Retro68/gcc/newlib/libm/common/s_log1p.c

218 lines
6.1 KiB
C
Raw Normal View History

2017-04-11 21:13:36 +00:00
/* @(#)s_log1p.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
FUNCTION
<<log1p>>, <<log1pf>>---log of <<1 + <[x]>>>
INDEX
log1p
INDEX
log1pf
ANSI_SYNOPSIS
#include <math.h>
double log1p(double <[x]>);
float log1pf(float <[x]>);
TRAD_SYNOPSIS
#include <math.h>
double log1p(<[x]>)
double <[x]>;
float log1pf(<[x]>)
float <[x]>;
DESCRIPTION
<<log1p>> calculates
@tex
$ln(1+x)$,
@end tex
the natural logarithm of <<1+<[x]>>>. You can use <<log1p>> rather
than `<<log(1+<[x]>)>>' for greater precision when <[x]> is very
small.
<<log1pf>> calculates the same thing, but accepts and returns
<<float>> values rather than <<double>>.
RETURNS
<<log1p>> returns a <<double>>, the natural log of <<1+<[x]>>>.
<<log1pf>> returns a <<float>>, the natural log of <<1+<[x]>>>.
PORTABILITY
Neither <<log1p>> nor <<log1pf>> is required by ANSI C or by the System V
Interface Definition (Issue 2).
*/
/* double log1p(double x)
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double log1p(double x)
#else
double log1p(x)
double x;
#endif
{
double hfsq,f,c,s,z,R,u;
__int32_t k,hx,hu,ax;
GET_HIGH_WORD(hx,x);
ax = hx&0x7fffffff;
k = 1;
if (hx < 0x3FDA827A) { /* x < 0.41422 */
if(ax>=0x3ff00000) { /* x <= -1.0 */
if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
}
if(ax<0x3e200000) { /* |x| < 2**-29 */
if(two54+x>zero /* raise inexact */
&&ax<0x3c900000) /* |x| < 2**-54 */
return x;
else
return x - x*x*0.5;
}
if(hx>0||hx<=((__int32_t)0xbfd2bec3)) {
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
}
if (hx >= 0x7ff00000) return x+x;
if(k!=0) {
if(hx<0x43400000) {
u = 1.0+x;
GET_HIGH_WORD(hu,u);
k = (hu>>20)-1023;
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
c /= u;
} else {
u = x;
GET_HIGH_WORD(hu,u);
k = (hu>>20)-1023;
c = 0;
}
hu &= 0x000fffff;
if(hu<0x6a09e) {
SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
} else {
k += 1;
SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
hu = (0x00100000-hu)>>2;
}
f = u-1.0;
}
hfsq=0.5*f*f;
if(hu==0) { /* |f| < 2**-20 */
if(f==zero) { if(k==0) return zero;
else {c += k*ln2_lo; return k*ln2_hi+c;}}
R = hfsq*(1.0-0.66666666666666666*f);
if(k==0) return f-R; else
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
}
s = f/(2.0+f);
z = s*s;
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
}
#endif /* _DOUBLE_IS_32BITS */