2012-03-27 23:13:14 +00:00
|
|
|
// Copyright 2010 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package math
|
|
|
|
|
|
|
|
// Coefficients _sin[] and _cos[] are found in pkg/math/sin.go.
|
|
|
|
|
2014-09-21 17:33:12 +00:00
|
|
|
// Sincos returns Sin(x), Cos(x).
|
2012-03-27 23:13:14 +00:00
|
|
|
//
|
|
|
|
// Special cases are:
|
|
|
|
// Sincos(±0) = ±0, 1
|
|
|
|
// Sincos(±Inf) = NaN, NaN
|
|
|
|
// Sincos(NaN) = NaN, NaN
|
|
|
|
func Sincos(x float64) (sin, cos float64) {
|
|
|
|
return sincos(x)
|
|
|
|
}
|
|
|
|
|
|
|
|
func sincos(x float64) (sin, cos float64) {
|
|
|
|
const (
|
|
|
|
PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
|
|
|
|
PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
|
|
|
|
PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
|
|
|
|
M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
|
|
|
|
)
|
|
|
|
// special cases
|
|
|
|
switch {
|
|
|
|
case x == 0:
|
|
|
|
return x, 1 // return ±0.0, 1.0
|
|
|
|
case IsNaN(x) || IsInf(x, 0):
|
|
|
|
return NaN(), NaN()
|
|
|
|
}
|
|
|
|
|
|
|
|
// make argument positive
|
|
|
|
sinSign, cosSign := false, false
|
|
|
|
if x < 0 {
|
|
|
|
x = -x
|
|
|
|
sinSign = true
|
|
|
|
}
|
|
|
|
|
|
|
|
j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
|
|
|
|
y := float64(j) // integer part of x/(Pi/4), as float
|
|
|
|
|
|
|
|
if j&1 == 1 { // map zeros to origin
|
|
|
|
j += 1
|
|
|
|
y += 1
|
|
|
|
}
|
|
|
|
j &= 7 // octant modulo 2Pi radians (360 degrees)
|
|
|
|
if j > 3 { // reflect in x axis
|
|
|
|
j -= 4
|
|
|
|
sinSign, cosSign = !sinSign, !cosSign
|
|
|
|
}
|
|
|
|
if j > 1 {
|
|
|
|
cosSign = !cosSign
|
|
|
|
}
|
|
|
|
|
|
|
|
z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
|
|
|
|
zz := z * z
|
|
|
|
cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
|
|
|
|
sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
|
|
|
|
if j == 1 || j == 2 {
|
|
|
|
sin, cos = cos, sin
|
|
|
|
}
|
|
|
|
if cosSign {
|
|
|
|
cos = -cos
|
|
|
|
}
|
|
|
|
if sinSign {
|
|
|
|
sin = -sin
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|