Retro68/gcc/libgo/go/runtime/signal_sighandler.go

139 lines
3.5 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
2018-12-28 15:30:48 +00:00
// +build aix darwin dragonfly freebsd linux nacl netbsd openbsd solaris
package runtime
import (
"unsafe"
)
// crashing is the number of m's we have waited for when implementing
// GOTRACEBACK=crash when a signal is received.
var crashing int32
// sighandler is invoked when a signal occurs. The global g will be
// set to a gsignal goroutine and we will be running on the alternate
// signal stack. The parameter g will be the value of the global g
// when the signal occurred. The sig, info, and ctxt parameters are
// from the system signal handler: they are the parameters passed when
// the SA is passed to the sigaction system call.
//
// The garbage collector may have stopped the world, so write barriers
// are not allowed.
//
//go:nowritebarrierrec
func sighandler(sig uint32, info *_siginfo_t, ctxt unsafe.Pointer, gp *g) {
_g_ := getg()
c := sigctxt{info, ctxt}
2018-12-28 15:30:48 +00:00
sigfault, sigpc := getSiginfo(info, ctxt)
if sig == _SIGPROF {
2018-12-28 15:30:48 +00:00
sigprof(sigpc, gp, _g_.m)
return
}
flags := int32(_SigThrow)
if sig < uint32(len(sigtable)) {
flags = sigtable[sig].flags
}
2018-12-28 15:30:48 +00:00
if flags&_SigPanic != 0 && gp.throwsplit {
// We can't safely sigpanic because it may grow the
// stack. Abort in the signal handler instead.
flags = (flags &^ _SigPanic) | _SigThrow
}
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
// Emulate gc by passing arguments out of band,
// although we don't really have to.
gp.sig = sig
gp.sigcode0 = uintptr(c.sigcode())
gp.sigcode1 = sigfault
gp.sigpc = sigpc
setg(gp)
// All signals were blocked due to the sigaction mask;
// unblock them.
var set sigset
sigfillset(&set)
sigprocmask(_SIG_UNBLOCK, &set, nil)
sigpanic()
throw("sigpanic returned")
}
if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
if sigsend(sig) {
return
}
}
if c.sigcode() == _SI_USER && signal_ignored(sig) {
return
}
if flags&_SigKill != 0 {
dieFromSignal(sig)
}
if flags&_SigThrow == 0 {
return
}
_g_.m.throwing = 1
_g_.m.caughtsig.set(gp)
if crashing == 0 {
startpanic()
}
if sig < uint32(len(sigtable)) {
print(sigtable[sig].name, "\n")
} else {
print("Signal ", sig, "\n")
}
print("PC=", hex(sigpc), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n")
2018-12-28 15:30:48 +00:00
if _g_.m.lockedg != 0 && _g_.m.ncgo > 0 && gp == _g_.m.g0 {
print("signal arrived during cgo execution\n")
2018-12-28 15:30:48 +00:00
gp = _g_.m.lockedg.ptr()
}
print("\n")
level, _, docrash := gotraceback()
if level > 0 {
goroutineheader(gp)
traceback(0)
if crashing == 0 {
tracebackothers(gp)
print("\n")
}
dumpregs(info, ctxt)
}
if docrash {
crashing++
2018-12-28 15:30:48 +00:00
if crashing < mcount()-int32(extraMCount) {
// There are other m's that need to dump their stacks.
// Relay SIGQUIT to the next m by sending it to the current process.
// All m's that have already received SIGQUIT have signal masks blocking
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
// When the last m receives the SIGQUIT, it will fall through to the call to
// crash below. Just in case the relaying gets botched, each m involved in
// the relay sleeps for 5 seconds and then does the crash/exit itself.
// In expected operation, the last m has received the SIGQUIT and run
// crash/exit and the process is gone, all long before any of the
// 5-second sleeps have finished.
print("\n-----\n\n")
raiseproc(_SIGQUIT)
usleep(5 * 1000 * 1000)
}
crash()
}
exit(2)
}