2012-03-28 01:13:14 +02:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package math
|
|
|
|
|
|
|
|
//extern sqrt
|
|
|
|
func libc_sqrt(float64) float64
|
|
|
|
|
|
|
|
func Sqrt(x float64) float64 {
|
|
|
|
return libc_sqrt(x)
|
|
|
|
}
|
|
|
|
|
|
|
|
// The original C code and the long comment below are
|
|
|
|
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
|
2017-10-07 02:16:47 +02:00
|
|
|
// came with this notice. The go code is a simplified
|
2012-03-28 01:13:14 +02:00
|
|
|
// version of the original C.
|
|
|
|
//
|
|
|
|
// ====================================================
|
|
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
//
|
|
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
// Permission to use, copy, modify, and distribute this
|
|
|
|
// software is freely granted, provided that this notice
|
|
|
|
// is preserved.
|
|
|
|
// ====================================================
|
|
|
|
//
|
|
|
|
// __ieee754_sqrt(x)
|
|
|
|
// Return correctly rounded sqrt.
|
|
|
|
// -----------------------------------------
|
|
|
|
// | Use the hardware sqrt if you have one |
|
|
|
|
// -----------------------------------------
|
|
|
|
// Method:
|
|
|
|
// Bit by bit method using integer arithmetic. (Slow, but portable)
|
|
|
|
// 1. Normalization
|
|
|
|
// Scale x to y in [1,4) with even powers of 2:
|
|
|
|
// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
|
|
|
|
// sqrt(x) = 2**k * sqrt(y)
|
|
|
|
// 2. Bit by bit computation
|
|
|
|
// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
|
|
|
// i 0
|
|
|
|
// i+1 2
|
|
|
|
// s = 2*q , and y = 2 * ( y - q ). (1)
|
|
|
|
// i i i i
|
|
|
|
//
|
|
|
|
// To compute q from q , one checks whether
|
|
|
|
// i+1 i
|
|
|
|
//
|
|
|
|
// -(i+1) 2
|
|
|
|
// (q + 2 ) <= y. (2)
|
|
|
|
// i
|
|
|
|
// -(i+1)
|
|
|
|
// If (2) is false, then q = q ; otherwise q = q + 2 .
|
|
|
|
// i+1 i i+1 i
|
|
|
|
//
|
|
|
|
// With some algebraic manipulation, it is not difficult to see
|
|
|
|
// that (2) is equivalent to
|
|
|
|
// -(i+1)
|
|
|
|
// s + 2 <= y (3)
|
|
|
|
// i i
|
|
|
|
//
|
|
|
|
// The advantage of (3) is that s and y can be computed by
|
|
|
|
// i i
|
|
|
|
// the following recurrence formula:
|
|
|
|
// if (3) is false
|
|
|
|
//
|
|
|
|
// s = s , y = y ; (4)
|
|
|
|
// i+1 i i+1 i
|
|
|
|
//
|
|
|
|
// otherwise,
|
|
|
|
// -i -(i+1)
|
|
|
|
// s = s + 2 , y = y - s - 2 (5)
|
|
|
|
// i+1 i i+1 i i
|
|
|
|
//
|
|
|
|
// One may easily use induction to prove (4) and (5).
|
|
|
|
// Note. Since the left hand side of (3) contain only i+2 bits,
|
|
|
|
// it does not necessary to do a full (53-bit) comparison
|
|
|
|
// in (3).
|
|
|
|
// 3. Final rounding
|
|
|
|
// After generating the 53 bits result, we compute one more bit.
|
|
|
|
// Together with the remainder, we can decide whether the
|
|
|
|
// result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
|
|
// (it will never equal to 1/2ulp).
|
|
|
|
// The rounding mode can be detected by checking whether
|
|
|
|
// huge + tiny is equal to huge, and whether huge - tiny is
|
|
|
|
// equal to huge for some floating point number "huge" and "tiny".
|
|
|
|
//
|
|
|
|
//
|
2017-10-07 02:16:47 +02:00
|
|
|
// Notes: Rounding mode detection omitted. The constants "mask", "shift",
|
2015-08-28 17:33:40 +02:00
|
|
|
// and "bias" are found in src/math/bits.go
|
2012-03-28 01:13:14 +02:00
|
|
|
|
|
|
|
// Sqrt returns the square root of x.
|
|
|
|
//
|
|
|
|
// Special cases are:
|
|
|
|
// Sqrt(+Inf) = +Inf
|
|
|
|
// Sqrt(±0) = ±0
|
|
|
|
// Sqrt(x < 0) = NaN
|
|
|
|
// Sqrt(NaN) = NaN
|
2017-04-10 13:32:00 +02:00
|
|
|
|
|
|
|
// Note: Sqrt is implemented in assembly on some systems.
|
|
|
|
// Others have assembly stubs that jump to func sqrt below.
|
|
|
|
// On systems where Sqrt is a single instruction, the compiler
|
|
|
|
// may turn a direct call into a direct use of that instruction instead.
|
|
|
|
|
2012-03-28 01:13:14 +02:00
|
|
|
func sqrt(x float64) float64 {
|
|
|
|
// special cases
|
|
|
|
switch {
|
|
|
|
case x == 0 || IsNaN(x) || IsInf(x, 1):
|
|
|
|
return x
|
|
|
|
case x < 0:
|
|
|
|
return NaN()
|
|
|
|
}
|
|
|
|
ix := Float64bits(x)
|
|
|
|
// normalize x
|
|
|
|
exp := int((ix >> shift) & mask)
|
|
|
|
if exp == 0 { // subnormal x
|
2017-04-10 13:32:00 +02:00
|
|
|
for ix&(1<<shift) == 0 {
|
2012-03-28 01:13:14 +02:00
|
|
|
ix <<= 1
|
|
|
|
exp--
|
|
|
|
}
|
|
|
|
exp++
|
|
|
|
}
|
|
|
|
exp -= bias // unbias exponent
|
|
|
|
ix &^= mask << shift
|
|
|
|
ix |= 1 << shift
|
|
|
|
if exp&1 == 1 { // odd exp, double x to make it even
|
|
|
|
ix <<= 1
|
|
|
|
}
|
|
|
|
exp >>= 1 // exp = exp/2, exponent of square root
|
|
|
|
// generate sqrt(x) bit by bit
|
|
|
|
ix <<= 1
|
|
|
|
var q, s uint64 // q = sqrt(x)
|
|
|
|
r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
|
|
|
|
for r != 0 {
|
|
|
|
t := s + r
|
|
|
|
if t <= ix {
|
|
|
|
s = t + r
|
|
|
|
ix -= t
|
|
|
|
q += r
|
|
|
|
}
|
|
|
|
ix <<= 1
|
|
|
|
r >>= 1
|
|
|
|
}
|
|
|
|
// final rounding
|
|
|
|
if ix != 0 { // remainder, result not exact
|
|
|
|
q += q & 1 // round according to extra bit
|
|
|
|
}
|
|
|
|
ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
|
|
|
|
return Float64frombits(ix)
|
|
|
|
}
|