mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-01 11:52:47 +00:00
601 lines
16 KiB
Go
601 lines
16 KiB
Go
|
// Copyright 2010 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
// Package pprof writes runtime profiling data in the format expected
|
||
|
// by the pprof visualization tool.
|
||
|
// For more information about pprof, see
|
||
|
// http://code.google.com/p/google-perftools/.
|
||
|
package pprof
|
||
|
|
||
|
import (
|
||
|
"bufio"
|
||
|
"bytes"
|
||
|
_ "debug/elf"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"runtime"
|
||
|
"sort"
|
||
|
"strings"
|
||
|
"sync"
|
||
|
"text/tabwriter"
|
||
|
)
|
||
|
|
||
|
// BUG(rsc): A bug in the OS X Snow Leopard 64-bit kernel prevents
|
||
|
// CPU profiling from giving accurate results on that system.
|
||
|
|
||
|
// A Profile is a collection of stack traces showing the call sequences
|
||
|
// that led to instances of a particular event, such as allocation.
|
||
|
// Packages can create and maintain their own profiles; the most common
|
||
|
// use is for tracking resources that must be explicitly closed, such as files
|
||
|
// or network connections.
|
||
|
//
|
||
|
// A Profile's methods can be called from multiple goroutines simultaneously.
|
||
|
//
|
||
|
// Each Profile has a unique name. A few profiles are predefined:
|
||
|
//
|
||
|
// goroutine - stack traces of all current goroutines
|
||
|
// heap - a sampling of all heap allocations
|
||
|
// threadcreate - stack traces that led to the creation of new OS threads
|
||
|
//
|
||
|
// These predefine profiles maintain themselves and panic on an explicit
|
||
|
// Add or Remove method call.
|
||
|
//
|
||
|
// The CPU profile is not available as a Profile. It has a special API,
|
||
|
// the StartCPUProfile and StopCPUProfile functions, because it streams
|
||
|
// output to a writer during profiling.
|
||
|
//
|
||
|
type Profile struct {
|
||
|
name string
|
||
|
mu sync.Mutex
|
||
|
m map[interface{}][]uintptr
|
||
|
count func() int
|
||
|
write func(io.Writer, int) error
|
||
|
}
|
||
|
|
||
|
// profiles records all registered profiles.
|
||
|
var profiles struct {
|
||
|
mu sync.Mutex
|
||
|
m map[string]*Profile
|
||
|
}
|
||
|
|
||
|
var goroutineProfile = &Profile{
|
||
|
name: "goroutine",
|
||
|
count: countGoroutine,
|
||
|
write: writeGoroutine,
|
||
|
}
|
||
|
|
||
|
var threadcreateProfile = &Profile{
|
||
|
name: "threadcreate",
|
||
|
count: countThreadCreate,
|
||
|
write: writeThreadCreate,
|
||
|
}
|
||
|
|
||
|
var heapProfile = &Profile{
|
||
|
name: "heap",
|
||
|
count: countHeap,
|
||
|
write: writeHeap,
|
||
|
}
|
||
|
|
||
|
func lockProfiles() {
|
||
|
profiles.mu.Lock()
|
||
|
if profiles.m == nil {
|
||
|
// Initial built-in profiles.
|
||
|
profiles.m = map[string]*Profile{
|
||
|
"goroutine": goroutineProfile,
|
||
|
"threadcreate": threadcreateProfile,
|
||
|
"heap": heapProfile,
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func unlockProfiles() {
|
||
|
profiles.mu.Unlock()
|
||
|
}
|
||
|
|
||
|
// NewProfile creates a new profile with the given name.
|
||
|
// If a profile with that name already exists, NewProfile panics.
|
||
|
// The convention is to use a 'import/path.' prefix to create
|
||
|
// separate name spaces for each package.
|
||
|
func NewProfile(name string) *Profile {
|
||
|
lockProfiles()
|
||
|
defer unlockProfiles()
|
||
|
if name == "" {
|
||
|
panic("pprof: NewProfile with empty name")
|
||
|
}
|
||
|
if profiles.m[name] != nil {
|
||
|
panic("pprof: NewProfile name already in use: " + name)
|
||
|
}
|
||
|
p := &Profile{
|
||
|
name: name,
|
||
|
m: map[interface{}][]uintptr{},
|
||
|
}
|
||
|
profiles.m[name] = p
|
||
|
return p
|
||
|
}
|
||
|
|
||
|
// Lookup returns the profile with the given name, or nil if no such profile exists.
|
||
|
func Lookup(name string) *Profile {
|
||
|
lockProfiles()
|
||
|
defer unlockProfiles()
|
||
|
return profiles.m[name]
|
||
|
}
|
||
|
|
||
|
// Profiles returns a slice of all the known profiles, sorted by name.
|
||
|
func Profiles() []*Profile {
|
||
|
lockProfiles()
|
||
|
defer unlockProfiles()
|
||
|
|
||
|
var all []*Profile
|
||
|
for _, p := range profiles.m {
|
||
|
all = append(all, p)
|
||
|
}
|
||
|
|
||
|
sort.Sort(byName(all))
|
||
|
return all
|
||
|
}
|
||
|
|
||
|
type byName []*Profile
|
||
|
|
||
|
func (x byName) Len() int { return len(x) }
|
||
|
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
||
|
func (x byName) Less(i, j int) bool { return x[i].name < x[j].name }
|
||
|
|
||
|
// Name returns this profile's name, which can be passed to Lookup to reobtain the profile.
|
||
|
func (p *Profile) Name() string {
|
||
|
return p.name
|
||
|
}
|
||
|
|
||
|
// Count returns the number of execution stacks currently in the profile.
|
||
|
func (p *Profile) Count() int {
|
||
|
p.mu.Lock()
|
||
|
defer p.mu.Unlock()
|
||
|
if p.count != nil {
|
||
|
return p.count()
|
||
|
}
|
||
|
return len(p.m)
|
||
|
}
|
||
|
|
||
|
// Add adds the current execution stack to the profile, associated with value.
|
||
|
// Add stores value in an internal map, so value must be suitable for use as
|
||
|
// a map key and will not be garbage collected until the corresponding
|
||
|
// call to Remove. Add panics if the profile already contains a stack for value.
|
||
|
//
|
||
|
// The skip parameter has the same meaning as runtime.Caller's skip
|
||
|
// and controls where the stack trace begins. Passing skip=0 begins the
|
||
|
// trace in the function calling Add. For example, given this
|
||
|
// execution stack:
|
||
|
//
|
||
|
// Add
|
||
|
// called from rpc.NewClient
|
||
|
// called from mypkg.Run
|
||
|
// called from main.main
|
||
|
//
|
||
|
// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
|
||
|
// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
|
||
|
//
|
||
|
func (p *Profile) Add(value interface{}, skip int) {
|
||
|
if p.name == "" {
|
||
|
panic("pprof: use of uninitialized Profile")
|
||
|
}
|
||
|
if p.write != nil {
|
||
|
panic("pprof: Add called on built-in Profile " + p.name)
|
||
|
}
|
||
|
|
||
|
stk := make([]uintptr, 32)
|
||
|
n := runtime.Callers(skip+1, stk[:])
|
||
|
|
||
|
p.mu.Lock()
|
||
|
defer p.mu.Unlock()
|
||
|
if p.m[value] != nil {
|
||
|
panic("pprof: Profile.Add of duplicate value")
|
||
|
}
|
||
|
p.m[value] = stk[:n]
|
||
|
}
|
||
|
|
||
|
// Remove removes the execution stack associated with value from the profile.
|
||
|
// It is a no-op if the value is not in the profile.
|
||
|
func (p *Profile) Remove(value interface{}) {
|
||
|
p.mu.Lock()
|
||
|
defer p.mu.Unlock()
|
||
|
delete(p.m, value)
|
||
|
}
|
||
|
|
||
|
// WriteTo writes a pprof-formatted snapshot of the profile to w.
|
||
|
// If a write to w returns an error, WriteTo returns that error.
|
||
|
// Otherwise, WriteTo returns nil.
|
||
|
//
|
||
|
// The debug parameter enables additional output.
|
||
|
// Passing debug=0 prints only the hexadecimal addresses that pprof needs.
|
||
|
// Passing debug=1 adds comments translating addresses to function names
|
||
|
// and line numbers, so that a programmer can read the profile without tools.
|
||
|
//
|
||
|
// The predefined profiles may assign meaning to other debug values;
|
||
|
// for example, when printing the "goroutine" profile, debug=2 means to
|
||
|
// print the goroutine stacks in the same form that a Go program uses
|
||
|
// when dying due to an unrecovered panic.
|
||
|
func (p *Profile) WriteTo(w io.Writer, debug int) error {
|
||
|
if p.name == "" {
|
||
|
panic("pprof: use of zero Profile")
|
||
|
}
|
||
|
if p.write != nil {
|
||
|
return p.write(w, debug)
|
||
|
}
|
||
|
|
||
|
// Obtain consistent snapshot under lock; then process without lock.
|
||
|
var all [][]uintptr
|
||
|
p.mu.Lock()
|
||
|
for _, stk := range p.m {
|
||
|
all = append(all, stk)
|
||
|
}
|
||
|
p.mu.Unlock()
|
||
|
|
||
|
// Map order is non-deterministic; make output deterministic.
|
||
|
sort.Sort(stackProfile(all))
|
||
|
|
||
|
return printCountProfile(w, debug, p.name, stackProfile(all))
|
||
|
}
|
||
|
|
||
|
type stackProfile [][]uintptr
|
||
|
|
||
|
func (x stackProfile) Len() int { return len(x) }
|
||
|
func (x stackProfile) Stack(i int) []uintptr { return x[i] }
|
||
|
func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
||
|
func (x stackProfile) Less(i, j int) bool {
|
||
|
t, u := x[i], x[j]
|
||
|
for k := 0; k < len(t) && k < len(u); k++ {
|
||
|
if t[k] != u[k] {
|
||
|
return t[k] < u[k]
|
||
|
}
|
||
|
}
|
||
|
return len(t) < len(u)
|
||
|
}
|
||
|
|
||
|
// A countProfile is a set of stack traces to be printed as counts
|
||
|
// grouped by stack trace. There are multiple implementations:
|
||
|
// all that matters is that we can find out how many traces there are
|
||
|
// and obtain each trace in turn.
|
||
|
type countProfile interface {
|
||
|
Len() int
|
||
|
Stack(i int) []uintptr
|
||
|
}
|
||
|
|
||
|
// printCountProfile prints a countProfile at the specified debug level.
|
||
|
func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
|
||
|
b := bufio.NewWriter(w)
|
||
|
var tw *tabwriter.Writer
|
||
|
w = b
|
||
|
if debug > 0 {
|
||
|
tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
|
||
|
w = tw
|
||
|
}
|
||
|
|
||
|
fmt.Fprintf(w, "%s profile: total %d\n", name, p.Len())
|
||
|
|
||
|
// Build count of each stack.
|
||
|
var buf bytes.Buffer
|
||
|
key := func(stk []uintptr) string {
|
||
|
buf.Reset()
|
||
|
fmt.Fprintf(&buf, "@")
|
||
|
for _, pc := range stk {
|
||
|
fmt.Fprintf(&buf, " %#x", pc)
|
||
|
}
|
||
|
return buf.String()
|
||
|
}
|
||
|
m := map[string]int{}
|
||
|
n := p.Len()
|
||
|
for i := 0; i < n; i++ {
|
||
|
m[key(p.Stack(i))]++
|
||
|
}
|
||
|
|
||
|
// Print stacks, listing count on first occurrence of a unique stack.
|
||
|
for i := 0; i < n; i++ {
|
||
|
stk := p.Stack(i)
|
||
|
s := key(stk)
|
||
|
if count := m[s]; count != 0 {
|
||
|
fmt.Fprintf(w, "%d %s\n", count, s)
|
||
|
if debug > 0 {
|
||
|
printStackRecord(w, stk, false)
|
||
|
}
|
||
|
delete(m, s)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if tw != nil {
|
||
|
tw.Flush()
|
||
|
}
|
||
|
return b.Flush()
|
||
|
}
|
||
|
|
||
|
// printStackRecord prints the function + source line information
|
||
|
// for a single stack trace.
|
||
|
func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
|
||
|
show := allFrames
|
||
|
for _, pc := range stk {
|
||
|
f := runtime.FuncForPC(pc)
|
||
|
if f == nil {
|
||
|
show = true
|
||
|
fmt.Fprintf(w, "#\t%#x\n", pc)
|
||
|
} else {
|
||
|
file, line := f.FileLine(pc)
|
||
|
name := f.Name()
|
||
|
// Hide runtime.goexit and any runtime functions at the beginning.
|
||
|
// This is useful mainly for allocation traces.
|
||
|
if name == "runtime.goexit" || !show && strings.HasPrefix(name, "runtime.") {
|
||
|
continue
|
||
|
}
|
||
|
show = true
|
||
|
fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", pc, f.Name(), pc-f.Entry(), file, line)
|
||
|
}
|
||
|
}
|
||
|
if !show {
|
||
|
// We didn't print anything; do it again,
|
||
|
// and this time include runtime functions.
|
||
|
printStackRecord(w, stk, true)
|
||
|
return
|
||
|
}
|
||
|
fmt.Fprintf(w, "\n")
|
||
|
}
|
||
|
|
||
|
// Interface to system profiles.
|
||
|
|
||
|
type byInUseBytes []runtime.MemProfileRecord
|
||
|
|
||
|
func (x byInUseBytes) Len() int { return len(x) }
|
||
|
func (x byInUseBytes) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
||
|
func (x byInUseBytes) Less(i, j int) bool { return x[i].InUseBytes() > x[j].InUseBytes() }
|
||
|
|
||
|
// WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0).
|
||
|
// It is preserved for backwards compatibility.
|
||
|
func WriteHeapProfile(w io.Writer) error {
|
||
|
return writeHeap(w, 0)
|
||
|
}
|
||
|
|
||
|
// countHeap returns the number of records in the heap profile.
|
||
|
func countHeap() int {
|
||
|
n, _ := runtime.MemProfile(nil, false)
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
// writeHeapProfile writes the current runtime heap profile to w.
|
||
|
func writeHeap(w io.Writer, debug int) error {
|
||
|
// Find out how many records there are (MemProfile(nil, false)),
|
||
|
// allocate that many records, and get the data.
|
||
|
// There's a race—more records might be added between
|
||
|
// the two calls—so allocate a few extra records for safety
|
||
|
// and also try again if we're very unlucky.
|
||
|
// The loop should only execute one iteration in the common case.
|
||
|
var p []runtime.MemProfileRecord
|
||
|
n, ok := runtime.MemProfile(nil, false)
|
||
|
for {
|
||
|
// Allocate room for a slightly bigger profile,
|
||
|
// in case a few more entries have been added
|
||
|
// since the call to MemProfile.
|
||
|
p = make([]runtime.MemProfileRecord, n+50)
|
||
|
n, ok = runtime.MemProfile(p, false)
|
||
|
if ok {
|
||
|
p = p[0:n]
|
||
|
break
|
||
|
}
|
||
|
// Profile grew; try again.
|
||
|
}
|
||
|
|
||
|
sort.Sort(byInUseBytes(p))
|
||
|
|
||
|
b := bufio.NewWriter(w)
|
||
|
var tw *tabwriter.Writer
|
||
|
w = b
|
||
|
if debug > 0 {
|
||
|
tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
|
||
|
w = tw
|
||
|
}
|
||
|
|
||
|
var total runtime.MemProfileRecord
|
||
|
for i := range p {
|
||
|
r := &p[i]
|
||
|
total.AllocBytes += r.AllocBytes
|
||
|
total.AllocObjects += r.AllocObjects
|
||
|
total.FreeBytes += r.FreeBytes
|
||
|
total.FreeObjects += r.FreeObjects
|
||
|
}
|
||
|
|
||
|
// Technically the rate is MemProfileRate not 2*MemProfileRate,
|
||
|
// but early versions of the C++ heap profiler reported 2*MemProfileRate,
|
||
|
// so that's what pprof has come to expect.
|
||
|
fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
|
||
|
total.InUseObjects(), total.InUseBytes(),
|
||
|
total.AllocObjects, total.AllocBytes,
|
||
|
2*runtime.MemProfileRate)
|
||
|
|
||
|
for i := range p {
|
||
|
r := &p[i]
|
||
|
fmt.Fprintf(w, "%d: %d [%d: %d] @",
|
||
|
r.InUseObjects(), r.InUseBytes(),
|
||
|
r.AllocObjects, r.AllocBytes)
|
||
|
for _, pc := range r.Stack() {
|
||
|
fmt.Fprintf(w, " %#x", pc)
|
||
|
}
|
||
|
fmt.Fprintf(w, "\n")
|
||
|
if debug > 0 {
|
||
|
printStackRecord(w, r.Stack(), false)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Print memstats information too.
|
||
|
// Pprof will ignore, but useful for people
|
||
|
if debug > 0 {
|
||
|
s := new(runtime.MemStats)
|
||
|
runtime.ReadMemStats(s)
|
||
|
fmt.Fprintf(w, "\n# runtime.MemStats\n")
|
||
|
fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
|
||
|
fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
|
||
|
fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
|
||
|
fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
|
||
|
fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
|
||
|
|
||
|
fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
|
||
|
fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
|
||
|
fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
|
||
|
fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
|
||
|
|
||
|
fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
|
||
|
fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
|
||
|
fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
|
||
|
fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
|
||
|
|
||
|
fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
|
||
|
fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
|
||
|
fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
|
||
|
fmt.Fprintf(w, "# EnableGC = %v\n", s.EnableGC)
|
||
|
fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
|
||
|
}
|
||
|
|
||
|
if tw != nil {
|
||
|
tw.Flush()
|
||
|
}
|
||
|
return b.Flush()
|
||
|
}
|
||
|
|
||
|
// countThreadCreate returns the size of the current ThreadCreateProfile.
|
||
|
func countThreadCreate() int {
|
||
|
n, _ := runtime.ThreadCreateProfile(nil)
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
// writeThreadCreate writes the current runtime ThreadCreateProfile to w.
|
||
|
func writeThreadCreate(w io.Writer, debug int) error {
|
||
|
return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile)
|
||
|
}
|
||
|
|
||
|
// countGoroutine returns the number of goroutines.
|
||
|
func countGoroutine() int {
|
||
|
return runtime.NumGoroutine()
|
||
|
}
|
||
|
|
||
|
// writeGoroutine writes the current runtime GoroutineProfile to w.
|
||
|
func writeGoroutine(w io.Writer, debug int) error {
|
||
|
if debug >= 2 {
|
||
|
return writeGoroutineStacks(w)
|
||
|
}
|
||
|
return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile)
|
||
|
}
|
||
|
|
||
|
func writeGoroutineStacks(w io.Writer) error {
|
||
|
// We don't know how big the buffer needs to be to collect
|
||
|
// all the goroutines. Start with 1 MB and try a few times, doubling each time.
|
||
|
// Give up and use a truncated trace if 64 MB is not enough.
|
||
|
buf := make([]byte, 1<<20)
|
||
|
for i := 0; ; i++ {
|
||
|
n := runtime.Stack(buf, true)
|
||
|
if n < len(buf) {
|
||
|
buf = buf[:n]
|
||
|
break
|
||
|
}
|
||
|
if len(buf) >= 64<<20 {
|
||
|
// Filled 64 MB - stop there.
|
||
|
break
|
||
|
}
|
||
|
buf = make([]byte, 2*len(buf))
|
||
|
}
|
||
|
_, err := w.Write(buf)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error {
|
||
|
// Find out how many records there are (fetch(nil)),
|
||
|
// allocate that many records, and get the data.
|
||
|
// There's a race—more records might be added between
|
||
|
// the two calls—so allocate a few extra records for safety
|
||
|
// and also try again if we're very unlucky.
|
||
|
// The loop should only execute one iteration in the common case.
|
||
|
var p []runtime.StackRecord
|
||
|
n, ok := fetch(nil)
|
||
|
for {
|
||
|
// Allocate room for a slightly bigger profile,
|
||
|
// in case a few more entries have been added
|
||
|
// since the call to ThreadProfile.
|
||
|
p = make([]runtime.StackRecord, n+10)
|
||
|
n, ok = fetch(p)
|
||
|
if ok {
|
||
|
p = p[0:n]
|
||
|
break
|
||
|
}
|
||
|
// Profile grew; try again.
|
||
|
}
|
||
|
|
||
|
return printCountProfile(w, debug, name, runtimeProfile(p))
|
||
|
}
|
||
|
|
||
|
type runtimeProfile []runtime.StackRecord
|
||
|
|
||
|
func (p runtimeProfile) Len() int { return len(p) }
|
||
|
func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() }
|
||
|
|
||
|
var cpu struct {
|
||
|
sync.Mutex
|
||
|
profiling bool
|
||
|
done chan bool
|
||
|
}
|
||
|
|
||
|
// StartCPUProfile enables CPU profiling for the current process.
|
||
|
// While profiling, the profile will be buffered and written to w.
|
||
|
// StartCPUProfile returns an error if profiling is already enabled.
|
||
|
func StartCPUProfile(w io.Writer) error {
|
||
|
// The runtime routines allow a variable profiling rate,
|
||
|
// but in practice operating systems cannot trigger signals
|
||
|
// at more than about 500 Hz, and our processing of the
|
||
|
// signal is not cheap (mostly getting the stack trace).
|
||
|
// 100 Hz is a reasonable choice: it is frequent enough to
|
||
|
// produce useful data, rare enough not to bog down the
|
||
|
// system, and a nice round number to make it easy to
|
||
|
// convert sample counts to seconds. Instead of requiring
|
||
|
// each client to specify the frequency, we hard code it.
|
||
|
const hz = 100
|
||
|
|
||
|
// Avoid queueing behind StopCPUProfile.
|
||
|
// Could use TryLock instead if we had it.
|
||
|
if cpu.profiling {
|
||
|
return fmt.Errorf("cpu profiling already in use")
|
||
|
}
|
||
|
|
||
|
cpu.Lock()
|
||
|
defer cpu.Unlock()
|
||
|
if cpu.done == nil {
|
||
|
cpu.done = make(chan bool)
|
||
|
}
|
||
|
// Double-check.
|
||
|
if cpu.profiling {
|
||
|
return fmt.Errorf("cpu profiling already in use")
|
||
|
}
|
||
|
cpu.profiling = true
|
||
|
runtime.SetCPUProfileRate(hz)
|
||
|
go profileWriter(w)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func profileWriter(w io.Writer) {
|
||
|
for {
|
||
|
data := runtime.CPUProfile()
|
||
|
if data == nil {
|
||
|
break
|
||
|
}
|
||
|
w.Write(data)
|
||
|
}
|
||
|
cpu.done <- true
|
||
|
}
|
||
|
|
||
|
// StopCPUProfile stops the current CPU profile, if any.
|
||
|
// StopCPUProfile only returns after all the writes for the
|
||
|
// profile have completed.
|
||
|
func StopCPUProfile() {
|
||
|
cpu.Lock()
|
||
|
defer cpu.Unlock()
|
||
|
|
||
|
if !cpu.profiling {
|
||
|
return
|
||
|
}
|
||
|
cpu.profiling = false
|
||
|
runtime.SetCPUProfileRate(0)
|
||
|
<-cpu.done
|
||
|
}
|