// The template and inlines for the -*- C++ -*- internal _Array helper class. // Copyright (C) 1997-2016 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/valarray_array.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{valarray} */ // Written by Gabriel Dos Reis #ifndef _VALARRAY_ARRAY_H #define _VALARRAY_ARRAY_H 1 #pragma GCC system_header #include #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // // Helper functions on raw pointers // // We get memory by the old fashion way inline void* __valarray_get_memory(size_t __n) { return operator new(__n); } template inline _Tp*__restrict__ __valarray_get_storage(size_t __n) { return static_cast<_Tp*__restrict__> (std::__valarray_get_memory(__n * sizeof(_Tp))); } // Return memory to the system inline void __valarray_release_memory(void* __p) { operator delete(__p); } // Turn a raw-memory into an array of _Tp filled with _Tp() // This is required in 'valarray v(n);' template struct _Array_default_ctor { // Please note that this isn't exception safe. But // valarrays aren't required to be exception safe. inline static void _S_do_it(_Tp* __b, _Tp* __e) { while (__b != __e) new(__b++) _Tp(); } }; template struct _Array_default_ctor<_Tp, true> { // For fundamental types, it suffices to say 'memset()' inline static void _S_do_it(_Tp* __b, _Tp* __e) { __builtin_memset(__b, 0, (__e - __b) * sizeof(_Tp)); } }; template inline void __valarray_default_construct(_Tp* __b, _Tp* __e) { _Array_default_ctor<_Tp, __is_scalar<_Tp>::__value>::_S_do_it(__b, __e); } // Turn a raw-memory into an array of _Tp filled with __t // This is the required in valarray v(n, t). Also // used in valarray<>::resize(). template struct _Array_init_ctor { // Please note that this isn't exception safe. But // valarrays aren't required to be exception safe. inline static void _S_do_it(_Tp* __b, _Tp* __e, const _Tp __t) { while (__b != __e) new(__b++) _Tp(__t); } }; template struct _Array_init_ctor<_Tp, true> { inline static void _S_do_it(_Tp* __b, _Tp* __e, const _Tp __t) { while (__b != __e) *__b++ = __t; } }; template inline void __valarray_fill_construct(_Tp* __b, _Tp* __e, const _Tp __t) { _Array_init_ctor<_Tp, __is_trivial(_Tp)>::_S_do_it(__b, __e, __t); } // // copy-construct raw array [__o, *) from plain array [__b, __e) // We can't just say 'memcpy()' // template struct _Array_copy_ctor { // Please note that this isn't exception safe. But // valarrays aren't required to be exception safe. inline static void _S_do_it(const _Tp* __b, const _Tp* __e, _Tp* __restrict__ __o) { while (__b != __e) new(__o++) _Tp(*__b++); } }; template struct _Array_copy_ctor<_Tp, true> { inline static void _S_do_it(const _Tp* __b, const _Tp* __e, _Tp* __restrict__ __o) { __builtin_memcpy(__o, __b, (__e - __b) * sizeof(_Tp)); } }; template inline void __valarray_copy_construct(const _Tp* __b, const _Tp* __e, _Tp* __restrict__ __o) { _Array_copy_ctor<_Tp, __is_trivial(_Tp)>::_S_do_it(__b, __e, __o); } // copy-construct raw array [__o, *) from strided array __a[<__n : __s>] template inline void __valarray_copy_construct (const _Tp* __restrict__ __a, size_t __n, size_t __s, _Tp* __restrict__ __o) { if (__is_trivial(_Tp)) while (__n--) { *__o++ = *__a; __a += __s; } else while (__n--) { new(__o++) _Tp(*__a); __a += __s; } } // copy-construct raw array [__o, *) from indexed array __a[__i[<__n>]] template inline void __valarray_copy_construct (const _Tp* __restrict__ __a, const size_t* __restrict__ __i, _Tp* __restrict__ __o, size_t __n) { if (__is_trivial(_Tp)) while (__n--) *__o++ = __a[*__i++]; else while (__n--) new (__o++) _Tp(__a[*__i++]); } // Do the necessary cleanup when we're done with arrays. template inline void __valarray_destroy_elements(_Tp* __b, _Tp* __e) { if (!__is_trivial(_Tp)) while (__b != __e) { __b->~_Tp(); ++__b; } } // Fill a plain array __a[<__n>] with __t template inline void __valarray_fill(_Tp* __restrict__ __a, size_t __n, const _Tp& __t) { while (__n--) *__a++ = __t; } // fill strided array __a[<__n-1 : __s>] with __t template inline void __valarray_fill(_Tp* __restrict__ __a, size_t __n, size_t __s, const _Tp& __t) { for (size_t __i = 0; __i < __n; ++__i, __a += __s) *__a = __t; } // fill indirect array __a[__i[<__n>]] with __i template inline void __valarray_fill(_Tp* __restrict__ __a, const size_t* __restrict__ __i, size_t __n, const _Tp& __t) { for (size_t __j = 0; __j < __n; ++__j, ++__i) __a[*__i] = __t; } // copy plain array __a[<__n>] in __b[<__n>] // For non-fundamental types, it is wrong to say 'memcpy()' template struct _Array_copier { inline static void _S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b) { while(__n--) *__b++ = *__a++; } }; template struct _Array_copier<_Tp, true> { inline static void _S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b) { __builtin_memcpy(__b, __a, __n * sizeof (_Tp)); } }; // Copy a plain array __a[<__n>] into a play array __b[<>] template inline void __valarray_copy(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b) { _Array_copier<_Tp, __is_trivial(_Tp)>::_S_do_it(__a, __n, __b); } // Copy strided array __a[<__n : __s>] in plain __b[<__n>] template inline void __valarray_copy(const _Tp* __restrict__ __a, size_t __n, size_t __s, _Tp* __restrict__ __b) { for (size_t __i = 0; __i < __n; ++__i, ++__b, __a += __s) *__b = *__a; } // Copy a plain array __a[<__n>] into a strided array __b[<__n : __s>] template inline void __valarray_copy(const _Tp* __restrict__ __a, _Tp* __restrict__ __b, size_t __n, size_t __s) { for (size_t __i = 0; __i < __n; ++__i, ++__a, __b += __s) *__b = *__a; } // Copy strided array __src[<__n : __s1>] into another // strided array __dst[< : __s2>]. Their sizes must match. template inline void __valarray_copy(const _Tp* __restrict__ __src, size_t __n, size_t __s1, _Tp* __restrict__ __dst, size_t __s2) { for (size_t __i = 0; __i < __n; ++__i) __dst[__i * __s2] = __src[__i * __s1]; } // Copy an indexed array __a[__i[<__n>]] in plain array __b[<__n>] template inline void __valarray_copy(const _Tp* __restrict__ __a, const size_t* __restrict__ __i, _Tp* __restrict__ __b, size_t __n) { for (size_t __j = 0; __j < __n; ++__j, ++__b, ++__i) *__b = __a[*__i]; } // Copy a plain array __a[<__n>] in an indexed array __b[__i[<__n>]] template inline void __valarray_copy(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b, const size_t* __restrict__ __i) { for (size_t __j = 0; __j < __n; ++__j, ++__a, ++__i) __b[*__i] = *__a; } // Copy the __n first elements of an indexed array __src[<__i>] into // another indexed array __dst[<__j>]. template inline void __valarray_copy(const _Tp* __restrict__ __src, size_t __n, const size_t* __restrict__ __i, _Tp* __restrict__ __dst, const size_t* __restrict__ __j) { for (size_t __k = 0; __k < __n; ++__k) __dst[*__j++] = __src[*__i++]; } // // Compute the sum of elements in range [__f, __l) // This is a naive algorithm. It suffers from cancelling. // In the future try to specialize // for _Tp = float, double, long double using a more accurate // algorithm. // template inline _Tp __valarray_sum(const _Tp* __f, const _Tp* __l) { _Tp __r = _Tp(); while (__f != __l) __r += *__f++; return __r; } // Compute the product of all elements in range [__f, __l) template inline _Tp __valarray_product(const _Tp* __f, const _Tp* __l) { _Tp __r = _Tp(1); while (__f != __l) __r = __r * *__f++; return __r; } // Compute the min/max of an array-expression template inline typename _Ta::value_type __valarray_min(const _Ta& __a) { size_t __s = __a.size(); typedef typename _Ta::value_type _Value_type; _Value_type __r = __s == 0 ? _Value_type() : __a[0]; for (size_t __i = 1; __i < __s; ++__i) { _Value_type __t = __a[__i]; if (__t < __r) __r = __t; } return __r; } template inline typename _Ta::value_type __valarray_max(const _Ta& __a) { size_t __s = __a.size(); typedef typename _Ta::value_type _Value_type; _Value_type __r = __s == 0 ? _Value_type() : __a[0]; for (size_t __i = 1; __i < __s; ++__i) { _Value_type __t = __a[__i]; if (__t > __r) __r = __t; } return __r; } // // Helper class _Array, first layer of valarray abstraction. // All operations on valarray should be forwarded to this class // whenever possible. -- gdr // template struct _Array { explicit _Array(size_t); explicit _Array(_Tp* const __restrict__); explicit _Array(const valarray<_Tp>&); _Array(const _Tp* __restrict__, size_t); _Tp* begin() const; _Tp* const __restrict__ _M_data; }; // Copy-construct plain array __b[<__n>] from indexed array __a[__i[<__n>]] template inline void __valarray_copy_construct(_Array<_Tp> __a, _Array __i, _Array<_Tp> __b, size_t __n) { std::__valarray_copy_construct(__a._M_data, __i._M_data, __b._M_data, __n); } // Copy-construct plain array __b[<__n>] from strided array __a[<__n : __s>] template inline void __valarray_copy_construct(_Array<_Tp> __a, size_t __n, size_t __s, _Array<_Tp> __b) { std::__valarray_copy_construct(__a._M_data, __n, __s, __b._M_data); } template inline void __valarray_fill (_Array<_Tp> __a, size_t __n, const _Tp& __t) { std::__valarray_fill(__a._M_data, __n, __t); } template inline void __valarray_fill(_Array<_Tp> __a, size_t __n, size_t __s, const _Tp& __t) { std::__valarray_fill(__a._M_data, __n, __s, __t); } template inline void __valarray_fill(_Array<_Tp> __a, _Array __i, size_t __n, const _Tp& __t) { std::__valarray_fill(__a._M_data, __i._M_data, __n, __t); } // Copy a plain array __a[<__n>] into a play array __b[<>] template inline void __valarray_copy(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b) { std::__valarray_copy(__a._M_data, __n, __b._M_data); } // Copy strided array __a[<__n : __s>] in plain __b[<__n>] template inline void __valarray_copy(_Array<_Tp> __a, size_t __n, size_t __s, _Array<_Tp> __b) { std::__valarray_copy(__a._M_data, __n, __s, __b._M_data); } // Copy a plain array __a[<__n>] into a strided array __b[<__n : __s>] template inline void __valarray_copy(_Array<_Tp> __a, _Array<_Tp> __b, size_t __n, size_t __s) { __valarray_copy(__a._M_data, __b._M_data, __n, __s); } // Copy strided array __src[<__n : __s1>] into another // strided array __dst[< : __s2>]. Their sizes must match. template inline void __valarray_copy(_Array<_Tp> __a, size_t __n, size_t __s1, _Array<_Tp> __b, size_t __s2) { std::__valarray_copy(__a._M_data, __n, __s1, __b._M_data, __s2); } // Copy an indexed array __a[__i[<__n>]] in plain array __b[<__n>] template inline void __valarray_copy(_Array<_Tp> __a, _Array __i, _Array<_Tp> __b, size_t __n) { std::__valarray_copy(__a._M_data, __i._M_data, __b._M_data, __n); } // Copy a plain array __a[<__n>] in an indexed array __b[__i[<__n>]] template inline void __valarray_copy(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b, _Array __i) { std::__valarray_copy(__a._M_data, __n, __b._M_data, __i._M_data); } // Copy the __n first elements of an indexed array __src[<__i>] into // another indexed array __dst[<__j>]. template inline void __valarray_copy(_Array<_Tp> __src, size_t __n, _Array __i, _Array<_Tp> __dst, _Array __j) { std::__valarray_copy(__src._M_data, __n, __i._M_data, __dst._M_data, __j._M_data); } template inline _Array<_Tp>::_Array(size_t __n) : _M_data(__valarray_get_storage<_Tp>(__n)) { std::__valarray_default_construct(_M_data, _M_data + __n); } template inline _Array<_Tp>::_Array(_Tp* const __restrict__ __p) : _M_data (__p) {} template inline _Array<_Tp>::_Array(const valarray<_Tp>& __v) : _M_data (__v._M_data) {} template inline _Array<_Tp>::_Array(const _Tp* __restrict__ __b, size_t __s) : _M_data(__valarray_get_storage<_Tp>(__s)) { std::__valarray_copy_construct(__b, __s, _M_data); } template inline _Tp* _Array<_Tp>::begin () const { return _M_data; } #define _DEFINE_ARRAY_FUNCTION(_Op, _Name) \ template \ inline void \ _Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, const _Tp& __t) \ { \ for (_Tp* __p = __a._M_data; __p < __a._M_data + __n; ++__p) \ *__p _Op##= __t; \ } \ \ template \ inline void \ _Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b) \ { \ _Tp* __p = __a._M_data; \ for (_Tp* __q = __b._M_data; __q < __b._M_data + __n; ++__p, ++__q) \ *__p _Op##= *__q; \ } \ \ template \ void \ _Array_augmented_##_Name(_Array<_Tp> __a, \ const _Expr<_Dom, _Tp>& __e, size_t __n) \ { \ _Tp* __p(__a._M_data); \ for (size_t __i = 0; __i < __n; ++__i, ++__p) \ *__p _Op##= __e[__i]; \ } \ \ template \ inline void \ _Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, size_t __s, \ _Array<_Tp> __b) \ { \ _Tp* __q(__b._M_data); \ for (_Tp* __p = __a._M_data; __p < __a._M_data + __s * __n; \ __p += __s, ++__q) \ *__p _Op##= *__q; \ } \ \ template \ inline void \ _Array_augmented_##_Name(_Array<_Tp> __a, _Array<_Tp> __b, \ size_t __n, size_t __s) \ { \ _Tp* __q(__b._M_data); \ for (_Tp* __p = __a._M_data; __p < __a._M_data + __n; \ ++__p, __q += __s) \ *__p _Op##= *__q; \ } \ \ template \ void \ _Array_augmented_##_Name(_Array<_Tp> __a, size_t __s, \ const _Expr<_Dom, _Tp>& __e, size_t __n) \ { \ _Tp* __p(__a._M_data); \ for (size_t __i = 0; __i < __n; ++__i, __p += __s) \ *__p _Op##= __e[__i]; \ } \ \ template \ inline void \ _Array_augmented_##_Name(_Array<_Tp> __a, _Array __i, \ _Array<_Tp> __b, size_t __n) \ { \ _Tp* __q(__b._M_data); \ for (size_t* __j = __i._M_data; __j < __i._M_data + __n; \ ++__j, ++__q) \ __a._M_data[*__j] _Op##= *__q; \ } \ \ template \ inline void \ _Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, \ _Array<_Tp> __b, _Array __i) \ { \ _Tp* __p(__a._M_data); \ for (size_t* __j = __i._M_data; __j<__i._M_data + __n; \ ++__j, ++__p) \ *__p _Op##= __b._M_data[*__j]; \ } \ \ template \ void \ _Array_augmented_##_Name(_Array<_Tp> __a, _Array __i, \ const _Expr<_Dom, _Tp>& __e, size_t __n) \ { \ size_t* __j(__i._M_data); \ for (size_t __k = 0; __k<__n; ++__k, ++__j) \ __a._M_data[*__j] _Op##= __e[__k]; \ } \ \ template \ void \ _Array_augmented_##_Name(_Array<_Tp> __a, _Array __m, \ _Array<_Tp> __b, size_t __n) \ { \ bool* __ok(__m._M_data); \ _Tp* __p(__a._M_data); \ for (_Tp* __q = __b._M_data; __q < __b._M_data + __n; \ ++__q, ++__ok, ++__p) \ { \ while (! *__ok) \ { \ ++__ok; \ ++__p; \ } \ *__p _Op##= *__q; \ } \ } \ \ template \ void \ _Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, \ _Array<_Tp> __b, _Array __m) \ { \ bool* __ok(__m._M_data); \ _Tp* __q(__b._M_data); \ for (_Tp* __p = __a._M_data; __p < __a._M_data + __n; \ ++__p, ++__ok, ++__q) \ { \ while (! *__ok) \ { \ ++__ok; \ ++__q; \ } \ *__p _Op##= *__q; \ } \ } \ \ template \ void \ _Array_augmented_##_Name(_Array<_Tp> __a, _Array __m, \ const _Expr<_Dom, _Tp>& __e, size_t __n) \ { \ bool* __ok(__m._M_data); \ _Tp* __p(__a._M_data); \ for (size_t __i = 0; __i < __n; ++__i, ++__ok, ++__p) \ { \ while (! *__ok) \ { \ ++__ok; \ ++__p; \ } \ *__p _Op##= __e[__i]; \ } \ } _DEFINE_ARRAY_FUNCTION(+, __plus) _DEFINE_ARRAY_FUNCTION(-, __minus) _DEFINE_ARRAY_FUNCTION(*, __multiplies) _DEFINE_ARRAY_FUNCTION(/, __divides) _DEFINE_ARRAY_FUNCTION(%, __modulus) _DEFINE_ARRAY_FUNCTION(^, __bitwise_xor) _DEFINE_ARRAY_FUNCTION(|, __bitwise_or) _DEFINE_ARRAY_FUNCTION(&, __bitwise_and) _DEFINE_ARRAY_FUNCTION(<<, __shift_left) _DEFINE_ARRAY_FUNCTION(>>, __shift_right) #undef _DEFINE_ARRAY_FUNCTION _GLIBCXX_END_NAMESPACE_VERSION } // namespace # include #endif /* _ARRAY_H */