const unsigned char popcount_table[] =
{
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,
};
static unsigned long
bitmap_popcount (BITMAP_WORD a)
{
unsigned long ret = 0;
unsigned i;
/* Just do this the table way for now */
for (i = 0; i < BITMAP_WORD_BITS; i+= 8)
ret += popcount_table[(a >> i) & 0xff];
return ret;
}
#endif
2017-04-10 11:32:00 +00:00
/* Count and return the number of bits set in the bitmap word BITS. */
static unsigned long
bitmap_count_bits_in_word (const BITMAP_WORD *bits)
{
unsigned long count = 0;
for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
{
#if GCC_VERSION >= 3400
/* Note that popcountl matches BITMAP_WORD in type, so the actual size
of BITMAP_WORD is not material. */
count += __builtin_popcountl (bits[ix]);
#else
count += bitmap_popcount (bits[ix]);
#endif
}
return count;
}
2012-03-27 23:13:14 +00:00
/* Count the number of bits set in the bitmap, and return it. */
unsigned long
bitmap_count_bits (const_bitmap a)
{
unsigned long count = 0;
const bitmap_element *elt;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form);
2012-03-27 23:13:14 +00:00
for (elt = a->first; elt; elt = elt->next)
2017-04-10 11:32:00 +00:00
count += bitmap_count_bits_in_word (elt->bits);
return count;
}
/* Count the number of unique bits set in A and B and return it. */
unsigned long
bitmap_count_unique_bits (const_bitmap a, const_bitmap b)
{
unsigned long count = 0;
const bitmap_element *elt_a, *elt_b;
for (elt_a = a->first, elt_b = b->first; elt_a && elt_b; )
2012-03-27 23:13:14 +00:00
{
2017-04-10 11:32:00 +00:00
/* If we're at different indices, then count all the bits
in the lower element. If we're at the same index, then
count the bits in the IOR of the two elements. */
if (elt_a->indx < elt_b->indx)
2012-03-27 23:13:14 +00:00
{
2017-04-10 11:32:00 +00:00
count += bitmap_count_bits_in_word (elt_a->bits);
elt_a = elt_a->next;
}
else if (elt_b->indx < elt_a->indx)
{
count += bitmap_count_bits_in_word (elt_b->bits);
elt_b = elt_b->next;
}
else
{
BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
bits[ix] = elt_a->bits[ix] | elt_b->bits[ix];
count += bitmap_count_bits_in_word (bits);
elt_a = elt_a->next;
elt_b = elt_b->next;
2012-03-27 23:13:14 +00:00
}
}
return count;
}
/* Return true if the bitmap has a single bit set. Otherwise return
false. */
bool
bitmap_single_bit_set_p (const_bitmap a)
{
unsigned long count = 0;
const bitmap_element *elt;
unsigned ix;
if (bitmap_empty_p (a))
return false;
elt = a->first;
2019-06-02 15:48:37 +00:00
2012-03-27 23:13:14 +00:00
/* As there are no completely empty bitmap elements, a second one
means we have more than one bit set. */
2019-06-02 15:48:37 +00:00
if (elt->next != NULL
&& (!a->tree_form || elt->prev != NULL))
2012-03-27 23:13:14 +00:00
return false;
for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
{
#if GCC_VERSION >= 3400
/* Note that popcountl matches BITMAP_WORD in type, so the actual size
of BITMAP_WORD is not material. */
count += __builtin_popcountl (elt->bits[ix]);
#else
count += bitmap_popcount (elt->bits[ix]);
#endif
if (count > 1)
return false;
}
return count == 1;
}
/* Return the bit number of the first set bit in the bitmap. The
bitmap must be non-empty. */
unsigned
bitmap_first_set_bit (const_bitmap a)
{
const bitmap_element *elt = a->first;
unsigned bit_no;
BITMAP_WORD word;
unsigned ix;
gcc_checking_assert (elt);
2019-06-02 15:48:37 +00:00
if (a->tree_form)
while (elt->prev)
elt = elt->prev;
2012-03-27 23:13:14 +00:00
bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS;
for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
{
word = elt->bits[ix];
if (word)
goto found_bit;
}
gcc_unreachable ();
found_bit:
bit_no += ix * BITMAP_WORD_BITS;
#if GCC_VERSION >= 3004
2014-09-21 17:33:12 +00:00
gcc_assert (sizeof (long) == sizeof (word));
2012-03-27 23:13:14 +00:00
bit_no += __builtin_ctzl (word);
#else
/* Binary search for the first set bit. */
#if BITMAP_WORD_BITS > 64
#error "Fill out the table."
#endif
#if BITMAP_WORD_BITS > 32
if (!(word & 0xffffffff))
word >>= 32, bit_no += 32;
#endif
if (!(word & 0xffff))
word >>= 16, bit_no += 16;
if (!(word & 0xff))
word >>= 8, bit_no += 8;
if (!(word & 0xf))
word >>= 4, bit_no += 4;
if (!(word & 0x3))
word >>= 2, bit_no += 2;
if (!(word & 0x1))
word >>= 1, bit_no += 1;
gcc_checking_assert (word & 1);
#endif
return bit_no;
}
/* Return the bit number of the first set bit in the bitmap. The
bitmap must be non-empty. */
unsigned
bitmap_last_set_bit (const_bitmap a)
{
2019-06-02 15:48:37 +00:00
const bitmap_element *elt;
2012-03-27 23:13:14 +00:00
unsigned bit_no;
BITMAP_WORD word;
int ix;
2019-06-02 15:48:37 +00:00
if (a->tree_form)
elt = a->first;
else
elt = a->current ? a->current : a->first;
2012-03-27 23:13:14 +00:00
gcc_checking_assert (elt);
2019-06-02 15:48:37 +00:00
2012-03-27 23:13:14 +00:00
while (elt->next)
elt = elt->next;
2019-06-02 15:48:37 +00:00
2012-03-27 23:13:14 +00:00
bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS;
2019-06-02 15:48:37 +00:00
for (ix = BITMAP_ELEMENT_WORDS - 1; ix >= 1; ix--)
2012-03-27 23:13:14 +00:00
{
word = elt->bits[ix];
if (word)
goto found_bit;
}
2019-06-02 15:48:37 +00:00
gcc_assert (elt->bits[ix] != 0);
2012-03-27 23:13:14 +00:00
found_bit:
bit_no += ix * BITMAP_WORD_BITS;
#if GCC_VERSION >= 3004
2014-09-21 17:33:12 +00:00
gcc_assert (sizeof (long) == sizeof (word));
bit_no += BITMAP_WORD_BITS - __builtin_clzl (word) - 1;
2012-03-27 23:13:14 +00:00
#else
2014-09-21 17:33:12 +00:00
/* Hopefully this is a twos-complement host... */
BITMAP_WORD x = word;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
2012-03-27 23:13:14 +00:00
#if BITMAP_WORD_BITS > 32
2014-09-21 17:33:12 +00:00
x |= (x >> 32);
2012-03-27 23:13:14 +00:00
#endif
2014-09-21 17:33:12 +00:00
bit_no += bitmap_popcount (x) - 1;
2012-03-27 23:13:14 +00:00
#endif
2014-09-21 17:33:12 +00:00
return bit_no;
2012-03-27 23:13:14 +00:00
}
/* DST = A & B. */
void
bitmap_and (bitmap dst, const_bitmap a, const_bitmap b)
{
bitmap_element *dst_elt = dst->first;
const bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *dst_prev = NULL;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
gcc_assert (dst != a && dst != b);
if (a == b)
{
bitmap_copy (dst, a);
return;
}
while (a_elt && b_elt)
{
if (a_elt->indx < b_elt->indx)
a_elt = a_elt->next;
else if (b_elt->indx < a_elt->indx)
b_elt = b_elt->next;
else
{
/* Matching elts, generate A & B. */
unsigned ix;
BITMAP_WORD ior = 0;
if (!dst_elt)
2019-06-02 15:48:37 +00:00
dst_elt = bitmap_list_insert_element_after (dst, dst_prev,
a_elt->indx);
2012-03-27 23:13:14 +00:00
else
dst_elt->indx = a_elt->indx;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix];
dst_elt->bits[ix] = r;
ior |= r;
}
if (ior)
{
dst_prev = dst_elt;
dst_elt = dst_elt->next;
}
a_elt = a_elt->next;
b_elt = b_elt->next;
}
}
/* Ensure that dst->current is valid. */
dst->current = dst->first;
bitmap_elt_clear_from (dst, dst_elt);
gcc_checking_assert (!dst->current == !dst->first);
if (dst->current)
dst->indx = dst->current->indx;
}
2014-09-21 17:33:12 +00:00
/* A &= B. Return true if A changed. */
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
bool
2012-03-27 23:13:14 +00:00
bitmap_and_into (bitmap a, const_bitmap b)
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *next;
2014-09-21 17:33:12 +00:00
bool changed = false;
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
if (a == b)
2014-09-21 17:33:12 +00:00
return false;
2012-03-27 23:13:14 +00:00
while (a_elt && b_elt)
{
if (a_elt->indx < b_elt->indx)
{
next = a_elt->next;
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (a, a_elt);
2012-03-27 23:13:14 +00:00
a_elt = next;
2014-09-21 17:33:12 +00:00
changed = true;
2012-03-27 23:13:14 +00:00
}
else if (b_elt->indx < a_elt->indx)
b_elt = b_elt->next;
else
{
/* Matching elts, generate A &= B. */
unsigned ix;
BITMAP_WORD ior = 0;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix];
2014-09-21 17:33:12 +00:00
if (a_elt->bits[ix] != r)
changed = true;
2012-03-27 23:13:14 +00:00
a_elt->bits[ix] = r;
ior |= r;
}
next = a_elt->next;
if (!ior)
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (a, a_elt);
2012-03-27 23:13:14 +00:00
a_elt = next;
b_elt = b_elt->next;
}
}
2014-09-21 17:33:12 +00:00
if (a_elt)
{
changed = true;
bitmap_elt_clear_from (a, a_elt);
}
2012-03-27 23:13:14 +00:00
gcc_checking_assert (!a->current == !a->first
&& (!a->current || a->indx == a->current->indx));
2014-09-21 17:33:12 +00:00
return changed;
2012-03-27 23:13:14 +00:00
}
/* Insert an element equal to SRC_ELT after DST_PREV, overwriting DST_ELT
if non-NULL. CHANGED is true if the destination bitmap had already been
changed; the new value of CHANGED is returned. */
static inline bool
bitmap_elt_copy (bitmap dst, bitmap_element *dst_elt, bitmap_element *dst_prev,
const bitmap_element *src_elt, bool changed)
{
if (!changed && dst_elt && dst_elt->indx == src_elt->indx)
{
unsigned ix;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
if (src_elt->bits[ix] != dst_elt->bits[ix])
{
dst_elt->bits[ix] = src_elt->bits[ix];
changed = true;
}
}
else
{
changed = true;
if (!dst_elt)
2019-06-02 15:48:37 +00:00
dst_elt = bitmap_list_insert_element_after (dst, dst_prev,
src_elt->indx);
2012-03-27 23:13:14 +00:00
else
dst_elt->indx = src_elt->indx;
memcpy (dst_elt->bits, src_elt->bits, sizeof (dst_elt->bits));
}
return changed;
}
/* DST = A & ~B */
bool
bitmap_and_compl (bitmap dst, const_bitmap a, const_bitmap b)
{
bitmap_element *dst_elt = dst->first;
const bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *dst_prev = NULL;
bitmap_element **dst_prev_pnext = &dst->first;
bool changed = false;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
gcc_assert (dst != a && dst != b);
if (a == b)
{
changed = !bitmap_empty_p (dst);
bitmap_clear (dst);
return changed;
}
while (a_elt)
{
while (b_elt && b_elt->indx < a_elt->indx)
b_elt = b_elt->next;
if (!b_elt || b_elt->indx > a_elt->indx)
{
changed = bitmap_elt_copy (dst, dst_elt, dst_prev, a_elt, changed);
dst_prev = *dst_prev_pnext;
dst_prev_pnext = &dst_prev->next;
dst_elt = *dst_prev_pnext;
a_elt = a_elt->next;
}
else
{
/* Matching elts, generate A & ~B. */
unsigned ix;
BITMAP_WORD ior = 0;
if (!changed && dst_elt && dst_elt->indx == a_elt->indx)
{
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix];
if (dst_elt->bits[ix] != r)
{
changed = true;
dst_elt->bits[ix] = r;
}
ior |= r;
}
}
else
{
bool new_element;
if (!dst_elt || dst_elt->indx > a_elt->indx)
{
2019-06-02 15:48:37 +00:00
dst_elt = bitmap_list_insert_element_after (dst, dst_prev,
a_elt->indx);
2012-03-27 23:13:14 +00:00
new_element = true;
}
else
{
dst_elt->indx = a_elt->indx;
new_element = false;
}
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix];
dst_elt->bits[ix] = r;
ior |= r;
}
if (ior)
changed = true;
else
{
changed |= !new_element;
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (dst, dst_elt);
2012-03-27 23:13:14 +00:00
dst_elt = *dst_prev_pnext;
}
}
if (ior)
{
dst_prev = *dst_prev_pnext;
dst_prev_pnext = &dst_prev->next;
dst_elt = *dst_prev_pnext;
}
a_elt = a_elt->next;
b_elt = b_elt->next;
}
}
/* Ensure that dst->current is valid. */
dst->current = dst->first;
if (dst_elt)
{
changed = true;
bitmap_elt_clear_from (dst, dst_elt);
}
gcc_checking_assert (!dst->current == !dst->first);
if (dst->current)
dst->indx = dst->current->indx;
return changed;
}
/* A &= ~B. Returns true if A changes */
bool
bitmap_and_compl_into (bitmap a, const_bitmap b)
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *next;
BITMAP_WORD changed = 0;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
if (a == b)
{
if (bitmap_empty_p (a))
return false;
else
{
bitmap_clear (a);
return true;
}
}
while (a_elt && b_elt)
{
if (a_elt->indx < b_elt->indx)
a_elt = a_elt->next;
else if (b_elt->indx < a_elt->indx)
b_elt = b_elt->next;
else
{
/* Matching elts, generate A &= ~B. */
unsigned ix;
BITMAP_WORD ior = 0;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix];
BITMAP_WORD r = a_elt->bits[ix] ^ cleared;
a_elt->bits[ix] = r;
changed |= cleared;
ior |= r;
}
next = a_elt->next;
if (!ior)
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (a, a_elt);
2012-03-27 23:13:14 +00:00
a_elt = next;
b_elt = b_elt->next;
}
}
gcc_checking_assert (!a->current == !a->first
&& (!a->current || a->indx == a->current->indx));
return changed != 0;
}
/* Set COUNT bits from START in HEAD. */
void
bitmap_set_range (bitmap head, unsigned int start, unsigned int count)
{
unsigned int first_index, end_bit_plus1, last_index;
bitmap_element *elt, *elt_prev;
unsigned int i;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!head->tree_form);
2012-03-27 23:13:14 +00:00
if (!count)
return;
2017-04-10 11:32:00 +00:00
if (count == 1)
{
bitmap_set_bit (head, start);
return;
}
2012-03-27 23:13:14 +00:00
first_index = start / BITMAP_ELEMENT_ALL_BITS;
end_bit_plus1 = start + count;
last_index = (end_bit_plus1 - 1) / BITMAP_ELEMENT_ALL_BITS;
2019-06-02 15:48:37 +00:00
elt = bitmap_list_find_element (head, first_index);
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
/* If bitmap_list_find_element returns zero, the current is the closest block
2012-03-27 23:13:14 +00:00
to the result. Otherwise, just use bitmap_element_allocate to
ensure ELT is set; in the loop below, ELT == NULL means "insert
at the end of the bitmap". */
if (!elt)
{
elt = bitmap_element_allocate (head);
elt->indx = first_index;
2019-06-02 15:48:37 +00:00
bitmap_list_link_element (head, elt);
2012-03-27 23:13:14 +00:00
}
gcc_checking_assert (elt->indx == first_index);
elt_prev = elt->prev;
for (i = first_index; i <= last_index; i++)
{
unsigned elt_start_bit = i * BITMAP_ELEMENT_ALL_BITS;
unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS;
unsigned int first_word_to_mod;
BITMAP_WORD first_mask;
unsigned int last_word_to_mod;
BITMAP_WORD last_mask;
unsigned int ix;
if (!elt || elt->indx != i)
2019-06-02 15:48:37 +00:00
elt = bitmap_list_insert_element_after (head, elt_prev, i);
2012-03-27 23:13:14 +00:00
if (elt_start_bit <= start)
{
/* The first bit to turn on is somewhere inside this
elt. */
first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS;
/* This mask should have 1s in all bits >= start position. */
first_mask =
(((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1;
first_mask = ~first_mask;
}
else
{
/* The first bit to turn on is below this start of this elt. */
first_word_to_mod = 0;
first_mask = ~(BITMAP_WORD) 0;
}
if (elt_end_bit_plus1 <= end_bit_plus1)
{
/* The last bit to turn on is beyond this elt. */
last_word_to_mod = BITMAP_ELEMENT_WORDS - 1;
last_mask = ~(BITMAP_WORD) 0;
}
else
{
/* The last bit to turn on is inside to this elt. */
last_word_to_mod =
(end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS;
/* The last mask should have 1s below the end bit. */
last_mask =
(((BITMAP_WORD) 1) << ((end_bit_plus1 % BITMAP_WORD_BITS))) - 1;
}
if (first_word_to_mod == last_word_to_mod)
{
BITMAP_WORD mask = first_mask & last_mask;
elt->bits[first_word_to_mod] |= mask;
}
else
{
elt->bits[first_word_to_mod] |= first_mask;
if (BITMAP_ELEMENT_WORDS > 2)
for (ix = first_word_to_mod + 1; ix < last_word_to_mod; ix++)
elt->bits[ix] = ~(BITMAP_WORD) 0;
elt->bits[last_word_to_mod] |= last_mask;
}
elt_prev = elt;
elt = elt->next;
}
head->current = elt ? elt : elt_prev;
head->indx = head->current->indx;
}
/* Clear COUNT bits from START in HEAD. */
void
bitmap_clear_range (bitmap head, unsigned int start, unsigned int count)
{
unsigned int first_index, end_bit_plus1, last_index;
bitmap_element *elt;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!head->tree_form);
2012-03-27 23:13:14 +00:00
if (!count)
return;
2017-04-10 11:32:00 +00:00
if (count == 1)
{
bitmap_clear_bit (head, start);
return;
}
2012-03-27 23:13:14 +00:00
first_index = start / BITMAP_ELEMENT_ALL_BITS;
end_bit_plus1 = start + count;
last_index = (end_bit_plus1 - 1) / BITMAP_ELEMENT_ALL_BITS;
2019-06-02 15:48:37 +00:00
elt = bitmap_list_find_element (head, first_index);
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
/* If bitmap_list_find_element returns zero, the current is the closest block
2012-03-27 23:13:14 +00:00
to the result. If the current is less than first index, find the
next one. Otherwise, just set elt to be current. */
if (!elt)
{
if (head->current)
{
if (head->indx < first_index)
{
elt = head->current->next;
if (!elt)
return;
}
else
elt = head->current;
}
else
return;
}
while (elt && (elt->indx <= last_index))
{
bitmap_element * next_elt = elt->next;
unsigned elt_start_bit = (elt->indx) * BITMAP_ELEMENT_ALL_BITS;
unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS;
if (elt_start_bit >= start && elt_end_bit_plus1 <= end_bit_plus1)
/* Get rid of the entire elt and go to the next one. */
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (head, elt);
2012-03-27 23:13:14 +00:00
else
{
/* Going to have to knock out some bits in this elt. */
unsigned int first_word_to_mod;
BITMAP_WORD first_mask;
unsigned int last_word_to_mod;
BITMAP_WORD last_mask;
unsigned int i;
bool clear = true;
if (elt_start_bit <= start)
{
/* The first bit to turn off is somewhere inside this
elt. */
first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS;
/* This mask should have 1s in all bits >= start position. */
first_mask =
(((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1;
first_mask = ~first_mask;
}
else
{
/* The first bit to turn off is below this start of this elt. */
first_word_to_mod = 0;
first_mask = 0;
first_mask = ~first_mask;
}
if (elt_end_bit_plus1 <= end_bit_plus1)
{
/* The last bit to turn off is beyond this elt. */
last_word_to_mod = BITMAP_ELEMENT_WORDS - 1;
last_mask = 0;
last_mask = ~last_mask;
}
else
{
/* The last bit to turn off is inside to this elt. */
last_word_to_mod =
(end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS;
/* The last mask should have 1s below the end bit. */
last_mask =
(((BITMAP_WORD) 1) << (((end_bit_plus1) % BITMAP_WORD_BITS))) - 1;
}
if (first_word_to_mod == last_word_to_mod)
{
BITMAP_WORD mask = first_mask & last_mask;
elt->bits[first_word_to_mod] &= ~mask;
}
else
{
elt->bits[first_word_to_mod] &= ~first_mask;
if (BITMAP_ELEMENT_WORDS > 2)
for (i = first_word_to_mod + 1; i < last_word_to_mod; i++)
elt->bits[i] = 0;
elt->bits[last_word_to_mod] &= ~last_mask;
}
for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
if (elt->bits[i])
{
clear = false;
break;
}
/* Check to see if there are any bits left. */
if (clear)
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (head, elt);
2012-03-27 23:13:14 +00:00
}
elt = next_elt;
}
if (elt)
{
head->current = elt;
head->indx = head->current->indx;
}
}
/* A = ~A & B. */
void
bitmap_compl_and_into (bitmap a, const_bitmap b)
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *a_prev = NULL;
bitmap_element *next;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
gcc_assert (a != b);
if (bitmap_empty_p (a))
{
bitmap_copy (a, b);
return;
}
if (bitmap_empty_p (b))
{
bitmap_clear (a);
return;
}
while (a_elt || b_elt)
{
if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
{
/* A is before B. Remove A */
next = a_elt->next;
a_prev = a_elt->prev;
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (a, a_elt);
2012-03-27 23:13:14 +00:00
a_elt = next;
}
else if (!a_elt || b_elt->indx < a_elt->indx)
{
/* B is before A. Copy B. */
2019-06-02 15:48:37 +00:00
next = bitmap_list_insert_element_after (a, a_prev, b_elt->indx);
2012-03-27 23:13:14 +00:00
memcpy (next->bits, b_elt->bits, sizeof (next->bits));
a_prev = next;
b_elt = b_elt->next;
}
else
{
/* Matching elts, generate A = ~A & B. */
unsigned ix;
BITMAP_WORD ior = 0;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix];
BITMAP_WORD r = b_elt->bits[ix] ^ cleared;
a_elt->bits[ix] = r;
ior |= r;
}
next = a_elt->next;
if (!ior)
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (a, a_elt);
2012-03-27 23:13:14 +00:00
else
a_prev = a_elt;
a_elt = next;
b_elt = b_elt->next;
}
}
gcc_checking_assert (!a->current == !a->first
&& (!a->current || a->indx == a->current->indx));
return;
}
/* Insert an element corresponding to A_ELT | B_ELT after DST_PREV,
overwriting DST_ELT if non-NULL. CHANGED is true if the destination bitmap
had already been changed; the new value of CHANGED is returned. */
static inline bool
bitmap_elt_ior (bitmap dst, bitmap_element *dst_elt, bitmap_element *dst_prev,
const bitmap_element *a_elt, const bitmap_element *b_elt,
bool changed)
{
gcc_assert (a_elt || b_elt);
if (a_elt && b_elt && a_elt->indx == b_elt->indx)
{
/* Matching elts, generate A | B. */
unsigned ix;
if (!changed && dst_elt && dst_elt->indx == a_elt->indx)
{
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];
if (r != dst_elt->bits[ix])
{
dst_elt->bits[ix] = r;
changed = true;
}
}
}
else
{
changed = true;
if (!dst_elt)
2019-06-02 15:48:37 +00:00
dst_elt = bitmap_list_insert_element_after (dst, dst_prev,
a_elt->indx);
2012-03-27 23:13:14 +00:00
else
dst_elt->indx = a_elt->indx;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];
dst_elt->bits[ix] = r;
}
}
}
else
{
/* Copy a single element. */
const bitmap_element *src;
if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
src = a_elt;
else
src = b_elt;
gcc_checking_assert (src);
changed = bitmap_elt_copy (dst, dst_elt, dst_prev, src, changed);
}
return changed;
}
/* DST = A | B. Return true if DST changes. */
bool
bitmap_ior (bitmap dst, const_bitmap a, const_bitmap b)
{
bitmap_element *dst_elt = dst->first;
const bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *dst_prev = NULL;
bitmap_element **dst_prev_pnext = &dst->first;
bool changed = false;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
gcc_assert (dst != a && dst != b);
while (a_elt || b_elt)
{
changed = bitmap_elt_ior (dst, dst_elt, dst_prev, a_elt, b_elt, changed);
if (a_elt && b_elt && a_elt->indx == b_elt->indx)
{
a_elt = a_elt->next;
b_elt = b_elt->next;
}
else
{
if (a_elt && (!b_elt || a_elt->indx <= b_elt->indx))
a_elt = a_elt->next;
else if (b_elt && (!a_elt || b_elt->indx <= a_elt->indx))
b_elt = b_elt->next;
}
dst_prev = *dst_prev_pnext;
dst_prev_pnext = &dst_prev->next;
dst_elt = *dst_prev_pnext;
}
if (dst_elt)
{
changed = true;
2015-08-28 15:33:40 +00:00
/* Ensure that dst->current is valid. */
dst->current = dst->first;
2012-03-27 23:13:14 +00:00
bitmap_elt_clear_from (dst, dst_elt);
}
gcc_checking_assert (!dst->current == !dst->first);
if (dst->current)
dst->indx = dst->current->indx;
return changed;
}
/* A |= B. Return true if A changes. */
bool
bitmap_ior_into (bitmap a, const_bitmap b)
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *a_prev = NULL;
bitmap_element **a_prev_pnext = &a->first;
bool changed = false;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
if (a == b)
return false;
while (b_elt)
{
/* If A lags behind B, just advance it. */
if (!a_elt || a_elt->indx == b_elt->indx)
{
changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, b_elt, changed);
b_elt = b_elt->next;
}
else if (a_elt->indx > b_elt->indx)
{
changed = bitmap_elt_copy (a, NULL, a_prev, b_elt, changed);
b_elt = b_elt->next;
}
a_prev = *a_prev_pnext;
a_prev_pnext = &a_prev->next;
a_elt = *a_prev_pnext;
}
gcc_checking_assert (!a->current == !a->first);
if (a->current)
a->indx = a->current->indx;
return changed;
}
/* A |= B. Return true if A changes. Free B (re-using its storage
for the result). */
bool
bitmap_ior_into_and_free (bitmap a, bitmap *b_)
{
bitmap b = *b_;
bitmap_element *a_elt = a->first;
bitmap_element *b_elt = b->first;
bitmap_element *a_prev = NULL;
bitmap_element **a_prev_pnext = &a->first;
bool changed = false;
gcc_checking_assert (!a->tree_form && !b->tree_form);
gcc_assert (a->obstack == b->obstack);
if (a == b)
return false;
while (b_elt)
{
/* If A lags behind B, just advance it. */
if (!a_elt || a_elt->indx == b_elt->indx)
{
changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, b_elt, changed);
b_elt = b_elt->next;
}
else if (a_elt->indx > b_elt->indx)
{
bitmap_element *b_elt_next = b_elt->next;
bitmap_list_unlink_element (b, b_elt, false);
bitmap_list_insert_element_after (a, a_prev, b_elt->indx, b_elt);
b_elt = b_elt_next;
}
a_prev = *a_prev_pnext;
a_prev_pnext = &a_prev->next;
a_elt = *a_prev_pnext;
}
gcc_checking_assert (!a->current == !a->first);
if (a->current)
a->indx = a->current->indx;
if (b->obstack)
BITMAP_FREE (*b_);
else
bitmap_clear (b);
return changed;
}
2012-03-27 23:13:14 +00:00
/* DST = A ^ B */
void
bitmap_xor (bitmap dst, const_bitmap a, const_bitmap b)
{
bitmap_element *dst_elt = dst->first;
const bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *dst_prev = NULL;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
gcc_assert (dst != a && dst != b);
2019-06-02 15:48:37 +00:00
2012-03-27 23:13:14 +00:00
if (a == b)
{
bitmap_clear (dst);
return;
}
while (a_elt || b_elt)
{
if (a_elt && b_elt && a_elt->indx == b_elt->indx)
{
/* Matching elts, generate A ^ B. */
unsigned ix;
BITMAP_WORD ior = 0;
if (!dst_elt)
2019-06-02 15:48:37 +00:00
dst_elt = bitmap_list_insert_element_after (dst, dst_prev,
a_elt->indx);
2012-03-27 23:13:14 +00:00
else
dst_elt->indx = a_elt->indx;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix];
ior |= r;
dst_elt->bits[ix] = r;
}
a_elt = a_elt->next;
b_elt = b_elt->next;
if (ior)
{
dst_prev = dst_elt;
dst_elt = dst_elt->next;
}
}
else
{
/* Copy a single element. */
const bitmap_element *src;
if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
{
src = a_elt;
a_elt = a_elt->next;
}
else
{
src = b_elt;
b_elt = b_elt->next;
}
if (!dst_elt)
2019-06-02 15:48:37 +00:00
dst_elt = bitmap_list_insert_element_after (dst, dst_prev,
src->indx);
2012-03-27 23:13:14 +00:00
else
dst_elt->indx = src->indx;
memcpy (dst_elt->bits, src->bits, sizeof (dst_elt->bits));
dst_prev = dst_elt;
dst_elt = dst_elt->next;
}
}
/* Ensure that dst->current is valid. */
dst->current = dst->first;
bitmap_elt_clear_from (dst, dst_elt);
gcc_checking_assert (!dst->current == !dst->first);
if (dst->current)
dst->indx = dst->current->indx;
}
/* A ^= B */
void
bitmap_xor_into (bitmap a, const_bitmap b)
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
bitmap_element *a_prev = NULL;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
if (a == b)
{
bitmap_clear (a);
return;
}
while (b_elt)
{
if (!a_elt || b_elt->indx < a_elt->indx)
{
/* Copy b_elt. */
2019-06-02 15:48:37 +00:00
bitmap_element *dst = bitmap_list_insert_element_after (a, a_prev,
b_elt->indx);
2012-03-27 23:13:14 +00:00
memcpy (dst->bits, b_elt->bits, sizeof (dst->bits));
a_prev = dst;
b_elt = b_elt->next;
}
else if (a_elt->indx < b_elt->indx)
{
a_prev = a_elt;
a_elt = a_elt->next;
}
else
{
/* Matching elts, generate A ^= B. */
unsigned ix;
BITMAP_WORD ior = 0;
bitmap_element *next = a_elt->next;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix];
ior |= r;
a_elt->bits[ix] = r;
}
b_elt = b_elt->next;
if (ior)
a_prev = a_elt;
else
2019-06-02 15:48:37 +00:00
bitmap_list_unlink_element (a, a_elt);
2012-03-27 23:13:14 +00:00
a_elt = next;
}
}
gcc_checking_assert (!a->current == !a->first);
if (a->current)
a->indx = a->current->indx;
}
/* Return true if two bitmaps are identical.
We do not bother with a check for pointer equality, as that never
occurs in practice. */
bool
bitmap_equal_p (const_bitmap a, const_bitmap b)
{
const bitmap_element *a_elt;
const bitmap_element *b_elt;
unsigned ix;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
for (a_elt = a->first, b_elt = b->first;
a_elt && b_elt;
a_elt = a_elt->next, b_elt = b_elt->next)
{
if (a_elt->indx != b_elt->indx)
return false;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
if (a_elt->bits[ix] != b_elt->bits[ix])
return false;
}
return !a_elt && !b_elt;
}
/* Return true if A AND B is not empty. */
bool
bitmap_intersect_p (const_bitmap a, const_bitmap b)
{
const bitmap_element *a_elt;
const bitmap_element *b_elt;
unsigned ix;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
for (a_elt = a->first, b_elt = b->first;
a_elt && b_elt;)
{
if (a_elt->indx < b_elt->indx)
a_elt = a_elt->next;
else if (b_elt->indx < a_elt->indx)
b_elt = b_elt->next;
else
{
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
if (a_elt->bits[ix] & b_elt->bits[ix])
return true;
a_elt = a_elt->next;
b_elt = b_elt->next;
}
}
return false;
}
/* Return true if A AND NOT B is not empty. */
bool
bitmap_intersect_compl_p (const_bitmap a, const_bitmap b)
{
const bitmap_element *a_elt;
const bitmap_element *b_elt;
unsigned ix;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form);
2012-03-27 23:13:14 +00:00
for (a_elt = a->first, b_elt = b->first;
a_elt && b_elt;)
{
if (a_elt->indx < b_elt->indx)
return true;
else if (b_elt->indx < a_elt->indx)
b_elt = b_elt->next;
else
{
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
if (a_elt->bits[ix] & ~b_elt->bits[ix])
return true;
a_elt = a_elt->next;
b_elt = b_elt->next;
}
}
return a_elt != NULL;
}
/* DST = A | (FROM1 & ~FROM2). Return true if DST changes. */
bool
bitmap_ior_and_compl (bitmap dst, const_bitmap a, const_bitmap b, const_bitmap kill)
{
bool changed = false;
bitmap_element *dst_elt = dst->first;
const bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
const bitmap_element *kill_elt = kill->first;
bitmap_element *dst_prev = NULL;
bitmap_element **dst_prev_pnext = &dst->first;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!dst->tree_form && !a->tree_form && !b->tree_form
&& !kill->tree_form);
2012-03-27 23:13:14 +00:00
gcc_assert (dst != a && dst != b && dst != kill);
/* Special cases. We don't bother checking for bitmap_equal_p (b, kill). */
if (b == kill || bitmap_empty_p (b))
{
changed = !bitmap_equal_p (dst, a);
if (changed)
bitmap_copy (dst, a);
return changed;
}
if (bitmap_empty_p (kill))
return bitmap_ior (dst, a, b);
if (bitmap_empty_p (a))
return bitmap_and_compl (dst, b, kill);
while (a_elt || b_elt)
{
bool new_element = false;
if (b_elt)
while (kill_elt && kill_elt->indx < b_elt->indx)
kill_elt = kill_elt->next;
if (b_elt && kill_elt && kill_elt->indx == b_elt->indx
&& (!a_elt || a_elt->indx >= b_elt->indx))
{
bitmap_element tmp_elt;
unsigned ix;
BITMAP_WORD ior = 0;
tmp_elt.indx = b_elt->indx;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
BITMAP_WORD r = b_elt->bits[ix] & ~kill_elt->bits[ix];
ior |= r;
tmp_elt.bits[ix] = r;
}
if (ior)
{
changed = bitmap_elt_ior (dst, dst_elt, dst_prev,
a_elt, &tmp_elt, changed);
new_element = true;
if (a_elt && a_elt->indx == b_elt->indx)
a_elt = a_elt->next;
}
b_elt = b_elt->next;
kill_elt = kill_elt->next;
}
else
{
changed = bitmap_elt_ior (dst, dst_elt, dst_prev,
a_elt, b_elt, changed);
new_element = true;
if (a_elt && b_elt && a_elt->indx == b_elt->indx)
{
a_elt = a_elt->next;
b_elt = b_elt->next;
}
else
{
if (a_elt && (!b_elt || a_elt->indx <= b_elt->indx))
a_elt = a_elt->next;
else if (b_elt && (!a_elt || b_elt->indx <= a_elt->indx))
b_elt = b_elt->next;
}
}
if (new_element)
{
dst_prev = *dst_prev_pnext;
dst_prev_pnext = &dst_prev->next;
dst_elt = *dst_prev_pnext;
}
}
if (dst_elt)
{
changed = true;
2015-08-28 15:33:40 +00:00
/* Ensure that dst->current is valid. */
dst->current = dst->first;
2012-03-27 23:13:14 +00:00
bitmap_elt_clear_from (dst, dst_elt);
}
gcc_checking_assert (!dst->current == !dst->first);
if (dst->current)
dst->indx = dst->current->indx;
return changed;
}
2019-06-02 15:48:37 +00:00
/* A |= (B & ~C). Return true if A changes. */
2012-03-27 23:13:14 +00:00
bool
2019-06-02 15:48:37 +00:00
bitmap_ior_and_compl_into (bitmap a, const_bitmap b, const_bitmap c)
2012-03-27 23:13:14 +00:00
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
const bitmap_element *c_elt = c->first;
bitmap_element and_elt;
bitmap_element *a_prev = NULL;
bitmap_element **a_prev_pnext = &a->first;
bool changed = false;
unsigned ix;
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form && !c->tree_form);
if (a == b)
return false;
if (bitmap_empty_p (c))
return bitmap_ior_into (a, b);
else if (bitmap_empty_p (a))
return bitmap_and_compl (a, b, c);
and_elt.indx = -1;
while (b_elt)
{
/* Advance C. */
while (c_elt && c_elt->indx < b_elt->indx)
c_elt = c_elt->next;
const bitmap_element *and_elt_ptr;
if (c_elt && c_elt->indx == b_elt->indx)
{
BITMAP_WORD overall = 0;
and_elt_ptr = &and_elt;
and_elt.indx = b_elt->indx;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
and_elt.bits[ix] = b_elt->bits[ix] & ~c_elt->bits[ix];
overall |= and_elt.bits[ix];
}
if (!overall)
{
b_elt = b_elt->next;
continue;
}
}
else
and_elt_ptr = b_elt;
b_elt = b_elt->next;
/* Now find a place to insert AND_ELT. */
do
{
ix = a_elt ? a_elt->indx : and_elt_ptr->indx;
if (ix == and_elt_ptr->indx)
changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt,
and_elt_ptr, changed);
else if (ix > and_elt_ptr->indx)
changed = bitmap_elt_copy (a, NULL, a_prev, and_elt_ptr, changed);
a_prev = *a_prev_pnext;
a_prev_pnext = &a_prev->next;
a_elt = *a_prev_pnext;
/* If A lagged behind B/C, we advanced it so loop once more. */
}
while (ix < and_elt_ptr->indx);
}
2012-03-27 23:13:14 +00:00
gcc_checking_assert (!a->current == !a->first);
if (a->current)
a->indx = a->current->indx;
2012-03-27 23:13:14 +00:00
return changed;
}
/* A |= (B & C). Return true if A changes. */
bool
bitmap_ior_and_into (bitmap a, const_bitmap b, const_bitmap c)
{
bitmap_element *a_elt = a->first;
const bitmap_element *b_elt = b->first;
const bitmap_element *c_elt = c->first;
bitmap_element and_elt;
bitmap_element *a_prev = NULL;
bitmap_element **a_prev_pnext = &a->first;
bool changed = false;
unsigned ix;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!a->tree_form && !b->tree_form && !c->tree_form);
2012-03-27 23:13:14 +00:00
if (b == c)
return bitmap_ior_into (a, b);
if (bitmap_empty_p (b) || bitmap_empty_p (c))
return false;
and_elt.indx = -1;
while (b_elt && c_elt)
{
BITMAP_WORD overall;
/* Find a common item of B and C. */
while (b_elt->indx != c_elt->indx)
{
if (b_elt->indx < c_elt->indx)
{
b_elt = b_elt->next;
if (!b_elt)
goto done;
}
else
{
c_elt = c_elt->next;
if (!c_elt)
goto done;
}
}
overall = 0;
and_elt.indx = b_elt->indx;
for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
{
and_elt.bits[ix] = b_elt->bits[ix] & c_elt->bits[ix];
overall |= and_elt.bits[ix];
}
b_elt = b_elt->next;
c_elt = c_elt->next;
if (!overall)
continue;
/* Now find a place to insert AND_ELT. */
do
{
ix = a_elt ? a_elt->indx : and_elt.indx;
if (ix == and_elt.indx)
changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, &and_elt, changed);
else if (ix > and_elt.indx)
changed = bitmap_elt_copy (a, NULL, a_prev, &and_elt, changed);
a_prev = *a_prev_pnext;
a_prev_pnext = &a_prev->next;
a_elt = *a_prev_pnext;
/* If A lagged behind B/C, we advanced it so loop once more. */
}
while (ix < and_elt.indx);
}
done:
gcc_checking_assert (!a->current == !a->first);
if (a->current)
a->indx = a->current->indx;
return changed;
}
2014-09-21 17:33:12 +00:00
/* Compute hash of bitmap (for purposes of hashing). */
2019-06-02 15:48:37 +00:00
2014-09-21 17:33:12 +00:00
hashval_t
bitmap_hash (const_bitmap head)
{
const bitmap_element *ptr;
BITMAP_WORD hash = 0;
int ix;
2019-06-02 15:48:37 +00:00
gcc_checking_assert (!head->tree_form);
2014-09-21 17:33:12 +00:00
for (ptr = head->first; ptr; ptr = ptr->next)
{
hash ^= ptr->indx;
for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
hash ^= ptr->bits[ix];
}
return (hashval_t)hash;
}
2012-03-27 23:13:14 +00:00
2019-06-02 15:48:37 +00:00
/* Function to obtain a vector of bitmap elements in bit order from
HEAD in tree view. */
static void
bitmap_tree_to_vec (vec<bitmap_element *> &elts, const_bitmap head)
{
gcc_checking_assert (head->tree_form);
auto_vec<bitmap_element *, 32> stack;
bitmap_element *e = head->first;
while (true)
{
while (e != NULL)
{
stack.safe_push (e);
e = e->prev;
}
if (stack.is_empty ())
break;
e = stack.pop ();
elts.safe_push (e);
e = e->next;
}
}
/* Debugging function to print out the contents of a bitmap element. */
DEBUG_FUNCTION void
debug_bitmap_elt_file (FILE *file, const bitmap_element *ptr)
{
unsigned int i, j, col = 26;
fprintf (file, "\t" HOST_PTR_PRINTF " next = " HOST_PTR_PRINTF
" prev = " HOST_PTR_PRINTF " indx = %u\n\t\tbits = {",
(const void*) ptr, (const void*) ptr->next,
(const void*) ptr->prev, ptr->indx);
for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
for (j = 0; j < BITMAP_WORD_BITS; j++)
if ((ptr->bits[i] >> j) & 1)
{
if (col > 70)
{
fprintf (file, "\n\t\t\t");
col = 24;
}
fprintf (file, " %u", (ptr->indx * BITMAP_ELEMENT_ALL_BITS
+ i * BITMAP_WORD_BITS + j));
col += 4;
}
fprintf (file, " }\n");
}
2012-03-27 23:13:14 +00:00
/* Debugging function to print out the contents of a bitmap. */
DEBUG_FUNCTION void
debug_bitmap_file (FILE *file, const_bitmap head)
{
const bitmap_element *ptr;
fprintf (file, "\nfirst = " HOST_PTR_PRINTF
" current = " HOST_PTR_PRINTF " indx = %u\n",
(void *) head->first, (void *) head->current, head->indx);
2019-06-02 15:48:37 +00:00
if (head->tree_form)
2012-03-27 23:13:14 +00:00
{
2019-06-02 15:48:37 +00:00
auto_vec<bitmap_element *, 32> elts;
bitmap_tree_to_vec (elts, head);
for (unsigned i = 0; i < elts.length (); ++i)
debug_bitmap_elt_file (file, elts[i]);
2012-03-27 23:13:14 +00:00
}
2019-06-02 15:48:37 +00:00
else
for (ptr = head->first; ptr; ptr = ptr->next)
debug_bitmap_elt_file (file, ptr);
2012-03-27 23:13:14 +00:00
}
/* Function to be called from the debugger to print the contents
of a bitmap. */
DEBUG_FUNCTION void
debug_bitmap (const_bitmap head)
{
2015-08-28 15:33:40 +00:00
debug_bitmap_file (stderr, head);
2012-03-27 23:13:14 +00:00
}
/* Function to print out the contents of a bitmap. Unlike debug_bitmap_file,
it does not print anything but the bits. */
DEBUG_FUNCTION void
2014-09-21 17:33:12 +00:00
bitmap_print (FILE *file, const_bitmap head, const char *prefix,
const char *suffix)
2012-03-27 23:13:14 +00:00
{
const char *comma = "";
unsigned i;
fputs (prefix, file);
2019-06-02 15:48:37 +00:00
if (head->tree_form)
{
auto_vec<bitmap_element *, 32> elts;
bitmap_tree_to_vec (elts, head);
for (i = 0; i < elts.length (); ++i)
for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ++ix)
{
BITMAP_WORD word = elts[i]->bits[ix];
for (unsigned bit = 0; bit != BITMAP_WORD_BITS; ++bit)
if (word & ((BITMAP_WORD)1 << bit))
{
fprintf (file, "%s%d", comma,
(bit + BITMAP_WORD_BITS * ix
+ elts[i]->indx * BITMAP_ELEMENT_ALL_BITS));
comma = ", ";
}
}
}
else
2012-03-27 23:13:14 +00:00
{
2019-06-02 15:48:37 +00:00
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (head, 0, i, bi)
{
fprintf (file, "%s%d", comma, i);
comma = ", ";
}
2012-03-27 23:13:14 +00:00
}
fputs (suffix, file);
}
/* Output per-bitmap memory usage statistics. */
void
dump_bitmap_statistics (void)
{
2017-04-10 11:32:00 +00:00
if (!GATHER_STATISTICS)
2014-09-21 17:33:12 +00:00
return;
2017-04-10 11:32:00 +00:00
bitmap_mem_desc.dump (BITMAP_ORIGIN);
2012-03-27 23:13:14 +00:00
}
2014-09-21 17:33:12 +00:00
DEBUG_FUNCTION void
debug (const bitmap_head &ref)
2012-03-27 23:13:14 +00:00
{
2014-09-21 17:33:12 +00:00
dump_bitmap (stderr, &ref);
}
2012-03-27 23:13:14 +00:00
2014-09-21 17:33:12 +00:00
DEBUG_FUNCTION void
debug (const bitmap_head *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
2012-03-27 23:13:14 +00:00
}
DEBUG_FUNCTION void
debug (const auto_bitmap &ref)
{
debug ((const bitmap_head &) ref);
}
DEBUG_FUNCTION void
debug (const auto_bitmap *ptr)
{
debug ((const bitmap_head *) ptr);
}
2019-06-02 15:48:37 +00:00
void
bitmap_head::dump ()
{
debug (this);
}
#if CHECKING_P
namespace selftest {
/* Selftests for bitmaps. */
/* Freshly-created bitmaps ought to be empty. */
static void
test_gc_alloc ()
{
bitmap b = bitmap_gc_alloc ();
ASSERT_TRUE (bitmap_empty_p (b));
}
/* Verify bitmap_set_range. */
static void
test_set_range ()
{
bitmap b = bitmap_gc_alloc ();
ASSERT_TRUE (bitmap_empty_p (b));
bitmap_set_range (b, 7, 5);
ASSERT_FALSE (bitmap_empty_p (b));
ASSERT_EQ (5, bitmap_count_bits (b));
/* Verify bitmap_bit_p at the boundaries. */
ASSERT_FALSE (bitmap_bit_p (b, 6));
ASSERT_TRUE (bitmap_bit_p (b, 7));
ASSERT_TRUE (bitmap_bit_p (b, 11));
ASSERT_FALSE (bitmap_bit_p (b, 12));
}
/* Verify splitting a range into two pieces using bitmap_clear_bit. */
static void
test_clear_bit_in_middle ()
{
bitmap b = bitmap_gc_alloc ();
/* Set b to [100..200]. */
bitmap_set_range (b, 100, 100);
ASSERT_EQ (100, bitmap_count_bits (b));
/* Clear a bit in the middle. */
bool changed = bitmap_clear_bit (b, 150);
ASSERT_TRUE (changed);
ASSERT_EQ (99, bitmap_count_bits (b));
ASSERT_TRUE (bitmap_bit_p (b, 149));
ASSERT_FALSE (bitmap_bit_p (b, 150));
ASSERT_TRUE (bitmap_bit_p (b, 151));
}
/* Verify bitmap_copy. */
static void
test_copying ()
{
bitmap src = bitmap_gc_alloc ();
bitmap_set_range (src, 40, 10);
bitmap dst = bitmap_gc_alloc ();
ASSERT_FALSE (bitmap_equal_p (src, dst));
bitmap_copy (dst, src);
ASSERT_TRUE (bitmap_equal_p (src, dst));
/* Verify that we can make them unequal again... */
bitmap_set_range (src, 70, 5);
ASSERT_FALSE (bitmap_equal_p (src, dst));
/* ...and that changing src after the copy didn't affect
the other: */
ASSERT_FALSE (bitmap_bit_p (dst, 70));
}
/* Verify bitmap_single_bit_set_p. */
static void
test_bitmap_single_bit_set_p ()
{
bitmap b = bitmap_gc_alloc ();
ASSERT_FALSE (bitmap_single_bit_set_p (b));
bitmap_set_range (b, 42, 1);
ASSERT_TRUE (bitmap_single_bit_set_p (b));
ASSERT_EQ (42, bitmap_first_set_bit (b));
bitmap_set_range (b, 1066, 1);
ASSERT_FALSE (bitmap_single_bit_set_p (b));
ASSERT_EQ (42, bitmap_first_set_bit (b));
bitmap_clear_range (b, 0, 100);
ASSERT_TRUE (bitmap_single_bit_set_p (b));
ASSERT_EQ (1066, bitmap_first_set_bit (b));
}
/* Verify accessing aligned bit chunks works as expected. */
static void
test_aligned_chunk (unsigned num_bits)
{
bitmap b = bitmap_gc_alloc ();
int limit = 2 ^ num_bits;
int index = 3;
for (int x = 0; x < limit; x++)
{
bitmap_set_aligned_chunk (b, index, num_bits, (BITMAP_WORD) x);
ASSERT_TRUE ((int) bitmap_get_aligned_chunk (b, index, num_bits) == x);
ASSERT_TRUE ((int) bitmap_get_aligned_chunk (b, index + 1,
num_bits) == 0);
ASSERT_TRUE ((int) bitmap_get_aligned_chunk (b, index - 1,
num_bits) == 0);
index += 3;
}
index = 3;
for (int x = 0; x < limit ; x++)
{
ASSERT_TRUE ((int) bitmap_get_aligned_chunk (b, index, num_bits) == x);
index += 3;
}
}
/* Run all of the selftests within this file. */
void
bitmap_cc_tests ()
{
test_gc_alloc ();
test_set_range ();
test_clear_bit_in_middle ();
test_copying ();
test_bitmap_single_bit_set_p ();
/* Test 2, 4 and 8 bit aligned chunks. */
test_aligned_chunk (2);
test_aligned_chunk (4);
test_aligned_chunk (8);
}
} // namespace selftest
#endif /* CHECKING_P */
2014-09-21 17:33:12 +00:00
2012-03-27 23:13:14 +00:00
#include "gt-bitmap.h"