mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-24 07:31:32 +00:00
384 lines
8.9 KiB
C
384 lines
8.9 KiB
C
|
/* Implementation of the MINLOC intrinsic
|
||
|
Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
|
||
|
Contributed by Paul Brook <paul@nowt.org>
|
||
|
|
||
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||
|
|
||
|
Libgfortran is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 3 of the License, or (at your option) any later version.
|
||
|
|
||
|
Libgfortran is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
Under Section 7 of GPL version 3, you are granted additional
|
||
|
permissions described in the GCC Runtime Library Exception, version
|
||
|
3.1, as published by the Free Software Foundation.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License and
|
||
|
a copy of the GCC Runtime Library Exception along with this program;
|
||
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "libgfortran.h"
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
#include <limits.h>
|
||
|
|
||
|
|
||
|
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_8)
|
||
|
|
||
|
|
||
|
extern void minloc0_8_r10 (gfc_array_i8 * const restrict retarray,
|
||
|
gfc_array_r10 * const restrict array);
|
||
|
export_proto(minloc0_8_r10);
|
||
|
|
||
|
void
|
||
|
minloc0_8_r10 (gfc_array_i8 * const restrict retarray,
|
||
|
gfc_array_r10 * const restrict array)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride;
|
||
|
const GFC_REAL_10 *base;
|
||
|
GFC_INTEGER_8 * restrict dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
|
||
|
rank = GFC_DESCRIPTOR_RANK (array);
|
||
|
if (rank <= 0)
|
||
|
runtime_error ("Rank of array needs to be > 0");
|
||
|
|
||
|
if (retarray->data == NULL)
|
||
|
{
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
||
|
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||
|
retarray->offset = 0;
|
||
|
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
||
|
"MINLOC");
|
||
|
}
|
||
|
|
||
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
||
|
dest = retarray->data;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
count[n] = 0;
|
||
|
if (extent[n] <= 0)
|
||
|
{
|
||
|
/* Set the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 0;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
base = array->data;
|
||
|
|
||
|
/* Initialize the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 1;
|
||
|
{
|
||
|
|
||
|
GFC_REAL_10 minval;
|
||
|
#if defined(GFC_REAL_10_QUIET_NAN)
|
||
|
int fast = 0;
|
||
|
#endif
|
||
|
|
||
|
#if defined(GFC_REAL_10_INFINITY)
|
||
|
minval = GFC_REAL_10_INFINITY;
|
||
|
#else
|
||
|
minval = GFC_REAL_10_HUGE;
|
||
|
#endif
|
||
|
while (base)
|
||
|
{
|
||
|
do
|
||
|
{
|
||
|
/* Implementation start. */
|
||
|
|
||
|
#if defined(GFC_REAL_10_QUIET_NAN)
|
||
|
}
|
||
|
while (0);
|
||
|
if (unlikely (!fast))
|
||
|
{
|
||
|
do
|
||
|
{
|
||
|
if (*base <= minval)
|
||
|
{
|
||
|
fast = 1;
|
||
|
minval = *base;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
break;
|
||
|
}
|
||
|
base += sstride[0];
|
||
|
}
|
||
|
while (++count[0] != extent[0]);
|
||
|
if (likely (fast))
|
||
|
continue;
|
||
|
}
|
||
|
else do
|
||
|
{
|
||
|
#endif
|
||
|
if (*base < minval)
|
||
|
{
|
||
|
minval = *base;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
}
|
||
|
/* Implementation end. */
|
||
|
/* Advance to the next element. */
|
||
|
base += sstride[0];
|
||
|
}
|
||
|
while (++count[0] != extent[0]);
|
||
|
n = 0;
|
||
|
do
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n == rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
}
|
||
|
}
|
||
|
while (count[n] == extent[n]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
extern void mminloc0_8_r10 (gfc_array_i8 * const restrict,
|
||
|
gfc_array_r10 * const restrict, gfc_array_l1 * const restrict);
|
||
|
export_proto(mminloc0_8_r10);
|
||
|
|
||
|
void
|
||
|
mminloc0_8_r10 (gfc_array_i8 * const restrict retarray,
|
||
|
gfc_array_r10 * const restrict array,
|
||
|
gfc_array_l1 * const restrict mask)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride;
|
||
|
GFC_INTEGER_8 *dest;
|
||
|
const GFC_REAL_10 *base;
|
||
|
GFC_LOGICAL_1 *mbase;
|
||
|
int rank;
|
||
|
index_type n;
|
||
|
int mask_kind;
|
||
|
|
||
|
rank = GFC_DESCRIPTOR_RANK (array);
|
||
|
if (rank <= 0)
|
||
|
runtime_error ("Rank of array needs to be > 0");
|
||
|
|
||
|
if (retarray->data == NULL)
|
||
|
{
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
|
||
|
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||
|
retarray->offset = 0;
|
||
|
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
{
|
||
|
|
||
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
||
|
"MINLOC");
|
||
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
||
|
"MASK argument", "MINLOC");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||
|
|
||
|
mbase = mask->data;
|
||
|
|
||
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||
|
#ifdef HAVE_GFC_LOGICAL_16
|
||
|
|| mask_kind == 16
|
||
|
#endif
|
||
|
)
|
||
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
||
|
else
|
||
|
runtime_error ("Funny sized logical array");
|
||
|
|
||
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
||
|
dest = retarray->data;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
||
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
count[n] = 0;
|
||
|
if (extent[n] <= 0)
|
||
|
{
|
||
|
/* Set the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 0;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
base = array->data;
|
||
|
|
||
|
/* Initialize the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 0;
|
||
|
{
|
||
|
|
||
|
GFC_REAL_10 minval;
|
||
|
int fast = 0;
|
||
|
|
||
|
#if defined(GFC_REAL_10_INFINITY)
|
||
|
minval = GFC_REAL_10_INFINITY;
|
||
|
#else
|
||
|
minval = GFC_REAL_10_HUGE;
|
||
|
#endif
|
||
|
while (base)
|
||
|
{
|
||
|
do
|
||
|
{
|
||
|
/* Implementation start. */
|
||
|
|
||
|
}
|
||
|
while (0);
|
||
|
if (unlikely (!fast))
|
||
|
{
|
||
|
do
|
||
|
{
|
||
|
if (*mbase)
|
||
|
{
|
||
|
#if defined(GFC_REAL_10_QUIET_NAN)
|
||
|
if (unlikely (dest[0] == 0))
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
if (*base <= minval)
|
||
|
#endif
|
||
|
{
|
||
|
fast = 1;
|
||
|
minval = *base;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
base += sstride[0];
|
||
|
mbase += mstride[0];
|
||
|
}
|
||
|
while (++count[0] != extent[0]);
|
||
|
if (likely (fast))
|
||
|
continue;
|
||
|
}
|
||
|
else do
|
||
|
{
|
||
|
if (*mbase && *base < minval)
|
||
|
{
|
||
|
minval = *base;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
}
|
||
|
/* Implementation end. */
|
||
|
/* Advance to the next element. */
|
||
|
base += sstride[0];
|
||
|
mbase += mstride[0];
|
||
|
}
|
||
|
while (++count[0] != extent[0]);
|
||
|
n = 0;
|
||
|
do
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
mbase -= mstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n == rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
mbase += mstride[n];
|
||
|
}
|
||
|
}
|
||
|
while (count[n] == extent[n]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
extern void sminloc0_8_r10 (gfc_array_i8 * const restrict,
|
||
|
gfc_array_r10 * const restrict, GFC_LOGICAL_4 *);
|
||
|
export_proto(sminloc0_8_r10);
|
||
|
|
||
|
void
|
||
|
sminloc0_8_r10 (gfc_array_i8 * const restrict retarray,
|
||
|
gfc_array_r10 * const restrict array,
|
||
|
GFC_LOGICAL_4 * mask)
|
||
|
{
|
||
|
index_type rank;
|
||
|
index_type dstride;
|
||
|
index_type n;
|
||
|
GFC_INTEGER_8 *dest;
|
||
|
|
||
|
if (*mask)
|
||
|
{
|
||
|
minloc0_8_r10 (retarray, array);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rank = GFC_DESCRIPTOR_RANK (array);
|
||
|
|
||
|
if (rank <= 0)
|
||
|
runtime_error ("Rank of array needs to be > 0");
|
||
|
|
||
|
if (retarray->data == NULL)
|
||
|
{
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
||
|
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||
|
retarray->offset = 0;
|
||
|
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||
|
}
|
||
|
else if (unlikely (compile_options.bounds_check))
|
||
|
{
|
||
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
||
|
"MINLOC");
|
||
|
}
|
||
|
|
||
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
||
|
dest = retarray->data;
|
||
|
for (n = 0; n<rank; n++)
|
||
|
dest[n * dstride] = 0 ;
|
||
|
}
|
||
|
#endif
|