Retro68/binutils/sim/frv/traps.c

985 lines
25 KiB
C
Raw Normal View History

/* frv trap support
Copyright (C) 1999-2020 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define WANT_CPU frvbf
#define WANT_CPU_FRVBF
#include "sim-main.h"
#include "targ-vals.h"
#include "cgen-engine.h"
#include "cgen-par.h"
#include "sim-fpu.h"
#include "bfd.h"
#include "libiberty.h"
CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
{
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
return vpc;
}
/* Process an address exception. */
void
frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
if (sig == sim_core_unaligned_signal)
{
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
|| STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
frv_queue_data_access_error_interrupt (current_cpu, addr);
else
frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
}
frv_term (sd);
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
}
void
frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
{
int i;
if (current_cpu != NULL)
CPU_PC_SET (current_cpu, cia);
/* Invalidate the insn and data caches of all cpus. */
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
current_cpu = STATE_CPU (sd, i);
frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
}
frv_term (sd);
}
/* Read/write functions for system call interface. */
static int
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr, char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
}
static int
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr, const char *buf, int bytes)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
}
/* Handle TRA and TIRA insns. */
void
frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
USI num = ((base + offset) & 0x7f) + 0x80;
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
frv_queue_software_interrupt (current_cpu, num);
return;
}
switch (num)
{
case TRAP_SYSCALL :
{
CB_SYSCALL s;
CB_SYSCALL_INIT (&s);
s.func = GET_H_GR (7);
s.arg1 = GET_H_GR (8);
s.arg2 = GET_H_GR (9);
s.arg3 = GET_H_GR (10);
if (s.func == TARGET_SYS_exit)
{
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
}
s.p1 = (PTR) sd;
s.p2 = (PTR) current_cpu;
s.read_mem = syscall_read_mem;
s.write_mem = syscall_write_mem;
cb_syscall (cb, &s);
SET_H_GR (8, s.result);
SET_H_GR (9, s.result2);
SET_H_GR (10, s.errcode);
break;
}
case TRAP_BREAKPOINT:
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
break;
/* Add support for dumping registers, either at fixed traps, or all
unknown traps if configured with --enable-sim-trapdump. */
default:
#if !TRAPDUMP
frv_queue_software_interrupt (current_cpu, num);
return;
#endif
#ifdef TRAP_REGDUMP1
case TRAP_REGDUMP1:
#endif
#ifdef TRAP_REGDUMP2
case TRAP_REGDUMP2:
#endif
#if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
{
char buf[256];
int i, j;
buf[0] = 0;
if (STATE_TEXT_SECTION (sd)
&& pc >= STATE_TEXT_START (sd)
&& pc < STATE_TEXT_END (sd))
{
const char *pc_filename = (const char *)0;
const char *pc_function = (const char *)0;
unsigned int pc_linenum = 0;
if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
STATE_TEXT_SECTION (sd),
(struct bfd_symbol **) 0,
pc - STATE_TEXT_START (sd),
&pc_filename, &pc_function, &pc_linenum)
&& (pc_function || pc_filename))
{
char *p = buf+2;
buf[0] = ' ';
buf[1] = '(';
if (pc_function)
{
strcpy (p, pc_function);
p += strlen (p);
}
else
{
char *q = (char *) strrchr (pc_filename, '/');
strcpy (p, (q) ? q+1 : pc_filename);
p += strlen (p);
}
if (pc_linenum)
{
sprintf (p, " line %d", pc_linenum);
p += strlen (p);
}
p[0] = ')';
p[1] = '\0';
if ((p+1) - buf > sizeof (buf))
abort ();
}
}
sim_io_printf (sd,
"\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
(unsigned)pc, buf, (unsigned)base, (int)offset);
for (i = 0; i < 64; i += 8)
{
long g0 = (long)GET_H_GR (i);
long g1 = (long)GET_H_GR (i+1);
long g2 = (long)GET_H_GR (i+2);
long g3 = (long)GET_H_GR (i+3);
long g4 = (long)GET_H_GR (i+4);
long g5 = (long)GET_H_GR (i+5);
long g6 = (long)GET_H_GR (i+6);
long g7 = (long)GET_H_GR (i+7);
if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
sim_io_printf (sd,
"\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
}
for (i = 0; i < 64; i += 8)
{
long f0 = (long)GET_H_FR (i);
long f1 = (long)GET_H_FR (i+1);
long f2 = (long)GET_H_FR (i+2);
long f3 = (long)GET_H_FR (i+3);
long f4 = (long)GET_H_FR (i+4);
long f5 = (long)GET_H_FR (i+5);
long f6 = (long)GET_H_FR (i+6);
long f7 = (long)GET_H_FR (i+7);
if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
sim_io_printf (sd,
"\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
}
sim_io_printf (sd,
"\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
(long)GET_H_SPR (272),
(long)GET_H_SPR (273),
(long)GET_H_SPR (256),
(long)GET_H_SPR (263));
}
break;
#endif
}
}
/* Handle the MTRAP insn. */
void
frv_mtrap (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* Check the status of media exceptions in MSR0. */
SI msr = GET_MSR (0);
if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
}
/* Handle the BREAK insn. */
void
frv_break (SIM_CPU *current_cpu)
{
IADDR pc;
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
{
/* Invalidate the insn cache because the debugger will presumably
replace the breakpoint insn with the real one. */
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
frv_queue_break_interrupt (current_cpu);
}
/* Return from trap. */
USI
frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
{
USI new_pc;
/* if (normal running mode and debug_field==0
PC=PCSR
PSR.ET=1
PSR.S=PSR.PS
else if (debug running mode and debug_field==1)
PC=(BPCSR)
PSR.ET=BPSR.BET
PSR.S=BPSR.BS
change to normal running mode
*/
int psr_s = GET_H_PSR_S ();
int psr_et = GET_H_PSR_ET ();
/* Check for exceptions in the priority order listed in the FRV Architecture
Volume 2. */
if (! psr_s)
{
/* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
if (! psr_et)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
/* privileged_instruction interrupt will have already been queued by
frv_detect_insn_access_interrupts. */
new_pc = pc + 4;
}
else if (psr_et)
{
/* Halt if PSR.S is set. See chapter 6 of the LSI. */
if (psr_s)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
new_pc = pc + 4;
}
else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
{
USI psr = GET_PSR ();
/* Return from normal running state. */
new_pc = GET_H_SPR (H_SPR_PCSR);
SET_PSR_ET (psr, 1);
SET_PSR_S (psr, GET_PSR_PS (psr));
sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
}
else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
{
USI psr = GET_PSR ();
/* Return from debug state. */
new_pc = GET_H_SPR (H_SPR_BPCSR);
SET_PSR_ET (psr, GET_H_BPSR_BET ());
SET_PSR_S (psr, GET_H_BPSR_BS ());
sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
CPU_DEBUG_STATE (current_cpu) = 0;
}
else
new_pc = pc + 4;
return new_pc;
}
/* Functions for handling non-excepting instruction side effects. */
static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
{
FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
int limit;
USI necr = GET_NECR ();
/* See if any NESRs are implemented. First need to check the validity of
the NECR. */
if (! GET_NECR_VALID (necr))
return NO_NESR;
limit = GET_NECR_NEN (necr);
for (++current_index; current_index < limit; ++current_index)
{
SI nesr = GET_NESR (current_index);
if (! GET_NESR_VALID (nesr))
return current_index;
}
}
return NO_NESR;
}
static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
{
FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
int limit;
USI necr = GET_NECR ();
/* See if any NESRs are implemented. First need to check the validity of
the NECR. */
if (! GET_NECR_VALID (necr))
return NO_NESR;
limit = GET_NECR_NEN (necr);
for (++current_index; current_index < limit; ++current_index)
{
SI nesr = GET_NESR (current_index);
if (GET_NESR_VALID (nesr))
return current_index;
}
}
return NO_NESR;
}
BI
frvbf_check_non_excepting_load (
SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
SI immediate_disp, QI data_size, BI is_float
)
{
BI rc = 1; /* perform the load. */
SIM_DESC sd = CPU_STATE (current_cpu);
int daec = 0;
int rec = 0;
int ec = 0;
USI necr;
int do_elos;
SI NE_flags[2];
SI NE_base;
SI nesr;
SI ne_index;
FRV_REGISTER_CONTROL *control;
SI address = GET_H_GR (base_index);
if (disp_index >= 0)
address += GET_H_GR (disp_index);
else
address += immediate_disp;
/* Check for interrupt factors. */
switch (data_size)
{
case NESR_UQI_SIZE:
case NESR_QI_SIZE:
break;
case NESR_UHI_SIZE:
case NESR_HI_SIZE:
if (address & 1)
ec = 1;
break;
case NESR_SI_SIZE:
if (address & 3)
ec = 1;
break;
case NESR_DI_SIZE:
if (address & 7)
ec = 1;
if (target_index & 1)
rec = 1;
break;
case NESR_XI_SIZE:
if (address & 0xf)
ec = 1;
if (target_index & 3)
rec = 1;
break;
default:
{
IADDR pc = GET_H_PC ();
sim_engine_abort (sd, current_cpu, pc,
"check_non_excepting_load: Incorrect data_size\n");
break;
}
}
control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
necr = GET_NECR ();
do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
}
else
do_elos = 0;
/* NECR, NESR, NEEAR are only implemented for the full frv machine. */
if (do_elos)
{
ne_index = next_available_nesr (current_cpu, NO_NESR);
if (ne_index == NO_NESR)
{
IADDR pc = GET_H_PC ();
sim_engine_abort (sd, current_cpu, pc,
"No available NESR register\n");
}
/* Fill in the basic fields of the NESR. */
nesr = GET_NESR (ne_index);
SET_NESR_VALID (nesr);
SET_NESR_EAV (nesr);
SET_NESR_DRN (nesr, target_index);
SET_NESR_SIZE (nesr, data_size);
SET_NESR_NEAN (nesr, ne_index);
if (is_float)
SET_NESR_FR (nesr);
else
CLEAR_NESR_FR (nesr);
/* Set the corresponding NEEAR. */
SET_NEEAR (ne_index, address);
SET_NESR_DAEC (nesr, 0);
SET_NESR_REC (nesr, 0);
SET_NESR_EC (nesr, 0);
}
/* Set the NE flag corresponding to the target register if an interrupt
factor was detected.
daec is not checked here yet, but is declared for future reference. */
if (is_float)
NE_base = H_SPR_FNER0;
else
NE_base = H_SPR_GNER0;
GET_NE_FLAGS (NE_flags, NE_base);
if (rec)
{
SET_NE_FLAG (NE_flags, target_index);
if (do_elos)
SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
}
if (ec)
{
SET_NE_FLAG (NE_flags, target_index);
if (do_elos)
SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
}
if (do_elos)
SET_NESR (ne_index, nesr);
/* If no interrupt factor was detected then set the NE flag on the
target register if the NE flag on one of the input registers
is already set. */
if (! rec && ! ec && ! daec)
{
BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
if (disp_index >= 0)
ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
if (ne_flag)
{
SET_NE_FLAG (NE_flags, target_index);
rc = 0; /* Do not perform the load. */
}
else
CLEAR_NE_FLAG (NE_flags, target_index);
}
SET_NE_FLAGS (NE_base, NE_flags);
return rc; /* perform the load? */
}
/* Record state for media exception: media_cr_not_aligned. */
void
frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* On some machines this generates an illegal_instruction interrupt. */
switch (STATE_ARCHITECTURE (sd)->mach)
{
/* Note: there is a discrepancy between V2.2 of the FR400
instruction manual and the various FR4xx LSI specs. The former
claims that unaligned registers cause an mp_exception while the
latter say it's an illegal_instruction. The LSI specs appear
to be correct since MTT is fixed at 1. */
case bfd_mach_fr400:
case bfd_mach_fr450:
case bfd_mach_fr550:
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
break;
default:
frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
break;
}
}
/* Record state for media exception: media_acc_not_aligned. */
void
frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* On some machines this generates an illegal_instruction interrupt. */
switch (STATE_ARCHITECTURE (sd)->mach)
{
/* See comment in frvbf_cr_not_aligned(). */
case bfd_mach_fr400:
case bfd_mach_fr450:
case bfd_mach_fr550:
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
break;
default:
frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
break;
}
}
/* Record state for media exception: media_register_not_aligned. */
void
frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* On some machines this generates an illegal_instruction interrupt. */
switch (STATE_ARCHITECTURE (sd)->mach)
{
/* See comment in frvbf_cr_not_aligned(). */
case bfd_mach_fr400:
case bfd_mach_fr450:
case bfd_mach_fr550:
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
break;
default:
frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
break;
}
}
/* Record state for media exception: media_overflow. */
void
frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
{
frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
}
/* Queue a division exception. */
enum frv_dtt
frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
int target_index, int non_excepting)
{
/* If there was an overflow and it is masked, then record it in
ISR.AEXC. */
USI isr = GET_ISR ();
if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
{
dtt &= ~FRV_DTT_OVERFLOW;
SET_ISR_AEXC (isr);
SET_ISR (isr);
}
if (dtt != FRV_DTT_NO_EXCEPTION)
{
if (non_excepting)
{
/* Non excepting instruction, simply set the NE flag for the target
register. */
SI NE_flags[2];
GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
SET_NE_FLAG (NE_flags, target_index);
SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
}
else
frv_queue_division_exception_interrupt (current_cpu, dtt);
}
return dtt;
}
void
frvbf_check_recovering_store (
SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
)
{
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
int reg_ix;
CPU_RSTR_INVALIDATE(current_cpu) = 0;
for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
reg_ix != NO_NESR;
reg_ix = next_valid_nesr (current_cpu, reg_ix))
{
if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
{
SI nesr = GET_NESR (reg_ix);
int nesr_drn = GET_NESR_DRN (nesr);
BI nesr_fr = GET_NESR_FR (nesr);
SI remain;
/* Invalidate cache block containing this address.
If we need to count cycles, then the cache operation will be
initiated from the model profiling functions.
See frvbf_model_.... */
if (model_insn)
{
CPU_RSTR_INVALIDATE(current_cpu) = 1;
CPU_LOAD_ADDRESS (current_cpu) = address;
}
else
frv_cache_invalidate (cache, address, 1/* flush */);
/* Copy the stored value to the register indicated by NESR.DRN. */
for (remain = size; remain > 0; remain -= 4)
{
SI value;
if (is_float)
value = GET_H_FR (regno);
else
value = GET_H_GR (regno);
switch (size)
{
case 1:
value &= 0xff;
break;
case 2:
value &= 0xffff;
break;
default:
break;
}
if (nesr_fr)
sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
value);
else
sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
value);
nesr_drn++;
regno++;
}
break; /* Only consider the first matching register. */
}
} /* loop over active neear registers. */
}
SI
frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
{
/* Only applicable to fr550 */
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
return;
/* On the fr550, media insns in slots 0 and 2 can only access
accumulators acc0-acc3. Insns in slots 1 and 3 can only access
accumulators acc4-acc7 */
switch (frv_current_fm_slot)
{
case UNIT_FM0:
case UNIT_FM2:
if (regno <= 3)
return 1; /* all is ok */
break;
case UNIT_FM1:
case UNIT_FM3:
if (regno >= 4)
return 1; /* all is ok */
break;
}
/* The specified accumulator is out of range. Queue an illegal_instruction
interrupt. */
frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
return 0;
}
void
frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
{
/* Only applicable to fr550 */
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
return;
/* Adress must be aligned on a word boundary. */
if (address & 0x3)
frv_queue_data_access_exception_interrupt (current_cpu);
}
static void
clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
{
int reg_ix;
/* Only implemented for full frv. */
SIM_DESC sd = CPU_STATE (current_cpu);
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
return;
/* Clear the appropriate NESR and NEEAR registers. */
for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
reg_ix != NO_NESR;
reg_ix = next_valid_nesr (current_cpu, reg_ix))
{
SI nesr;
/* The register is available, now check if it is active. */
nesr = GET_NESR (reg_ix);
if (GET_NESR_FR (nesr) == is_float)
{
if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
{
SET_NESR (reg_ix, 0);
SET_NEEAR (reg_ix, 0);
}
}
}
}
static void
clear_ne_flags (
SIM_CPU *current_cpu,
SI target_index,
int hi_available,
int lo_available,
SI NE_base
)
{
SI NE_flags[2];
int exception;
GET_NE_FLAGS (NE_flags, NE_base);
if (target_index >= 0)
CLEAR_NE_FLAG (NE_flags, target_index);
else
{
if (lo_available)
NE_flags[1] = 0;
if (hi_available)
NE_flags[0] = 0;
}
SET_NE_FLAGS (NE_base, NE_flags);
}
/* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
means to check for any register available. */
static void
which_registers_available (
SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
)
{
if (is_float)
frv_fr_registers_available (current_cpu, hi_available, lo_available);
else
frv_gr_registers_available (current_cpu, hi_available, lo_available);
}
void
frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
{
int hi_available;
int lo_available;
int exception;
SI NE_base;
USI necr;
FRV_REGISTER_CONTROL *control;
/* Check for availability of the target register(s). */
which_registers_available (current_cpu, & hi_available, & lo_available,
is_float);
/* Check to make sure that the target register is available. */
if (! frv_check_register_access (current_cpu, target_index,
hi_available, lo_available))
return;
/* Determine whether we're working with GR or FR registers. */
if (is_float)
NE_base = H_SPR_FNER0;
else
NE_base = H_SPR_GNER0;
/* Always clear the appropriate NE flags. */
clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
NE_base);
/* Clear the appropriate NESR and NEEAR registers. */
control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
necr = GET_NECR ();
if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
clear_nesr_neear (current_cpu, target_index, is_float);
}
}
void
frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
{
SI NE_base;
SI NE_flags[2];
BI NE_flag;
int exception;
int hi_available;
int lo_available;
USI necr;
FRV_REGISTER_CONTROL *control;
/* Check for availability of the target register(s). */
which_registers_available (current_cpu, & hi_available, & lo_available,
is_float);
/* Check to make sure that the target register is available. */
if (! frv_check_register_access (current_cpu, target_index,
hi_available, lo_available))
return;
/* Determine whether we're working with GR or FR registers. */
if (is_float)
NE_base = H_SPR_FNER0;
else
NE_base = H_SPR_GNER0;
/* Determine whether a ne exception is pending. */
GET_NE_FLAGS (NE_flags, NE_base);
if (target_index >= 0)
NE_flag = GET_NE_FLAG (NE_flags, target_index);
else
{
NE_flag =
hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
}
/* Always clear the appropriate NE flags. */
clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
NE_base);
control = CPU_REGISTER_CONTROL (current_cpu);
if (control->spr[H_SPR_NECR].implemented)
{
necr = GET_NECR ();
if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
{
/* Clear the appropriate NESR and NEEAR registers. */
clear_nesr_neear (current_cpu, target_index, is_float);
frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
}
}
}
/* Generate the appropriate fp_exception(s) based on the given status code. */
void
frvbf_fpu_error (CGEN_FPU* fpu, int status)
{
struct frv_fp_exception_info fp_info = {
FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
};
if (status &
(sim_fpu_status_invalid_snan |
sim_fpu_status_invalid_qnan |
sim_fpu_status_invalid_isi |
sim_fpu_status_invalid_idi |
sim_fpu_status_invalid_zdz |
sim_fpu_status_invalid_imz |
sim_fpu_status_invalid_cvi |
sim_fpu_status_invalid_cmp |
sim_fpu_status_invalid_sqrt))
fp_info.fsr_mask |= FSR_INVALID_OPERATION;
if (status & sim_fpu_status_invalid_div0)
fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
if (status & sim_fpu_status_inexact)
fp_info.fsr_mask |= FSR_INEXACT;
if (status & sim_fpu_status_overflow)
fp_info.fsr_mask |= FSR_OVERFLOW;
if (status & sim_fpu_status_underflow)
fp_info.fsr_mask |= FSR_UNDERFLOW;
if (status & sim_fpu_status_denorm)
{
fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
fp_info.ftt = FTT_DENORMAL_INPUT;
}
if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
{
SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
}
}