Retro68/gcc/libgo/go/crypto/x509/verify.go

279 lines
7.9 KiB
Go
Raw Normal View History

2012-03-27 23:13:14 +00:00
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"strings"
"time"
"unicode/utf8"
)
type InvalidReason int
const (
// NotAuthorizedToSign results when a certificate is signed by another
// which isn't marked as a CA certificate.
NotAuthorizedToSign InvalidReason = iota
// Expired results when a certificate has expired, based on the time
// given in the VerifyOptions.
Expired
// CANotAuthorizedForThisName results when an intermediate or root
// certificate has a name constraint which doesn't include the name
// being checked.
CANotAuthorizedForThisName
)
// CertificateInvalidError results when an odd error occurs. Users of this
// library probably want to handle all these errors uniformly.
type CertificateInvalidError struct {
Cert *Certificate
Reason InvalidReason
}
func (e CertificateInvalidError) Error() string {
switch e.Reason {
case NotAuthorizedToSign:
return "x509: certificate is not authorized to sign other other certificates"
case Expired:
return "x509: certificate has expired or is not yet valid"
case CANotAuthorizedForThisName:
return "x509: a root or intermediate certificate is not authorized to sign in this domain"
}
return "x509: unknown error"
}
// HostnameError results when the set of authorized names doesn't match the
// requested name.
type HostnameError struct {
Certificate *Certificate
Host string
}
func (h HostnameError) Error() string {
var valid string
c := h.Certificate
if len(c.DNSNames) > 0 {
valid = strings.Join(c.DNSNames, ", ")
} else {
valid = c.Subject.CommonName
}
return "certificate is valid for " + valid + ", not " + h.Host
}
// UnknownAuthorityError results when the certificate issuer is unknown
type UnknownAuthorityError struct {
cert *Certificate
}
func (e UnknownAuthorityError) Error() string {
return "x509: certificate signed by unknown authority"
}
// VerifyOptions contains parameters for Certificate.Verify. It's a structure
// because other PKIX verification APIs have ended up needing many options.
type VerifyOptions struct {
DNSName string
Intermediates *CertPool
Roots *CertPool
CurrentTime time.Time // if zero, the current time is used
}
const (
leafCertificate = iota
intermediateCertificate
rootCertificate
)
// isValid performs validity checks on the c.
func (c *Certificate) isValid(certType int, opts *VerifyOptions) error {
now := opts.CurrentTime
if now.IsZero() {
now = time.Now()
}
if now.Before(c.NotBefore) || now.After(c.NotAfter) {
return CertificateInvalidError{c, Expired}
}
if len(c.PermittedDNSDomains) > 0 {
for _, domain := range c.PermittedDNSDomains {
if opts.DNSName == domain ||
(strings.HasSuffix(opts.DNSName, domain) &&
len(opts.DNSName) >= 1+len(domain) &&
opts.DNSName[len(opts.DNSName)-len(domain)-1] == '.') {
continue
}
return CertificateInvalidError{c, CANotAuthorizedForThisName}
}
}
// KeyUsage status flags are ignored. From Engineering Security, Peter
// Gutmann: A European government CA marked its signing certificates as
// being valid for encryption only, but no-one noticed. Another
// European CA marked its signature keys as not being valid for
// signatures. A different CA marked its own trusted root certificate
// as being invalid for certificate signing. Another national CA
// distributed a certificate to be used to encrypt data for the
// countrys tax authority that was marked as only being usable for
// digital signatures but not for encryption. Yet another CA reversed
// the order of the bit flags in the keyUsage due to confusion over
// encoding endianness, essentially setting a random keyUsage in
// certificates that it issued. Another CA created a self-invalidating
// certificate by adding a certificate policy statement stipulating
// that the certificate had to be used strictly as specified in the
// keyUsage, and a keyUsage containing a flag indicating that the RSA
// encryption key could only be used for Diffie-Hellman key agreement.
if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
return CertificateInvalidError{c, NotAuthorizedToSign}
}
return nil
}
// Verify attempts to verify c by building one or more chains from c to a
// certificate in opts.roots, using certificates in opts.Intermediates if
// needed. If successful, it returns one or more chains where the first
// element of the chain is c and the last element is from opts.Roots.
//
// WARNING: this doesn't do any revocation checking.
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
err = c.isValid(leafCertificate, &opts)
if err != nil {
return
}
if len(opts.DNSName) > 0 {
err = c.VerifyHostname(opts.DNSName)
if err != nil {
return
}
}
return c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts)
}
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
n := make([]*Certificate, len(chain)+1)
copy(n, chain)
n[len(chain)] = cert
return n
}
func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
for _, rootNum := range opts.Roots.findVerifiedParents(c) {
root := opts.Roots.certs[rootNum]
err = root.isValid(rootCertificate, opts)
if err != nil {
continue
}
chains = append(chains, appendToFreshChain(currentChain, root))
}
nextIntermediate:
for _, intermediateNum := range opts.Intermediates.findVerifiedParents(c) {
intermediate := opts.Intermediates.certs[intermediateNum]
for _, cert := range currentChain {
if cert == intermediate {
continue nextIntermediate
}
}
err = intermediate.isValid(intermediateCertificate, opts)
if err != nil {
continue
}
var childChains [][]*Certificate
childChains, ok := cache[intermediateNum]
if !ok {
childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
cache[intermediateNum] = childChains
}
chains = append(chains, childChains...)
}
if len(chains) > 0 {
err = nil
}
if len(chains) == 0 && err == nil {
err = UnknownAuthorityError{c}
}
return
}
func matchHostnames(pattern, host string) bool {
if len(pattern) == 0 || len(host) == 0 {
return false
}
patternParts := strings.Split(pattern, ".")
hostParts := strings.Split(host, ".")
if len(patternParts) != len(hostParts) {
return false
}
for i, patternPart := range patternParts {
if patternPart == "*" {
continue
}
if patternPart != hostParts[i] {
return false
}
}
return true
}
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
// an explicitly ASCII function to avoid any sharp corners resulting from
// performing Unicode operations on DNS labels.
func toLowerCaseASCII(in string) string {
// If the string is already lower-case then there's nothing to do.
isAlreadyLowerCase := true
for _, c := range in {
if c == utf8.RuneError {
// If we get a UTF-8 error then there might be
// upper-case ASCII bytes in the invalid sequence.
isAlreadyLowerCase = false
break
}
if 'A' <= c && c <= 'Z' {
isAlreadyLowerCase = false
break
}
}
if isAlreadyLowerCase {
return in
}
out := []byte(in)
for i, c := range out {
if 'A' <= c && c <= 'Z' {
out[i] += 'a' - 'A'
}
}
return string(out)
}
// VerifyHostname returns nil if c is a valid certificate for the named host.
// Otherwise it returns an error describing the mismatch.
func (c *Certificate) VerifyHostname(h string) error {
lowered := toLowerCaseASCII(h)
if len(c.DNSNames) > 0 {
for _, match := range c.DNSNames {
if matchHostnames(toLowerCaseASCII(match), lowered) {
return nil
}
}
// If Subject Alt Name is given, we ignore the common name.
} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
return nil
}
return HostnameError{c, h}
}