2018-12-28 15:30:48 +00:00
|
|
|
// Copyright 2017 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package big
|
|
|
|
|
|
|
|
import "math"
|
|
|
|
|
|
|
|
var (
|
|
|
|
three = NewFloat(3.0)
|
|
|
|
)
|
|
|
|
|
|
|
|
// Sqrt sets z to the rounded square root of x, and returns it.
|
|
|
|
//
|
|
|
|
// If z's precision is 0, it is changed to x's precision before the
|
|
|
|
// operation. Rounding is performed according to z's precision and
|
|
|
|
// rounding mode.
|
|
|
|
//
|
|
|
|
// The function panics if z < 0. The value of z is undefined in that
|
|
|
|
// case.
|
|
|
|
func (z *Float) Sqrt(x *Float) *Float {
|
|
|
|
if debugFloat {
|
|
|
|
x.validate()
|
|
|
|
}
|
|
|
|
|
|
|
|
if z.prec == 0 {
|
|
|
|
z.prec = x.prec
|
|
|
|
}
|
|
|
|
|
|
|
|
if x.Sign() == -1 {
|
|
|
|
// following IEEE754-2008 (section 7.2)
|
|
|
|
panic(ErrNaN{"square root of negative operand"})
|
|
|
|
}
|
|
|
|
|
|
|
|
// handle ±0 and +∞
|
|
|
|
if x.form != finite {
|
|
|
|
z.acc = Exact
|
|
|
|
z.form = x.form
|
|
|
|
z.neg = x.neg // IEEE754-2008 requires √±0 = ±0
|
|
|
|
return z
|
|
|
|
}
|
|
|
|
|
|
|
|
// MantExp sets the argument's precision to the receiver's, and
|
|
|
|
// when z.prec > x.prec this will lower z.prec. Restore it after
|
|
|
|
// the MantExp call.
|
|
|
|
prec := z.prec
|
|
|
|
b := x.MantExp(z)
|
|
|
|
z.prec = prec
|
|
|
|
|
|
|
|
// Compute √(z·2**b) as
|
|
|
|
// √( z)·2**(½b) if b is even
|
|
|
|
// √(2z)·2**(⌊½b⌋) if b > 0 is odd
|
|
|
|
// √(½z)·2**(⌈½b⌉) if b < 0 is odd
|
|
|
|
switch b % 2 {
|
|
|
|
case 0:
|
|
|
|
// nothing to do
|
|
|
|
case 1:
|
2019-06-02 15:48:37 +00:00
|
|
|
z.exp++
|
2018-12-28 15:30:48 +00:00
|
|
|
case -1:
|
2019-06-02 15:48:37 +00:00
|
|
|
z.exp--
|
2018-12-28 15:30:48 +00:00
|
|
|
}
|
|
|
|
// 0.25 <= z < 2.0
|
|
|
|
|
|
|
|
// Solving x² - z = 0 directly requires a Quo call, but it's
|
|
|
|
// faster for small precisions.
|
|
|
|
//
|
|
|
|
// Solving 1/x² - z = 0 avoids the Quo call and is much faster for
|
|
|
|
// high precisions.
|
|
|
|
//
|
|
|
|
// 128bit precision is an empirically chosen threshold.
|
|
|
|
if z.prec <= 128 {
|
|
|
|
z.sqrtDirect(z)
|
|
|
|
} else {
|
|
|
|
z.sqrtInverse(z)
|
|
|
|
}
|
|
|
|
|
|
|
|
// re-attach halved exponent
|
|
|
|
return z.SetMantExp(z, b/2)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute √x (up to prec 128) by solving
|
|
|
|
// t² - x = 0
|
|
|
|
// for t, starting with a 53 bits precision guess from math.Sqrt and
|
|
|
|
// then using at most two iterations of Newton's method.
|
|
|
|
func (z *Float) sqrtDirect(x *Float) {
|
|
|
|
// let
|
|
|
|
// f(t) = t² - x
|
|
|
|
// then
|
|
|
|
// g(t) = f(t)/f'(t) = ½(t² - x)/t
|
|
|
|
// and the next guess is given by
|
|
|
|
// t2 = t - g(t) = ½(t² + x)/t
|
|
|
|
u := new(Float)
|
|
|
|
ng := func(t *Float) *Float {
|
|
|
|
u.prec = t.prec
|
|
|
|
u.Mul(t, t) // u = t²
|
|
|
|
u.Add(u, x) // = t² + x
|
2019-06-02 15:48:37 +00:00
|
|
|
u.exp-- // = ½(t² + x)
|
2018-12-28 15:30:48 +00:00
|
|
|
return t.Quo(u, t) // = ½(t² + x)/t
|
|
|
|
}
|
|
|
|
|
|
|
|
xf, _ := x.Float64()
|
|
|
|
sq := NewFloat(math.Sqrt(xf))
|
|
|
|
|
|
|
|
switch {
|
|
|
|
case z.prec > 128:
|
|
|
|
panic("sqrtDirect: only for z.prec <= 128")
|
|
|
|
case z.prec > 64:
|
|
|
|
sq.prec *= 2
|
|
|
|
sq = ng(sq)
|
|
|
|
fallthrough
|
|
|
|
default:
|
|
|
|
sq.prec *= 2
|
|
|
|
sq = ng(sq)
|
|
|
|
}
|
|
|
|
|
|
|
|
z.Set(sq)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute √x (to z.prec precision) by solving
|
|
|
|
// 1/t² - x = 0
|
|
|
|
// for t (using Newton's method), and then inverting.
|
|
|
|
func (z *Float) sqrtInverse(x *Float) {
|
|
|
|
// let
|
|
|
|
// f(t) = 1/t² - x
|
|
|
|
// then
|
|
|
|
// g(t) = f(t)/f'(t) = -½t(1 - xt²)
|
|
|
|
// and the next guess is given by
|
|
|
|
// t2 = t - g(t) = ½t(3 - xt²)
|
2019-06-02 15:48:37 +00:00
|
|
|
u := newFloat(z.prec)
|
|
|
|
v := newFloat(z.prec)
|
2018-12-28 15:30:48 +00:00
|
|
|
ng := func(t *Float) *Float {
|
|
|
|
u.prec = t.prec
|
2019-06-02 15:48:37 +00:00
|
|
|
v.prec = t.prec
|
|
|
|
u.Mul(t, t) // u = t²
|
|
|
|
u.Mul(x, u) // = xt²
|
|
|
|
v.Sub(three, u) // v = 3 - xt²
|
|
|
|
u.Mul(t, v) // u = t(3 - xt²)
|
|
|
|
u.exp-- // = ½t(3 - xt²)
|
|
|
|
return t.Set(u)
|
|
|
|
|
2018-12-28 15:30:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
xf, _ := x.Float64()
|
2019-06-02 15:48:37 +00:00
|
|
|
sqi := newFloat(z.prec)
|
|
|
|
sqi.SetFloat64(1 / math.Sqrt(xf))
|
2018-12-28 15:30:48 +00:00
|
|
|
for prec := z.prec + 32; sqi.prec < prec; {
|
|
|
|
sqi.prec *= 2
|
|
|
|
sqi = ng(sqi)
|
|
|
|
}
|
|
|
|
// sqi = 1/√x
|
|
|
|
|
|
|
|
// x/√x = √x
|
|
|
|
z.Mul(x, sqi)
|
|
|
|
}
|
2019-06-02 15:48:37 +00:00
|
|
|
|
|
|
|
// newFloat returns a new *Float with space for twice the given
|
|
|
|
// precision.
|
|
|
|
func newFloat(prec2 uint32) *Float {
|
|
|
|
z := new(Float)
|
|
|
|
// nat.make ensures the slice length is > 0
|
|
|
|
z.mant = z.mant.make(int(prec2/_W) * 2)
|
|
|
|
return z
|
|
|
|
}
|