// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mime import ( "bytes" "encoding/base64" "errors" "fmt" "io" "strings" "sync" "unicode" "unicode/utf8" ) // A WordEncoder is a RFC 2047 encoded-word encoder. type WordEncoder byte const ( // BEncoding represents Base64 encoding scheme as defined by RFC 2045. BEncoding = WordEncoder('b') // QEncoding represents the Q-encoding scheme as defined by RFC 2047. QEncoding = WordEncoder('q') ) var ( errInvalidWord = errors.New("mime: invalid RFC 2047 encoded-word") ) // Encode returns the encoded-word form of s. If s is ASCII without special // characters, it is returned unchanged. The provided charset is the IANA // charset name of s. It is case insensitive. func (e WordEncoder) Encode(charset, s string) string { if !needsEncoding(s) { return s } return e.encodeWord(charset, s) } func needsEncoding(s string) bool { for _, b := range s { if (b < ' ' || b > '~') && b != '\t' { return true } } return false } // encodeWord encodes a string into an encoded-word. func (e WordEncoder) encodeWord(charset, s string) string { buf := getBuffer() defer putBuffer(buf) e.openWord(buf, charset) if e == BEncoding { e.bEncode(buf, charset, s) } else { e.qEncode(buf, charset, s) } closeWord(buf) return buf.String() } const ( // The maximum length of an encoded-word is 75 characters. // See RFC 2047, section 2. maxEncodedWordLen = 75 // maxContentLen is how much content can be encoded, ignoring the header and // 2-byte footer. maxContentLen = maxEncodedWordLen - len("=?UTF-8?") - len("?=") ) var maxBase64Len = base64.StdEncoding.DecodedLen(maxContentLen) // bEncode encodes s using base64 encoding and writes it to buf. func (e WordEncoder) bEncode(buf *bytes.Buffer, charset, s string) { w := base64.NewEncoder(base64.StdEncoding, buf) // If the charset is not UTF-8 or if the content is short, do not bother // splitting the encoded-word. if !isUTF8(charset) || base64.StdEncoding.EncodedLen(len(s)) <= maxContentLen { io.WriteString(w, s) w.Close() return } var currentLen, last, runeLen int for i := 0; i < len(s); i += runeLen { // Multi-byte characters must not be split accross encoded-words. // See RFC 2047, section 5.3. _, runeLen = utf8.DecodeRuneInString(s[i:]) if currentLen+runeLen <= maxBase64Len { currentLen += runeLen } else { io.WriteString(w, s[last:i]) w.Close() e.splitWord(buf, charset) last = i currentLen = runeLen } } io.WriteString(w, s[last:]) w.Close() } // qEncode encodes s using Q encoding and writes it to buf. It splits the // encoded-words when necessary. func (e WordEncoder) qEncode(buf *bytes.Buffer, charset, s string) { // We only split encoded-words when the charset is UTF-8. if !isUTF8(charset) { writeQString(buf, s) return } var currentLen, runeLen int for i := 0; i < len(s); i += runeLen { b := s[i] // Multi-byte characters must not be split accross encoded-words. // See RFC 2047, section 5.3. var encLen int if b >= ' ' && b <= '~' && b != '=' && b != '?' && b != '_' { runeLen, encLen = 1, 1 } else { _, runeLen = utf8.DecodeRuneInString(s[i:]) encLen = 3 * runeLen } if currentLen+encLen > maxContentLen { e.splitWord(buf, charset) currentLen = 0 } writeQString(buf, s[i:i+runeLen]) currentLen += encLen } } // writeQString encodes s using Q encoding and writes it to buf. func writeQString(buf *bytes.Buffer, s string) { for i := 0; i < len(s); i++ { switch b := s[i]; { case b == ' ': buf.WriteByte('_') case b >= '!' && b <= '~' && b != '=' && b != '?' && b != '_': buf.WriteByte(b) default: buf.WriteByte('=') buf.WriteByte(upperhex[b>>4]) buf.WriteByte(upperhex[b&0x0f]) } } } // openWord writes the beginning of an encoded-word into buf. func (e WordEncoder) openWord(buf *bytes.Buffer, charset string) { buf.WriteString("=?") buf.WriteString(charset) buf.WriteByte('?') buf.WriteByte(byte(e)) buf.WriteByte('?') } // closeWord writes the end of an encoded-word into buf. func closeWord(buf *bytes.Buffer) { buf.WriteString("?=") } // splitWord closes the current encoded-word and opens a new one. func (e WordEncoder) splitWord(buf *bytes.Buffer, charset string) { closeWord(buf) buf.WriteByte(' ') e.openWord(buf, charset) } func isUTF8(charset string) bool { return strings.EqualFold(charset, "UTF-8") } const upperhex = "0123456789ABCDEF" // A WordDecoder decodes MIME headers containing RFC 2047 encoded-words. type WordDecoder struct { // CharsetReader, if non-nil, defines a function to generate // charset-conversion readers, converting from the provided // charset into UTF-8. // Charsets are always lower-case. utf-8, iso-8859-1 and us-ascii charsets // are handled by default. // One of the the CharsetReader's result values must be non-nil. CharsetReader func(charset string, input io.Reader) (io.Reader, error) } // Decode decodes an RFC 2047 encoded-word. func (d *WordDecoder) Decode(word string) (string, error) { if !strings.HasPrefix(word, "=?") || !strings.HasSuffix(word, "?=") || strings.Count(word, "?") != 4 { return "", errInvalidWord } word = word[2 : len(word)-2] // split delimits the first 2 fields split := strings.IndexByte(word, '?') // the field after split must only be one byte if word[split+2] != '?' { return "", errInvalidWord } // split word "UTF-8?q?ascii" into "UTF-8", 'q', and "ascii" charset := word[:split] encoding := word[split+1] text := word[split+3:] content, err := decode(encoding, text) if err != nil { return "", err } buf := getBuffer() defer putBuffer(buf) if err := d.convert(buf, charset, content); err != nil { return "", err } return buf.String(), nil } // DecodeHeader decodes all encoded-words of the given string. It returns an // error if and only if CharsetReader of d returns an error. func (d *WordDecoder) DecodeHeader(header string) (string, error) { // If there is no encoded-word, returns before creating a buffer. i := strings.Index(header, "=?") if i == -1 { return header, nil } buf := getBuffer() defer putBuffer(buf) buf.WriteString(header[:i]) header = header[i:] betweenWords := false for { start := strings.Index(header, "=?") if start == -1 { break } cur := start + len("=?") i := strings.Index(header[cur:], "?") if i == -1 { break } charset := header[cur : cur+i] cur += i + len("?") if len(header) < cur+len("Q??=") { break } encoding := header[cur] cur++ if header[cur] != '?' { break } cur++ j := strings.Index(header[cur:], "?=") if j == -1 { break } text := header[cur : cur+j] end := cur + j + len("?=") content, err := decode(encoding, text) if err != nil { betweenWords = false buf.WriteString(header[:start+2]) header = header[start+2:] continue } // Write characters before the encoded-word. White-space and newline // characters separating two encoded-words must be deleted. if start > 0 && (!betweenWords || hasNonWhitespace(header[:start])) { buf.WriteString(header[:start]) } if err := d.convert(buf, charset, content); err != nil { return "", err } header = header[end:] betweenWords = true } if len(header) > 0 { buf.WriteString(header) } return buf.String(), nil } func decode(encoding byte, text string) ([]byte, error) { switch encoding { case 'B', 'b': return base64.StdEncoding.DecodeString(text) case 'Q', 'q': return qDecode(text) default: return nil, errInvalidWord } } func (d *WordDecoder) convert(buf *bytes.Buffer, charset string, content []byte) error { switch { case strings.EqualFold("utf-8", charset): buf.Write(content) case strings.EqualFold("iso-8859-1", charset): for _, c := range content { buf.WriteRune(rune(c)) } case strings.EqualFold("us-ascii", charset): for _, c := range content { if c >= utf8.RuneSelf { buf.WriteRune(unicode.ReplacementChar) } else { buf.WriteByte(c) } } default: if d.CharsetReader == nil { return fmt.Errorf("mime: unhandled charset %q", charset) } r, err := d.CharsetReader(strings.ToLower(charset), bytes.NewReader(content)) if err != nil { return err } if _, err = buf.ReadFrom(r); err != nil { return err } } return nil } // hasNonWhitespace reports whether s (assumed to be ASCII) contains at least // one byte of non-whitespace. func hasNonWhitespace(s string) bool { for _, b := range s { switch b { // Encoded-words can only be separated by linear white spaces which does // not include vertical tabs (\v). case ' ', '\t', '\n', '\r': default: return true } } return false } // qDecode decodes a Q encoded string. func qDecode(s string) ([]byte, error) { dec := make([]byte, len(s)) n := 0 for i := 0; i < len(s); i++ { switch c := s[i]; { case c == '_': dec[n] = ' ' case c == '=': if i+2 >= len(s) { return nil, errInvalidWord } b, err := readHexByte(s[i+1], s[i+2]) if err != nil { return nil, err } dec[n] = b i += 2 case (c <= '~' && c >= ' ') || c == '\n' || c == '\r' || c == '\t': dec[n] = c default: return nil, errInvalidWord } n++ } return dec[:n], nil } // readHexByte returns the byte from its quoted-printable representation. func readHexByte(a, b byte) (byte, error) { var hb, lb byte var err error if hb, err = fromHex(a); err != nil { return 0, err } if lb, err = fromHex(b); err != nil { return 0, err } return hb<<4 | lb, nil } func fromHex(b byte) (byte, error) { switch { case b >= '0' && b <= '9': return b - '0', nil case b >= 'A' && b <= 'F': return b - 'A' + 10, nil // Accept badly encoded bytes. case b >= 'a' && b <= 'f': return b - 'a' + 10, nil } return 0, fmt.Errorf("mime: invalid hex byte %#02x", b) } var bufPool = sync.Pool{ New: func() interface{} { return new(bytes.Buffer) }, } func getBuffer() *bytes.Buffer { return bufPool.Get().(*bytes.Buffer) } func putBuffer(buf *bytes.Buffer) { if buf.Len() > 1024 { return } buf.Reset() bufPool.Put(buf) }