2012-03-27 23:13:14 +00:00
|
|
|
|
/* Floating point output for `printf'.
|
2014-09-21 17:33:12 +00:00
|
|
|
|
Copyright (C) 1995-2012 Free Software Foundation, Inc.
|
2012-03-27 23:13:14 +00:00
|
|
|
|
|
|
|
|
|
This file is part of the GNU C Library.
|
|
|
|
|
Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
|
|
|
|
|
|
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
2014-09-21 17:33:12 +00:00
|
|
|
|
License along with the GNU C Library; if not, see
|
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
2012-03-27 23:13:14 +00:00
|
|
|
|
|
|
|
|
|
#include <config.h>
|
|
|
|
|
#include <float.h>
|
2014-09-21 17:33:12 +00:00
|
|
|
|
#include <limits.h>
|
2012-03-27 23:13:14 +00:00
|
|
|
|
#include <math.h>
|
|
|
|
|
#include <string.h>
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
#include <stdlib.h>
|
2014-09-21 17:33:12 +00:00
|
|
|
|
#include <stdbool.h>
|
2012-03-27 23:13:14 +00:00
|
|
|
|
#define NDEBUG
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
#ifdef HAVE_ERRNO_H
|
|
|
|
|
#include <errno.h>
|
|
|
|
|
#endif
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <stdarg.h>
|
2014-09-21 17:33:12 +00:00
|
|
|
|
#ifdef HAVE_FENV_H
|
|
|
|
|
#include "quadmath-rounding-mode.h"
|
|
|
|
|
#endif
|
2012-03-27 23:13:14 +00:00
|
|
|
|
#include "quadmath-printf.h"
|
|
|
|
|
#include "fpioconst.h"
|
|
|
|
|
|
|
|
|
|
#ifdef USE_I18N_NUMBER_H
|
|
|
|
|
#include "_i18n_number.h"
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Macros for doing the actual output. */
|
|
|
|
|
|
|
|
|
|
#define outchar(ch) \
|
|
|
|
|
do \
|
|
|
|
|
{ \
|
|
|
|
|
register const int outc = (ch); \
|
|
|
|
|
if (PUTC (outc, fp) == EOF) \
|
|
|
|
|
{ \
|
|
|
|
|
if (buffer_malloced) \
|
|
|
|
|
free (wbuffer); \
|
|
|
|
|
return -1; \
|
|
|
|
|
} \
|
|
|
|
|
++done; \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
#define PRINT(ptr, wptr, len) \
|
|
|
|
|
do \
|
|
|
|
|
{ \
|
|
|
|
|
register size_t outlen = (len); \
|
|
|
|
|
if (len > 20) \
|
|
|
|
|
{ \
|
|
|
|
|
if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
|
|
|
|
|
{ \
|
|
|
|
|
if (buffer_malloced) \
|
|
|
|
|
free (wbuffer); \
|
|
|
|
|
return -1; \
|
|
|
|
|
} \
|
|
|
|
|
ptr += outlen; \
|
|
|
|
|
done += outlen; \
|
|
|
|
|
} \
|
|
|
|
|
else \
|
|
|
|
|
{ \
|
|
|
|
|
if (wide) \
|
|
|
|
|
while (outlen-- > 0) \
|
|
|
|
|
outchar (*wptr++); \
|
|
|
|
|
else \
|
|
|
|
|
while (outlen-- > 0) \
|
|
|
|
|
outchar (*ptr++); \
|
|
|
|
|
} \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
#define PADN(ch, len) \
|
|
|
|
|
do \
|
|
|
|
|
{ \
|
|
|
|
|
if (PAD (fp, ch, len) != len) \
|
|
|
|
|
{ \
|
|
|
|
|
if (buffer_malloced) \
|
|
|
|
|
free (wbuffer); \
|
|
|
|
|
return -1; \
|
|
|
|
|
} \
|
|
|
|
|
done += len; \
|
|
|
|
|
} \
|
|
|
|
|
while (0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* We use the GNU MP library to handle large numbers.
|
|
|
|
|
|
|
|
|
|
An MP variable occupies a varying number of entries in its array. We keep
|
|
|
|
|
track of this number for efficiency reasons. Otherwise we would always
|
|
|
|
|
have to process the whole array. */
|
|
|
|
|
#define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
|
|
|
|
|
|
|
|
|
|
#define MPN_ASSIGN(dst,src) \
|
|
|
|
|
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
|
|
|
|
|
#define MPN_GE(u,v) \
|
|
|
|
|
(u##size > v##size || (u##size == v##size && mpn_cmp (u, v, u##size) >= 0))
|
|
|
|
|
|
|
|
|
|
extern mp_size_t mpn_extract_flt128 (mp_ptr res_ptr, mp_size_t size,
|
|
|
|
|
int *expt, int *is_neg,
|
|
|
|
|
__float128 value) attribute_hidden;
|
|
|
|
|
static unsigned int guess_grouping (unsigned int intdig_max,
|
|
|
|
|
const char *grouping);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
|
|
|
|
|
unsigned int intdig_no, const char *grouping,
|
|
|
|
|
wchar_t thousands_sep, int ngroups);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
__quadmath_printf_fp (struct __quadmath_printf_file *fp,
|
|
|
|
|
const struct printf_info *info,
|
|
|
|
|
const void *const *args)
|
|
|
|
|
{
|
|
|
|
|
/* The floating-point value to output. */
|
|
|
|
|
__float128 fpnum;
|
|
|
|
|
|
|
|
|
|
/* Locale-dependent representation of decimal point. */
|
|
|
|
|
const char *decimal;
|
|
|
|
|
wchar_t decimalwc;
|
|
|
|
|
|
|
|
|
|
/* Locale-dependent thousands separator and grouping specification. */
|
|
|
|
|
const char *thousands_sep = NULL;
|
|
|
|
|
wchar_t thousands_sepwc = L_('\0');
|
|
|
|
|
const char *grouping;
|
|
|
|
|
|
|
|
|
|
/* "NaN" or "Inf" for the special cases. */
|
|
|
|
|
const char *special = NULL;
|
|
|
|
|
const wchar_t *wspecial = NULL;
|
|
|
|
|
|
|
|
|
|
/* We need just a few limbs for the input before shifting to the right
|
|
|
|
|
position. */
|
|
|
|
|
mp_limb_t fp_input[(FLT128_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
|
|
|
|
|
/* We need to shift the contents of fp_input by this amount of bits. */
|
|
|
|
|
int to_shift = 0;
|
|
|
|
|
|
|
|
|
|
/* The fraction of the floting-point value in question */
|
|
|
|
|
MPN_VAR(frac);
|
|
|
|
|
/* and the exponent. */
|
|
|
|
|
int exponent;
|
|
|
|
|
/* Sign of the exponent. */
|
|
|
|
|
int expsign = 0;
|
|
|
|
|
/* Sign of float number. */
|
|
|
|
|
int is_neg = 0;
|
|
|
|
|
|
|
|
|
|
/* Scaling factor. */
|
|
|
|
|
MPN_VAR(scale);
|
|
|
|
|
|
|
|
|
|
/* Temporary bignum value. */
|
|
|
|
|
MPN_VAR(tmp);
|
|
|
|
|
|
|
|
|
|
/* Digit which is result of last hack_digit() call. */
|
2014-09-21 17:33:12 +00:00
|
|
|
|
wchar_t last_digit, next_digit;
|
|
|
|
|
bool more_bits;
|
2012-03-27 23:13:14 +00:00
|
|
|
|
|
|
|
|
|
/* The type of output format that will be used: 'e'/'E' or 'f'. */
|
|
|
|
|
int type;
|
|
|
|
|
|
|
|
|
|
/* Counter for number of written characters. */
|
|
|
|
|
int done = 0;
|
|
|
|
|
|
|
|
|
|
/* General helper (carry limb). */
|
|
|
|
|
mp_limb_t cy;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if this is output on a wide character stream. */
|
|
|
|
|
int wide = info->wide;
|
|
|
|
|
|
|
|
|
|
/* Buffer in which we produce the output. */
|
|
|
|
|
wchar_t *wbuffer = NULL;
|
|
|
|
|
/* Flag whether wbuffer is malloc'ed or not. */
|
|
|
|
|
int buffer_malloced = 0;
|
|
|
|
|
|
|
|
|
|
auto wchar_t hack_digit (void);
|
|
|
|
|
|
|
|
|
|
wchar_t hack_digit (void)
|
|
|
|
|
{
|
|
|
|
|
mp_limb_t hi;
|
|
|
|
|
|
|
|
|
|
if (expsign != 0 && type == 'f' && exponent-- > 0)
|
|
|
|
|
hi = 0;
|
|
|
|
|
else if (scalesize == 0)
|
|
|
|
|
{
|
|
|
|
|
hi = frac[fracsize - 1];
|
|
|
|
|
frac[fracsize - 1] = mpn_mul_1 (frac, frac, fracsize - 1, 10);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (fracsize < scalesize)
|
|
|
|
|
hi = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
|
|
|
|
|
tmp[fracsize - scalesize] = hi;
|
|
|
|
|
hi = tmp[0];
|
|
|
|
|
|
|
|
|
|
fracsize = scalesize;
|
|
|
|
|
while (fracsize != 0 && frac[fracsize - 1] == 0)
|
|
|
|
|
--fracsize;
|
|
|
|
|
if (fracsize == 0)
|
|
|
|
|
{
|
|
|
|
|
/* We're not prepared for an mpn variable with zero
|
|
|
|
|
limbs. */
|
|
|
|
|
fracsize = 1;
|
|
|
|
|
return L_('0') + hi;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mp_limb_t _cy = mpn_mul_1 (frac, frac, fracsize, 10);
|
|
|
|
|
if (_cy != 0)
|
|
|
|
|
frac[fracsize++] = _cy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return L_('0') + hi;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Figure out the decimal point character. */
|
|
|
|
|
#ifdef USE_NL_LANGINFO
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
decimal = nl_langinfo (DECIMAL_POINT);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
decimal = nl_langinfo (MON_DECIMAL_POINT);
|
|
|
|
|
if (*decimal == '\0')
|
|
|
|
|
decimal = nl_langinfo (DECIMAL_POINT);
|
|
|
|
|
}
|
|
|
|
|
/* The decimal point character must never be zero. */
|
|
|
|
|
assert (*decimal != '\0');
|
|
|
|
|
#elif defined USE_LOCALECONV
|
|
|
|
|
const struct lconv *lc = localeconv ();
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
decimal = lc->decimal_point;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
decimal = lc->mon_decimal_point;
|
|
|
|
|
if (decimal == NULL || *decimal == '\0')
|
|
|
|
|
decimal = lc->decimal_point;
|
|
|
|
|
}
|
|
|
|
|
if (decimal == NULL || *decimal == '\0')
|
|
|
|
|
decimal = ".";
|
|
|
|
|
#else
|
|
|
|
|
decimal = ".";
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef USE_NL_LANGINFO_WC
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
decimalwc = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
decimalwc = nl_langinfo_wc (_NL_MONETARY_DECIMAL_POINT_WC);
|
|
|
|
|
if (decimalwc == L_('\0'))
|
|
|
|
|
decimalwc = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
|
|
|
|
|
}
|
|
|
|
|
/* The decimal point character must never be zero. */
|
|
|
|
|
assert (decimalwc != L_('\0'));
|
|
|
|
|
#else
|
|
|
|
|
decimalwc = L_('.');
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if defined USE_NL_LANGINFO && defined USE_NL_LANGINFO_WC
|
|
|
|
|
if (info->group)
|
|
|
|
|
{
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
grouping = nl_langinfo (GROUPING);
|
|
|
|
|
else
|
|
|
|
|
grouping = nl_langinfo (MON_GROUPING);
|
|
|
|
|
|
|
|
|
|
if (*grouping <= 0 || *grouping == CHAR_MAX)
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Figure out the thousands separator character. */
|
|
|
|
|
if (wide)
|
|
|
|
|
{
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
thousands_sepwc = nl_langinfo_wc (_NL_NUMERIC_THOUSANDS_SEP_WC);
|
|
|
|
|
else
|
|
|
|
|
thousands_sepwc = nl_langinfo_wc (_NL_MONETARY_THOUSANDS_SEP_WC);
|
|
|
|
|
|
|
|
|
|
if (thousands_sepwc == L_('\0'))
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
thousands_sep = nl_langinfo (THOUSANDS_SEP);
|
|
|
|
|
else
|
|
|
|
|
thousands_sep = nl_langinfo (MON_THOUSANDS_SEP);
|
|
|
|
|
if (*thousands_sep == '\0')
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#elif defined USE_NL_LANGINFO
|
|
|
|
|
if (info->group && !wide)
|
|
|
|
|
{
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
grouping = nl_langinfo (GROUPING);
|
|
|
|
|
else
|
|
|
|
|
grouping = nl_langinfo (MON_GROUPING);
|
|
|
|
|
|
|
|
|
|
if (*grouping <= 0 || *grouping == CHAR_MAX)
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Figure out the thousands separator character. */
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
thousands_sep = nl_langinfo (THOUSANDS_SEP);
|
|
|
|
|
else
|
|
|
|
|
thousands_sep = nl_langinfo (MON_THOUSANDS_SEP);
|
|
|
|
|
|
|
|
|
|
if (*thousands_sep == '\0')
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#elif defined USE_LOCALECONV
|
|
|
|
|
if (info->group && !wide)
|
|
|
|
|
{
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
grouping = lc->grouping;
|
|
|
|
|
else
|
|
|
|
|
grouping = lc->mon_grouping;
|
|
|
|
|
|
|
|
|
|
if (grouping == NULL || *grouping <= 0 || *grouping == CHAR_MAX)
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Figure out the thousands separator character. */
|
|
|
|
|
if (info->extra == 0)
|
|
|
|
|
thousands_sep = lc->thousands_sep;
|
|
|
|
|
else
|
|
|
|
|
thousands_sep = lc->mon_thousands_sep;
|
|
|
|
|
|
|
|
|
|
if (thousands_sep == NULL || *thousands_sep == '\0')
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif
|
|
|
|
|
grouping = NULL;
|
|
|
|
|
if (grouping != NULL && !wide)
|
|
|
|
|
/* If we are printing multibyte characters and there is a
|
|
|
|
|
multibyte representation for the thousands separator,
|
|
|
|
|
we must ensure the wide character thousands separator
|
|
|
|
|
is available, even if it is fake. */
|
|
|
|
|
thousands_sepwc = (wchar_t) 0xfffffffe;
|
|
|
|
|
|
|
|
|
|
/* Fetch the argument value. */
|
|
|
|
|
{
|
|
|
|
|
fpnum = **(const __float128 **) args[0];
|
|
|
|
|
|
|
|
|
|
/* Check for special values: not a number or infinity. */
|
|
|
|
|
if (isnanq (fpnum))
|
|
|
|
|
{
|
|
|
|
|
ieee854_float128 u = { .value = fpnum };
|
|
|
|
|
is_neg = u.ieee.negative != 0;
|
|
|
|
|
if (isupper (info->spec))
|
|
|
|
|
{
|
|
|
|
|
special = "NAN";
|
|
|
|
|
wspecial = L_("NAN");
|
|
|
|
|
}
|
2014-09-21 17:33:12 +00:00
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
special = "nan";
|
2012-03-27 23:13:14 +00:00
|
|
|
|
wspecial = L_("nan");
|
2014-09-21 17:33:12 +00:00
|
|
|
|
}
|
2012-03-27 23:13:14 +00:00
|
|
|
|
}
|
|
|
|
|
else if (isinfq (fpnum))
|
|
|
|
|
{
|
|
|
|
|
is_neg = fpnum < 0;
|
|
|
|
|
if (isupper (info->spec))
|
|
|
|
|
{
|
|
|
|
|
special = "INF";
|
|
|
|
|
wspecial = L_("INF");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
special = "inf";
|
|
|
|
|
wspecial = L_("inf");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
fracsize = mpn_extract_flt128 (fp_input,
|
|
|
|
|
(sizeof (fp_input) /
|
|
|
|
|
sizeof (fp_input[0])),
|
|
|
|
|
&exponent, &is_neg, fpnum);
|
|
|
|
|
to_shift = 1 + fracsize * BITS_PER_MP_LIMB - FLT128_MANT_DIG;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (special)
|
|
|
|
|
{
|
|
|
|
|
int width = info->width;
|
|
|
|
|
|
|
|
|
|
if (is_neg || info->showsign || info->space)
|
|
|
|
|
--width;
|
|
|
|
|
width -= 3;
|
|
|
|
|
|
|
|
|
|
if (!info->left && width > 0)
|
|
|
|
|
PADN (' ', width);
|
|
|
|
|
|
|
|
|
|
if (is_neg)
|
|
|
|
|
outchar ('-');
|
|
|
|
|
else if (info->showsign)
|
|
|
|
|
outchar ('+');
|
|
|
|
|
else if (info->space)
|
|
|
|
|
outchar (' ');
|
|
|
|
|
|
|
|
|
|
PRINT (special, wspecial, 3);
|
|
|
|
|
|
|
|
|
|
if (info->left && width > 0)
|
|
|
|
|
PADN (' ', width);
|
|
|
|
|
|
|
|
|
|
return done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* We need three multiprecision variables. Now that we have the exponent
|
|
|
|
|
of the number we can allocate the needed memory. It would be more
|
|
|
|
|
efficient to use variables of the fixed maximum size but because this
|
|
|
|
|
would be really big it could lead to memory problems. */
|
|
|
|
|
{
|
|
|
|
|
mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
|
|
|
|
|
/ BITS_PER_MP_LIMB
|
|
|
|
|
+ (FLT128_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
|
|
|
|
|
* sizeof (mp_limb_t);
|
|
|
|
|
frac = (mp_limb_t *) alloca (bignum_size);
|
|
|
|
|
tmp = (mp_limb_t *) alloca (bignum_size);
|
|
|
|
|
scale = (mp_limb_t *) alloca (bignum_size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We now have to distinguish between numbers with positive and negative
|
|
|
|
|
exponents because the method used for the one is not applicable/efficient
|
|
|
|
|
for the other. */
|
|
|
|
|
scalesize = 0;
|
|
|
|
|
if (exponent > 2)
|
|
|
|
|
{
|
|
|
|
|
/* |FP| >= 8.0. */
|
|
|
|
|
int scaleexpo = 0;
|
|
|
|
|
int explog = FLT128_MAX_10_EXP_LOG;
|
|
|
|
|
int exp10 = 0;
|
|
|
|
|
const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
|
|
|
|
|
int cnt_h, cnt_l, i;
|
|
|
|
|
|
|
|
|
|
if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
|
|
|
|
|
{
|
|
|
|
|
MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
|
|
|
|
|
fp_input, fracsize);
|
|
|
|
|
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
cy = mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
|
|
|
|
|
fp_input, fracsize,
|
|
|
|
|
(exponent + to_shift) % BITS_PER_MP_LIMB);
|
|
|
|
|
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
|
|
|
|
|
if (cy)
|
|
|
|
|
frac[fracsize++] = cy;
|
|
|
|
|
}
|
|
|
|
|
MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
|
|
|
|
|
|
|
|
|
|
assert (powers > &_fpioconst_pow10[0]);
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
--powers;
|
|
|
|
|
|
|
|
|
|
/* The number of the product of two binary numbers with n and m
|
|
|
|
|
bits respectively has m+n or m+n-1 bits. */
|
|
|
|
|
if (exponent >= scaleexpo + powers->p_expo - 1)
|
|
|
|
|
{
|
|
|
|
|
if (scalesize == 0)
|
|
|
|
|
{
|
|
|
|
|
if (FLT128_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB)
|
|
|
|
|
{
|
|
|
|
|
#define _FPIO_CONST_SHIFT \
|
|
|
|
|
(((FLT128_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
|
|
|
|
|
- _FPIO_CONST_OFFSET)
|
|
|
|
|
/* 64bit const offset is not enough for
|
|
|
|
|
IEEE quad long double. */
|
|
|
|
|
tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
|
|
|
|
|
memcpy (tmp + _FPIO_CONST_SHIFT,
|
|
|
|
|
&__tens[powers->arrayoff],
|
|
|
|
|
tmpsize * sizeof (mp_limb_t));
|
|
|
|
|
MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
|
|
|
|
|
/* Adjust exponent, as scaleexpo will be this much
|
|
|
|
|
bigger too. */
|
|
|
|
|
exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
tmpsize = powers->arraysize;
|
|
|
|
|
memcpy (tmp, &__tens[powers->arrayoff],
|
|
|
|
|
tmpsize * sizeof (mp_limb_t));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
cy = mpn_mul (tmp, scale, scalesize,
|
|
|
|
|
&__tens[powers->arrayoff
|
|
|
|
|
+ _FPIO_CONST_OFFSET],
|
|
|
|
|
powers->arraysize - _FPIO_CONST_OFFSET);
|
|
|
|
|
tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
|
|
|
|
|
if (cy == 0)
|
|
|
|
|
--tmpsize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (MPN_GE (frac, tmp))
|
|
|
|
|
{
|
|
|
|
|
int cnt;
|
|
|
|
|
MPN_ASSIGN (scale, tmp);
|
|
|
|
|
count_leading_zeros (cnt, scale[scalesize - 1]);
|
|
|
|
|
scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
|
|
|
|
|
exp10 |= 1 << explog;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
--explog;
|
|
|
|
|
}
|
|
|
|
|
while (powers > &_fpioconst_pow10[0]);
|
|
|
|
|
exponent = exp10;
|
|
|
|
|
|
|
|
|
|
/* Optimize number representations. We want to represent the numbers
|
|
|
|
|
with the lowest number of bytes possible without losing any
|
|
|
|
|
bytes. Also the highest bit in the scaling factor has to be set
|
|
|
|
|
(this is a requirement of the MPN division routines). */
|
|
|
|
|
if (scalesize > 0)
|
|
|
|
|
{
|
|
|
|
|
/* Determine minimum number of zero bits at the end of
|
|
|
|
|
both numbers. */
|
|
|
|
|
for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
/* Determine number of bits the scaling factor is misplaced. */
|
|
|
|
|
count_leading_zeros (cnt_h, scale[scalesize - 1]);
|
|
|
|
|
|
|
|
|
|
if (cnt_h == 0)
|
|
|
|
|
{
|
|
|
|
|
/* The highest bit of the scaling factor is already set. So
|
|
|
|
|
we only have to remove the trailing empty limbs. */
|
|
|
|
|
if (i > 0)
|
|
|
|
|
{
|
|
|
|
|
MPN_COPY_INCR (scale, scale + i, scalesize - i);
|
|
|
|
|
scalesize -= i;
|
|
|
|
|
MPN_COPY_INCR (frac, frac + i, fracsize - i);
|
|
|
|
|
fracsize -= i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (scale[i] != 0)
|
|
|
|
|
{
|
|
|
|
|
count_trailing_zeros (cnt_l, scale[i]);
|
|
|
|
|
if (frac[i] != 0)
|
|
|
|
|
{
|
|
|
|
|
int cnt_l2;
|
|
|
|
|
count_trailing_zeros (cnt_l2, frac[i]);
|
|
|
|
|
if (cnt_l2 < cnt_l)
|
|
|
|
|
cnt_l = cnt_l2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
count_trailing_zeros (cnt_l, frac[i]);
|
|
|
|
|
|
|
|
|
|
/* Now shift the numbers to their optimal position. */
|
|
|
|
|
if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
|
|
|
|
|
{
|
|
|
|
|
/* We cannot save any memory. So just roll both numbers
|
|
|
|
|
so that the scaling factor has its highest bit set. */
|
|
|
|
|
|
|
|
|
|
(void) mpn_lshift (scale, scale, scalesize, cnt_h);
|
|
|
|
|
cy = mpn_lshift (frac, frac, fracsize, cnt_h);
|
|
|
|
|
if (cy != 0)
|
|
|
|
|
frac[fracsize++] = cy;
|
|
|
|
|
}
|
|
|
|
|
else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
|
|
|
|
|
{
|
|
|
|
|
/* We can save memory by removing the trailing zero limbs
|
|
|
|
|
and by packing the non-zero limbs which gain another
|
|
|
|
|
free one. */
|
|
|
|
|
|
|
|
|
|
(void) mpn_rshift (scale, scale + i, scalesize - i,
|
|
|
|
|
BITS_PER_MP_LIMB - cnt_h);
|
|
|
|
|
scalesize -= i + 1;
|
|
|
|
|
(void) mpn_rshift (frac, frac + i, fracsize - i,
|
|
|
|
|
BITS_PER_MP_LIMB - cnt_h);
|
|
|
|
|
fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* We can only save the memory of the limbs which are zero.
|
|
|
|
|
The non-zero parts occupy the same number of limbs. */
|
|
|
|
|
|
|
|
|
|
(void) mpn_rshift (scale, scale + (i - 1),
|
|
|
|
|
scalesize - (i - 1),
|
|
|
|
|
BITS_PER_MP_LIMB - cnt_h);
|
|
|
|
|
scalesize -= i;
|
|
|
|
|
(void) mpn_rshift (frac, frac + (i - 1),
|
|
|
|
|
fracsize - (i - 1),
|
|
|
|
|
BITS_PER_MP_LIMB - cnt_h);
|
|
|
|
|
fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (exponent < 0)
|
|
|
|
|
{
|
|
|
|
|
/* |FP| < 1.0. */
|
|
|
|
|
int exp10 = 0;
|
|
|
|
|
int explog = FLT128_MAX_10_EXP_LOG;
|
|
|
|
|
const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
|
|
|
|
|
|
|
|
|
|
/* Now shift the input value to its right place. */
|
|
|
|
|
cy = mpn_lshift (frac, fp_input, fracsize, to_shift);
|
|
|
|
|
frac[fracsize++] = cy;
|
|
|
|
|
assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
|
|
|
|
|
|
|
|
|
|
expsign = 1;
|
|
|
|
|
exponent = -exponent;
|
|
|
|
|
|
|
|
|
|
assert (powers != &_fpioconst_pow10[0]);
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
--powers;
|
|
|
|
|
|
|
|
|
|
if (exponent >= powers->m_expo)
|
|
|
|
|
{
|
|
|
|
|
int i, incr, cnt_h, cnt_l;
|
|
|
|
|
mp_limb_t topval[2];
|
|
|
|
|
|
|
|
|
|
/* The mpn_mul function expects the first argument to be
|
|
|
|
|
bigger than the second. */
|
|
|
|
|
if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
|
|
|
|
|
cy = mpn_mul (tmp, &__tens[powers->arrayoff
|
|
|
|
|
+ _FPIO_CONST_OFFSET],
|
|
|
|
|
powers->arraysize - _FPIO_CONST_OFFSET,
|
|
|
|
|
frac, fracsize);
|
|
|
|
|
else
|
|
|
|
|
cy = mpn_mul (tmp, frac, fracsize,
|
|
|
|
|
&__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
|
|
|
|
|
powers->arraysize - _FPIO_CONST_OFFSET);
|
|
|
|
|
tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
|
|
|
|
|
if (cy == 0)
|
|
|
|
|
--tmpsize;
|
|
|
|
|
|
|
|
|
|
count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
|
|
|
|
|
incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
|
|
|
|
|
+ BITS_PER_MP_LIMB - 1 - cnt_h;
|
|
|
|
|
|
|
|
|
|
assert (incr <= powers->p_expo);
|
|
|
|
|
|
|
|
|
|
/* If we increased the exponent by exactly 3 we have to test
|
|
|
|
|
for overflow. This is done by comparing with 10 shifted
|
|
|
|
|
to the right position. */
|
|
|
|
|
if (incr == exponent + 3)
|
|
|
|
|
{
|
|
|
|
|
if (cnt_h <= BITS_PER_MP_LIMB - 4)
|
|
|
|
|
{
|
|
|
|
|
topval[0] = 0;
|
|
|
|
|
topval[1]
|
|
|
|
|
= ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
|
|
|
|
|
topval[1] = 0;
|
|
|
|
|
(void) mpn_lshift (topval, topval, 2,
|
|
|
|
|
BITS_PER_MP_LIMB - cnt_h);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We have to be careful when multiplying the last factor.
|
|
|
|
|
If the result is greater than 1.0 be have to test it
|
|
|
|
|
against 10.0. If it is greater or equal to 10.0 the
|
|
|
|
|
multiplication was not valid. This is because we cannot
|
|
|
|
|
determine the number of bits in the result in advance. */
|
|
|
|
|
if (incr < exponent + 3
|
|
|
|
|
|| (incr == exponent + 3 &&
|
|
|
|
|
(tmp[tmpsize - 1] < topval[1]
|
|
|
|
|
|| (tmp[tmpsize - 1] == topval[1]
|
|
|
|
|
&& tmp[tmpsize - 2] < topval[0]))))
|
|
|
|
|
{
|
|
|
|
|
/* The factor is right. Adapt binary and decimal
|
|
|
|
|
exponents. */
|
|
|
|
|
exponent -= incr;
|
|
|
|
|
exp10 |= 1 << explog;
|
|
|
|
|
|
|
|
|
|
/* If this factor yields a number greater or equal to
|
|
|
|
|
1.0, we must not shift the non-fractional digits down. */
|
|
|
|
|
if (exponent < 0)
|
|
|
|
|
cnt_h += -exponent;
|
|
|
|
|
|
|
|
|
|
/* Now we optimize the number representation. */
|
|
|
|
|
for (i = 0; tmp[i] == 0; ++i);
|
|
|
|
|
if (cnt_h == BITS_PER_MP_LIMB - 1)
|
|
|
|
|
{
|
|
|
|
|
MPN_COPY (frac, tmp + i, tmpsize - i);
|
|
|
|
|
fracsize = tmpsize - i;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
count_trailing_zeros (cnt_l, tmp[i]);
|
|
|
|
|
|
|
|
|
|
/* Now shift the numbers to their optimal position. */
|
|
|
|
|
if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
|
|
|
|
|
{
|
|
|
|
|
/* We cannot save any memory. Just roll the
|
|
|
|
|
number so that the leading digit is in a
|
|
|
|
|
separate limb. */
|
|
|
|
|
|
|
|
|
|
cy = mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
|
|
|
|
|
fracsize = tmpsize + 1;
|
|
|
|
|
frac[fracsize - 1] = cy;
|
|
|
|
|
}
|
|
|
|
|
else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
|
|
|
|
|
{
|
|
|
|
|
(void) mpn_rshift (frac, tmp + i, tmpsize - i,
|
|
|
|
|
BITS_PER_MP_LIMB - 1 - cnt_h);
|
|
|
|
|
fracsize = tmpsize - i;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* We can only save the memory of the limbs which
|
|
|
|
|
are zero. The non-zero parts occupy the same
|
|
|
|
|
number of limbs. */
|
|
|
|
|
|
|
|
|
|
(void) mpn_rshift (frac, tmp + (i - 1),
|
|
|
|
|
tmpsize - (i - 1),
|
|
|
|
|
BITS_PER_MP_LIMB - 1 - cnt_h);
|
|
|
|
|
fracsize = tmpsize - (i - 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
--explog;
|
|
|
|
|
}
|
|
|
|
|
while (powers != &_fpioconst_pow10[1] && exponent > 0);
|
|
|
|
|
/* All factors but 10^-1 are tested now. */
|
|
|
|
|
if (exponent > 0)
|
|
|
|
|
{
|
|
|
|
|
int cnt_l;
|
|
|
|
|
|
|
|
|
|
cy = mpn_mul_1 (tmp, frac, fracsize, 10);
|
|
|
|
|
tmpsize = fracsize;
|
|
|
|
|
assert (cy == 0 || tmp[tmpsize - 1] < 20);
|
|
|
|
|
|
|
|
|
|
count_trailing_zeros (cnt_l, tmp[0]);
|
|
|
|
|
if (cnt_l < MIN (4, exponent))
|
|
|
|
|
{
|
|
|
|
|
cy = mpn_lshift (frac, tmp, tmpsize,
|
|
|
|
|
BITS_PER_MP_LIMB - MIN (4, exponent));
|
|
|
|
|
if (cy != 0)
|
|
|
|
|
frac[tmpsize++] = cy;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
(void) mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
|
|
|
|
|
fracsize = tmpsize;
|
|
|
|
|
exp10 |= 1;
|
|
|
|
|
assert (frac[fracsize - 1] < 10);
|
|
|
|
|
}
|
|
|
|
|
exponent = exp10;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* This is a special case. We don't need a factor because the
|
|
|
|
|
numbers are in the range of 1.0 <= |fp| < 8.0. We simply
|
|
|
|
|
shift it to the right place and divide it by 1.0 to get the
|
|
|
|
|
leading digit. (Of course this division is not really made.) */
|
|
|
|
|
assert (0 <= exponent && exponent < 3 &&
|
|
|
|
|
exponent + to_shift < BITS_PER_MP_LIMB);
|
|
|
|
|
|
|
|
|
|
/* Now shift the input value to its right place. */
|
|
|
|
|
cy = mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
|
|
|
|
|
frac[fracsize++] = cy;
|
|
|
|
|
exponent = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
int width = info->width;
|
|
|
|
|
wchar_t *wstartp, *wcp;
|
|
|
|
|
size_t chars_needed;
|
|
|
|
|
int expscale;
|
|
|
|
|
int intdig_max, intdig_no = 0;
|
|
|
|
|
int fracdig_min;
|
|
|
|
|
int fracdig_max;
|
|
|
|
|
int dig_max;
|
|
|
|
|
int significant;
|
|
|
|
|
int ngroups = 0;
|
|
|
|
|
char spec = tolower (info->spec);
|
|
|
|
|
|
|
|
|
|
if (spec == 'e')
|
|
|
|
|
{
|
|
|
|
|
type = info->spec;
|
|
|
|
|
intdig_max = 1;
|
|
|
|
|
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
|
|
|
|
|
chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
|
|
|
|
|
/* d . ddd e +- ddd */
|
|
|
|
|
dig_max = __INT_MAX__; /* Unlimited. */
|
|
|
|
|
significant = 1; /* Does not matter here. */
|
|
|
|
|
}
|
|
|
|
|
else if (spec == 'f')
|
|
|
|
|
{
|
|
|
|
|
type = 'f';
|
|
|
|
|
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
|
|
|
|
|
dig_max = __INT_MAX__; /* Unlimited. */
|
|
|
|
|
significant = 1; /* Does not matter here. */
|
|
|
|
|
if (expsign == 0)
|
|
|
|
|
{
|
|
|
|
|
intdig_max = exponent + 1;
|
|
|
|
|
/* This can be really big! */ /* XXX Maybe malloc if too big? */
|
|
|
|
|
chars_needed = (size_t) exponent + 1 + 1 + (size_t) fracdig_max;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
intdig_max = 1;
|
|
|
|
|
chars_needed = 1 + 1 + (size_t) fracdig_max;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
|
|
|
|
|
if ((expsign == 0 && exponent >= dig_max)
|
|
|
|
|
|| (expsign != 0 && exponent > 4))
|
|
|
|
|
{
|
|
|
|
|
if ('g' - 'G' == 'e' - 'E')
|
|
|
|
|
type = 'E' + (info->spec - 'G');
|
|
|
|
|
else
|
|
|
|
|
type = isupper (info->spec) ? 'E' : 'e';
|
|
|
|
|
fracdig_max = dig_max - 1;
|
|
|
|
|
intdig_max = 1;
|
|
|
|
|
chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
type = 'f';
|
|
|
|
|
intdig_max = expsign == 0 ? exponent + 1 : 0;
|
|
|
|
|
fracdig_max = dig_max - intdig_max;
|
|
|
|
|
/* We need space for the significant digits and perhaps
|
|
|
|
|
for leading zeros when < 1.0. The number of leading
|
|
|
|
|
zeros can be as many as would be required for
|
|
|
|
|
exponential notation with a negative two-digit
|
|
|
|
|
exponent, which is 4. */
|
|
|
|
|
chars_needed = (size_t) dig_max + 1 + 4;
|
|
|
|
|
}
|
|
|
|
|
fracdig_min = info->alt ? fracdig_max : 0;
|
|
|
|
|
significant = 0; /* We count significant digits. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (grouping)
|
|
|
|
|
{
|
|
|
|
|
/* Guess the number of groups we will make, and thus how
|
|
|
|
|
many spaces we need for separator characters. */
|
|
|
|
|
ngroups = guess_grouping (intdig_max, grouping);
|
|
|
|
|
/* Allocate one more character in case rounding increases the
|
|
|
|
|
number of groups. */
|
|
|
|
|
chars_needed += ngroups + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Allocate buffer for output. We need two more because while rounding
|
|
|
|
|
it is possible that we need two more characters in front of all the
|
|
|
|
|
other output. If the amount of memory we have to allocate is too
|
|
|
|
|
large use `malloc' instead of `alloca'. */
|
|
|
|
|
if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2
|
|
|
|
|
|| chars_needed < fracdig_max, 0))
|
|
|
|
|
{
|
|
|
|
|
/* Some overflow occurred. */
|
|
|
|
|
#if defined HAVE_ERRNO_H && defined ERANGE
|
|
|
|
|
errno = ERANGE;
|
|
|
|
|
#endif
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t);
|
|
|
|
|
buffer_malloced = wbuffer_to_alloc >= 4096;
|
|
|
|
|
if (__builtin_expect (buffer_malloced, 0))
|
|
|
|
|
{
|
|
|
|
|
wbuffer = (wchar_t *) malloc (wbuffer_to_alloc);
|
|
|
|
|
if (wbuffer == NULL)
|
|
|
|
|
/* Signal an error to the caller. */
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
wbuffer = (wchar_t *) alloca (wbuffer_to_alloc);
|
|
|
|
|
wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
|
|
|
|
|
|
|
|
|
|
/* Do the real work: put digits in allocated buffer. */
|
|
|
|
|
if (expsign == 0 || type != 'f')
|
|
|
|
|
{
|
|
|
|
|
assert (expsign == 0 || intdig_max == 1);
|
|
|
|
|
while (intdig_no < intdig_max)
|
|
|
|
|
{
|
|
|
|
|
++intdig_no;
|
|
|
|
|
*wcp++ = hack_digit ();
|
|
|
|
|
}
|
|
|
|
|
significant = 1;
|
|
|
|
|
if (info->alt
|
|
|
|
|
|| fracdig_min > 0
|
|
|
|
|
|| (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
|
|
|
|
|
*wcp++ = decimalwc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* |fp| < 1.0 and the selected type is 'f', so put "0."
|
|
|
|
|
in the buffer. */
|
|
|
|
|
*wcp++ = L_('0');
|
|
|
|
|
--exponent;
|
|
|
|
|
*wcp++ = decimalwc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate the needed number of fractional digits. */
|
|
|
|
|
int fracdig_no = 0;
|
|
|
|
|
int added_zeros = 0;
|
|
|
|
|
while (fracdig_no < fracdig_min + added_zeros
|
|
|
|
|
|| (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
|
|
|
|
|
{
|
|
|
|
|
++fracdig_no;
|
|
|
|
|
*wcp = hack_digit ();
|
|
|
|
|
if (*wcp++ != L_('0'))
|
|
|
|
|
significant = 1;
|
|
|
|
|
else if (significant == 0)
|
|
|
|
|
{
|
|
|
|
|
++fracdig_max;
|
|
|
|
|
if (fracdig_min > 0)
|
|
|
|
|
++added_zeros;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Do rounding. */
|
2014-09-21 17:33:12 +00:00
|
|
|
|
last_digit = wcp[-1] != decimalwc ? wcp[-1] : wcp[-2];
|
|
|
|
|
next_digit =hack_digit ();
|
|
|
|
|
|
|
|
|
|
if (next_digit != L_('0') && next_digit != L_('5'))
|
|
|
|
|
more_bits = true;
|
|
|
|
|
else if (fracsize == 1 && frac[0] == 0)
|
|
|
|
|
/* Rest of the number is zero. */
|
|
|
|
|
more_bits = false;
|
|
|
|
|
else if (scalesize == 0)
|
2012-03-27 23:13:14 +00:00
|
|
|
|
{
|
2014-09-21 17:33:12 +00:00
|
|
|
|
/* Here we have to see whether all limbs are zero since no
|
|
|
|
|
normalization happened. */
|
|
|
|
|
size_t lcnt = fracsize;
|
|
|
|
|
while (lcnt >= 1 && frac[lcnt - 1] == 0)
|
|
|
|
|
--lcnt;
|
|
|
|
|
more_bits = lcnt > 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
more_bits = true;
|
2012-03-27 23:13:14 +00:00
|
|
|
|
|
2014-09-21 17:33:12 +00:00
|
|
|
|
#ifdef HAVE_FENV_H
|
|
|
|
|
int rounding_mode = get_rounding_mode ();
|
|
|
|
|
if (round_away (is_neg, (last_digit - L_('0')) & 1, next_digit >= L_('5'),
|
|
|
|
|
more_bits, rounding_mode))
|
|
|
|
|
{
|
|
|
|
|
wchar_t *wtp = wcp;
|
2012-03-27 23:13:14 +00:00
|
|
|
|
|
|
|
|
|
if (fracdig_no > 0)
|
|
|
|
|
{
|
|
|
|
|
/* Process fractional digits. Terminate if not rounded or
|
|
|
|
|
radix character is reached. */
|
|
|
|
|
int removed = 0;
|
|
|
|
|
while (*--wtp != decimalwc && *wtp == L_('9'))
|
|
|
|
|
{
|
|
|
|
|
*wtp = L_('0');
|
|
|
|
|
++removed;
|
|
|
|
|
}
|
|
|
|
|
if (removed == fracdig_min && added_zeros > 0)
|
|
|
|
|
--added_zeros;
|
|
|
|
|
if (*wtp != decimalwc)
|
|
|
|
|
/* Round up. */
|
|
|
|
|
(*wtp)++;
|
|
|
|
|
else if (__builtin_expect (spec == 'g' && type == 'f' && info->alt
|
|
|
|
|
&& wtp == wstartp + 1
|
|
|
|
|
&& wstartp[0] == L_('0'),
|
|
|
|
|
0))
|
|
|
|
|
/* This is a special case: the rounded number is 1.0,
|
|
|
|
|
the format is 'g' or 'G', and the alternative format
|
|
|
|
|
is selected. This means the result must be "1.". */
|
|
|
|
|
--added_zeros;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (fracdig_no == 0 || *wtp == decimalwc)
|
|
|
|
|
{
|
|
|
|
|
/* Round the integer digits. */
|
|
|
|
|
if (*(wtp - 1) == decimalwc)
|
|
|
|
|
--wtp;
|
|
|
|
|
|
|
|
|
|
while (--wtp >= wstartp && *wtp == L_('9'))
|
|
|
|
|
*wtp = L_('0');
|
|
|
|
|
|
|
|
|
|
if (wtp >= wstartp)
|
|
|
|
|
/* Round up. */
|
|
|
|
|
(*wtp)++;
|
|
|
|
|
else
|
|
|
|
|
/* It is more critical. All digits were 9's. */
|
|
|
|
|
{
|
|
|
|
|
if (type != 'f')
|
|
|
|
|
{
|
|
|
|
|
*wstartp = '1';
|
|
|
|
|
exponent += expsign == 0 ? 1 : -1;
|
|
|
|
|
|
|
|
|
|
/* The above exponent adjustment could lead to 1.0e-00,
|
|
|
|
|
e.g. for 0.999999999. Make sure exponent 0 always
|
|
|
|
|
uses + sign. */
|
|
|
|
|
if (exponent == 0)
|
|
|
|
|
expsign = 0;
|
|
|
|
|
}
|
|
|
|
|
else if (intdig_no == dig_max)
|
|
|
|
|
{
|
|
|
|
|
/* This is the case where for type %g the number fits
|
|
|
|
|
really in the range for %f output but after rounding
|
|
|
|
|
the number of digits is too big. */
|
|
|
|
|
*--wstartp = decimalwc;
|
|
|
|
|
*--wstartp = L_('1');
|
|
|
|
|
|
|
|
|
|
if (info->alt || fracdig_no > 0)
|
|
|
|
|
{
|
|
|
|
|
/* Overwrite the old radix character. */
|
|
|
|
|
wstartp[intdig_no + 2] = L_('0');
|
|
|
|
|
++fracdig_no;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fracdig_no += intdig_no;
|
|
|
|
|
intdig_no = 1;
|
|
|
|
|
fracdig_max = intdig_max - intdig_no;
|
|
|
|
|
++exponent;
|
|
|
|
|
/* Now we must print the exponent. */
|
|
|
|
|
type = isupper (info->spec) ? 'E' : 'e';
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* We can simply add another another digit before the
|
|
|
|
|
radix. */
|
|
|
|
|
*--wstartp = L_('1');
|
|
|
|
|
++intdig_no;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* While rounding the number of digits can change.
|
|
|
|
|
If the number now exceeds the limits remove some
|
|
|
|
|
fractional digits. */
|
|
|
|
|
if (intdig_no + fracdig_no > dig_max)
|
|
|
|
|
{
|
|
|
|
|
wcp -= intdig_no + fracdig_no - dig_max;
|
|
|
|
|
fracdig_no -= intdig_no + fracdig_no - dig_max;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2014-09-21 17:33:12 +00:00
|
|
|
|
#endif
|
2012-03-27 23:13:14 +00:00
|
|
|
|
|
|
|
|
|
/* Now remove unnecessary '0' at the end of the string. */
|
|
|
|
|
while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L_('0'))
|
|
|
|
|
{
|
|
|
|
|
--wcp;
|
|
|
|
|
--fracdig_no;
|
|
|
|
|
}
|
|
|
|
|
/* If we eliminate all fractional digits we perhaps also can remove
|
|
|
|
|
the radix character. */
|
|
|
|
|
if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
|
|
|
|
|
--wcp;
|
|
|
|
|
|
|
|
|
|
if (grouping)
|
|
|
|
|
{
|
|
|
|
|
/* Rounding might have changed the number of groups. We allocated
|
|
|
|
|
enough memory but we need here the correct number of groups. */
|
|
|
|
|
if (intdig_no != intdig_max)
|
|
|
|
|
ngroups = guess_grouping (intdig_no, grouping);
|
|
|
|
|
|
|
|
|
|
/* Add in separator characters, overwriting the same buffer. */
|
|
|
|
|
wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
|
|
|
|
|
ngroups);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write the exponent if it is needed. */
|
|
|
|
|
if (type != 'f')
|
|
|
|
|
{
|
|
|
|
|
if (__builtin_expect (expsign != 0 && exponent == 4 && spec == 'g', 0))
|
|
|
|
|
{
|
|
|
|
|
/* This is another special case. The exponent of the number is
|
|
|
|
|
really smaller than -4, which requires the 'e'/'E' format.
|
|
|
|
|
But after rounding the number has an exponent of -4. */
|
|
|
|
|
assert (wcp >= wstartp + 1);
|
|
|
|
|
assert (wstartp[0] == L_('1'));
|
|
|
|
|
memcpy (wstartp, L_("0.0001"), 6 * sizeof (wchar_t));
|
|
|
|
|
wstartp[1] = decimalwc;
|
|
|
|
|
if (wcp >= wstartp + 2)
|
|
|
|
|
{
|
|
|
|
|
size_t cnt;
|
|
|
|
|
for (cnt = 0; cnt < wcp - (wstartp + 2); cnt++)
|
|
|
|
|
wstartp[6 + cnt] = L_('0');
|
|
|
|
|
wcp += 4;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
wcp += 5;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
*wcp++ = (wchar_t) type;
|
|
|
|
|
*wcp++ = expsign ? L_('-') : L_('+');
|
|
|
|
|
|
|
|
|
|
/* Find the magnitude of the exponent. */
|
|
|
|
|
expscale = 10;
|
|
|
|
|
while (expscale <= exponent)
|
|
|
|
|
expscale *= 10;
|
|
|
|
|
|
|
|
|
|
if (exponent < 10)
|
|
|
|
|
/* Exponent always has at least two digits. */
|
|
|
|
|
*wcp++ = L_('0');
|
|
|
|
|
else
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
expscale /= 10;
|
|
|
|
|
*wcp++ = L_('0') + (exponent / expscale);
|
|
|
|
|
exponent %= expscale;
|
|
|
|
|
}
|
|
|
|
|
while (expscale > 10);
|
|
|
|
|
*wcp++ = L_('0') + exponent;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Compute number of characters which must be filled with the padding
|
|
|
|
|
character. */
|
|
|
|
|
if (is_neg || info->showsign || info->space)
|
|
|
|
|
--width;
|
|
|
|
|
width -= wcp - wstartp;
|
|
|
|
|
|
|
|
|
|
if (!info->left && info->pad != '0' && width > 0)
|
|
|
|
|
PADN (info->pad, width);
|
|
|
|
|
|
|
|
|
|
if (is_neg)
|
|
|
|
|
outchar ('-');
|
|
|
|
|
else if (info->showsign)
|
|
|
|
|
outchar ('+');
|
|
|
|
|
else if (info->space)
|
|
|
|
|
outchar (' ');
|
|
|
|
|
|
|
|
|
|
if (!info->left && info->pad == '0' && width > 0)
|
|
|
|
|
PADN ('0', width);
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
char *buffer = NULL;
|
|
|
|
|
char *buffer_end __attribute__((__unused__)) = NULL;
|
|
|
|
|
char *cp = NULL;
|
|
|
|
|
char *tmpptr;
|
|
|
|
|
|
|
|
|
|
if (! wide)
|
|
|
|
|
{
|
|
|
|
|
/* Create the single byte string. */
|
|
|
|
|
size_t decimal_len;
|
|
|
|
|
size_t thousands_sep_len;
|
|
|
|
|
wchar_t *copywc;
|
|
|
|
|
#ifdef USE_I18N_NUMBER_H
|
|
|
|
|
size_t factor = (info->i18n
|
|
|
|
|
? nl_langinfo_wc (_NL_CTYPE_MB_CUR_MAX)
|
|
|
|
|
: 1);
|
|
|
|
|
#else
|
|
|
|
|
size_t factor = 1;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
decimal_len = strlen (decimal);
|
|
|
|
|
|
|
|
|
|
if (thousands_sep == NULL)
|
|
|
|
|
thousands_sep_len = 0;
|
|
|
|
|
else
|
|
|
|
|
thousands_sep_len = strlen (thousands_sep);
|
|
|
|
|
|
|
|
|
|
size_t nbuffer = (2 + chars_needed * factor + decimal_len
|
|
|
|
|
+ ngroups * thousands_sep_len);
|
|
|
|
|
if (__builtin_expect (buffer_malloced, 0))
|
|
|
|
|
{
|
|
|
|
|
buffer = (char *) malloc (nbuffer);
|
|
|
|
|
if (buffer == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Signal an error to the caller. */
|
|
|
|
|
free (wbuffer);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
buffer = (char *) alloca (nbuffer);
|
|
|
|
|
buffer_end = buffer + nbuffer;
|
|
|
|
|
|
|
|
|
|
/* Now copy the wide character string. Since the character
|
|
|
|
|
(except for the decimal point and thousands separator) must
|
|
|
|
|
be coming from the ASCII range we can esily convert the
|
|
|
|
|
string without mapping tables. */
|
|
|
|
|
for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
|
|
|
|
|
if (*copywc == decimalwc)
|
|
|
|
|
memcpy (cp, decimal, decimal_len), cp += decimal_len;
|
|
|
|
|
else if (*copywc == thousands_sepwc)
|
|
|
|
|
memcpy (cp, thousands_sep, thousands_sep_len), cp += thousands_sep_len;
|
|
|
|
|
else
|
|
|
|
|
*cp++ = (char) *copywc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
tmpptr = buffer;
|
|
|
|
|
#if USE_I18N_NUMBER_H
|
|
|
|
|
if (__builtin_expect (info->i18n, 0))
|
|
|
|
|
{
|
|
|
|
|
tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end);
|
|
|
|
|
cp = buffer_end;
|
|
|
|
|
assert ((uintptr_t) buffer <= (uintptr_t) tmpptr);
|
|
|
|
|
assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
|
|
|
|
|
|
|
|
|
|
/* Free the memory if necessary. */
|
|
|
|
|
if (__builtin_expect (buffer_malloced, 0))
|
|
|
|
|
{
|
|
|
|
|
free (buffer);
|
|
|
|
|
free (wbuffer);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (info->left && width > 0)
|
|
|
|
|
PADN (info->pad, width);
|
|
|
|
|
}
|
|
|
|
|
return done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the number of extra grouping characters that will be inserted
|
|
|
|
|
into a number with INTDIG_MAX integer digits. */
|
|
|
|
|
|
|
|
|
|
static unsigned int
|
|
|
|
|
guess_grouping (unsigned int intdig_max, const char *grouping)
|
|
|
|
|
{
|
|
|
|
|
unsigned int groups;
|
|
|
|
|
|
|
|
|
|
/* We treat all negative values like CHAR_MAX. */
|
|
|
|
|
|
|
|
|
|
if (*grouping == CHAR_MAX || *grouping <= 0)
|
|
|
|
|
/* No grouping should be done. */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
groups = 0;
|
|
|
|
|
while (intdig_max > (unsigned int) *grouping)
|
|
|
|
|
{
|
|
|
|
|
++groups;
|
|
|
|
|
intdig_max -= *grouping++;
|
|
|
|
|
|
2014-09-21 17:33:12 +00:00
|
|
|
|
if (*grouping == CHAR_MAX
|
|
|
|
|
#if CHAR_MIN < 0
|
|
|
|
|
|| *grouping < 0
|
|
|
|
|
#endif
|
|
|
|
|
)
|
|
|
|
|
/* No more grouping should be done. */
|
|
|
|
|
break;
|
|
|
|
|
else if (*grouping == 0)
|
2012-03-27 23:13:14 +00:00
|
|
|
|
{
|
|
|
|
|
/* Same grouping repeats. */
|
|
|
|
|
groups += (intdig_max - 1) / grouping[-1];
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return groups;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
|
|
|
|
|
There is guaranteed enough space past BUFEND to extend it.
|
|
|
|
|
Return the new end of buffer. */
|
|
|
|
|
|
|
|
|
|
static wchar_t *
|
|
|
|
|
group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
|
|
|
|
|
const char *grouping, wchar_t thousands_sep, int ngroups)
|
|
|
|
|
{
|
|
|
|
|
wchar_t *p;
|
|
|
|
|
|
|
|
|
|
if (ngroups == 0)
|
|
|
|
|
return bufend;
|
|
|
|
|
|
|
|
|
|
/* Move the fractional part down. */
|
|
|
|
|
memmove (buf + intdig_no + ngroups, buf + intdig_no,
|
|
|
|
|
(bufend - (buf + intdig_no)) * sizeof (wchar_t));
|
|
|
|
|
|
|
|
|
|
p = buf + intdig_no + ngroups - 1;
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
unsigned int len = *grouping++;
|
|
|
|
|
do
|
|
|
|
|
*p-- = buf[--intdig_no];
|
|
|
|
|
while (--len > 0);
|
|
|
|
|
*p-- = thousands_sep;
|
|
|
|
|
|
2014-09-21 17:33:12 +00:00
|
|
|
|
if (*grouping == CHAR_MAX
|
|
|
|
|
#if CHAR_MIN < 0
|
|
|
|
|
|| *grouping < 0
|
|
|
|
|
#endif
|
|
|
|
|
)
|
2012-03-27 23:13:14 +00:00
|
|
|
|
/* No more grouping should be done. */
|
|
|
|
|
break;
|
2014-09-21 17:33:12 +00:00
|
|
|
|
else if (*grouping == 0)
|
|
|
|
|
/* Same grouping repeats. */
|
|
|
|
|
--grouping;
|
2012-03-27 23:13:14 +00:00
|
|
|
|
} while (intdig_no > (unsigned int) *grouping);
|
|
|
|
|
|
|
|
|
|
/* Copy the remaining ungrouped digits. */
|
|
|
|
|
do
|
|
|
|
|
*p-- = buf[--intdig_no];
|
|
|
|
|
while (p > buf);
|
|
|
|
|
|
|
|
|
|
return bufend + ngroups;
|
|
|
|
|
}
|