// Debugging support implementation -*- C++ -*- // Copyright (C) 2003-2016 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file debug/functions.h * This file is a GNU debug extension to the Standard C++ Library. */ #ifndef _GLIBCXX_DEBUG_FUNCTIONS_H #define _GLIBCXX_DEBUG_FUNCTIONS_H 1 #include // for __addressof #include // for less #if __cplusplus >= 201103L # include // for is_lvalue_reference and // conditional. #endif #include #include namespace __gnu_debug { template class _Safe_iterator; template struct _Insert_range_from_self_is_safe { enum { __value = 0 }; }; template struct _Is_contiguous_sequence : std::__false_type { }; // An arbitrary iterator pointer is not singular. inline bool __check_singular_aux(const void*) { return false; } // We may have an iterator that derives from _Safe_iterator_base but isn't // a _Safe_iterator. template inline bool __check_singular(const _Iterator& __x) { return __check_singular_aux(std::__addressof(__x)); } /** Non-NULL pointers are nonsingular. */ template inline bool __check_singular(const _Tp* __ptr) { return __ptr == 0; } /** Assume that some arbitrary iterator is dereferenceable, because we can't prove that it isn't. */ template inline bool __check_dereferenceable(const _Iterator&) { return true; } /** Non-NULL pointers are dereferenceable. */ template inline bool __check_dereferenceable(const _Tp* __ptr) { return __ptr; } /* Checks that [first, last) is a valid range, and then returns * __first. This routine is useful when we can't use a separate * assertion statement because, e.g., we are in a constructor. */ template inline _InputIterator __check_valid_range(const _InputIterator& __first, const _InputIterator& __last __attribute__((__unused__))) { __glibcxx_check_valid_range(__first, __last); return __first; } /* Handle the case where __other is a pointer to _Sequence::value_type. */ template inline bool __foreign_iterator_aux4(const _Safe_iterator<_Iterator, _Sequence>& __it, const typename _Sequence::value_type* __other) { typedef const typename _Sequence::value_type* _PointerType; typedef std::less<_PointerType> _Less; #if __cplusplus >= 201103L constexpr _Less __l{}; #else const _Less __l = _Less(); #endif const _Sequence* __seq = __it._M_get_sequence(); const _PointerType __begin = std::__addressof(*__seq->_M_base().begin()); const _PointerType __end = std::__addressof(*(__seq->_M_base().end()-1)); // Check whether __other points within the contiguous storage. return __l(__other, __begin) || __l(__end, __other); } /* Fallback overload for when we can't tell, assume it is valid. */ template inline bool __foreign_iterator_aux4(const _Safe_iterator<_Iterator, _Sequence>&, ...) { return true; } /* Handle sequences with contiguous storage */ template inline bool __foreign_iterator_aux3(const _Safe_iterator<_Iterator, _Sequence>& __it, const _InputIterator& __other, const _InputIterator& __other_end, std::__true_type) { if (__other == __other_end) return true; // inserting nothing is safe even if not foreign iters if (__it._M_get_sequence()->begin() == __it._M_get_sequence()->end()) return true; // can't be self-inserting if self is empty return __foreign_iterator_aux4(__it, std::__addressof(*__other)); } /* Handle non-contiguous containers, assume it is valid. */ template inline bool __foreign_iterator_aux3(const _Safe_iterator<_Iterator, _Sequence>&, const _InputIterator&, const _InputIterator&, std::__false_type) { return true; } /** Handle debug iterators from the same type of container. */ template inline bool __foreign_iterator_aux2(const _Safe_iterator<_Iterator, _Sequence>& __it, const _Safe_iterator<_OtherIterator, _Sequence>& __other, const _Safe_iterator<_OtherIterator, _Sequence>&) { return __it._M_get_sequence() != __other._M_get_sequence(); } /** Handle debug iterators from different types of container. */ template inline bool __foreign_iterator_aux2(const _Safe_iterator<_Iterator, _Sequence>& __it, const _Safe_iterator<_OtherIterator, _OtherSequence>&, const _Safe_iterator<_OtherIterator, _OtherSequence>&) { return true; } /* Handle non-debug iterators. */ template inline bool __foreign_iterator_aux2(const _Safe_iterator<_Iterator, _Sequence>& __it, const _InputIterator& __other, const _InputIterator& __other_end) { #if __cplusplus < 201103L typedef _Is_contiguous_sequence<_Sequence> __tag; #else using __lvalref = std::is_lvalue_reference< typename std::iterator_traits<_InputIterator>::reference>; using __contiguous = _Is_contiguous_sequence<_Sequence>; using __tag = typename std::conditional<__lvalref::value, __contiguous, std::__false_type>::type; #endif return __foreign_iterator_aux3(__it, __other, __other_end, __tag()); } /* Handle the case where we aren't really inserting a range after all */ template inline bool __foreign_iterator_aux(const _Safe_iterator<_Iterator, _Sequence>&, _Integral, _Integral, std::__true_type) { return true; } /* Handle all iterators. */ template inline bool __foreign_iterator_aux(const _Safe_iterator<_Iterator, _Sequence>& __it, _InputIterator __other, _InputIterator __other_end, std::__false_type) { return _Insert_range_from_self_is_safe<_Sequence>::__value || __foreign_iterator_aux2(__it, std::__miter_base(__other), std::__miter_base(__other_end)); } template inline bool __foreign_iterator(const _Safe_iterator<_Iterator, _Sequence>& __it, _InputIterator __other, _InputIterator __other_end) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; return __foreign_iterator_aux(__it, __other, __other_end, _Integral()); } /** Checks that __s is non-NULL or __n == 0, and then returns __s. */ template inline const _CharT* __check_string(const _CharT* __s, const _Integer& __n __attribute__((__unused__))) { #ifdef _GLIBCXX_DEBUG_PEDANTIC __glibcxx_assert(__s != 0 || __n == 0); #endif return __s; } /** Checks that __s is non-NULL and then returns __s. */ template inline const _CharT* __check_string(const _CharT* __s) { #ifdef _GLIBCXX_DEBUG_PEDANTIC __glibcxx_assert(__s != 0); #endif return __s; } // Can't check if an input iterator sequence is sorted, because we // can't step through the sequence. template inline bool __check_sorted_aux(const _InputIterator&, const _InputIterator&, std::input_iterator_tag) { return true; } // Can verify if a forward iterator sequence is in fact sorted using // std::__is_sorted template inline bool __check_sorted_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { if (__first == __last) return true; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, (void)++__next) if (*__next < *__first) return false; return true; } // Can't check if an input iterator sequence is sorted, because we can't step // through the sequence. template inline bool __check_sorted_aux(const _InputIterator&, const _InputIterator&, _Predicate, std::input_iterator_tag) { return true; } // Can verify if a forward iterator sequence is in fact sorted using // std::__is_sorted template inline bool __check_sorted_aux(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, std::forward_iterator_tag) { if (__first == __last) return true; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, (void)++__next) if (__pred(*__next, *__first)) return false; return true; } // Determine if a sequence is sorted. template inline bool __check_sorted(const _InputIterator& __first, const _InputIterator& __last) { // Verify that the < operator for elements in the sequence is a // StrictWeakOrdering by checking that it is irreflexive. __glibcxx_assert(__first == __last || !(*__first < *__first)); return __check_sorted_aux(__first, __last, std::__iterator_category(__first)); } template inline bool __check_sorted(const _InputIterator& __first, const _InputIterator& __last, _Predicate __pred) { // Verify that the predicate is StrictWeakOrdering by checking that it // is irreflexive. __glibcxx_assert(__first == __last || !__pred(*__first, *__first)); return __check_sorted_aux(__first, __last, __pred, std::__iterator_category(__first)); } template inline bool __check_sorted_set_aux(const _InputIterator& __first, const _InputIterator& __last, std::__true_type) { return __check_sorted(__first, __last); } template inline bool __check_sorted_set_aux(const _InputIterator&, const _InputIterator&, std::__false_type) { return true; } template inline bool __check_sorted_set_aux(const _InputIterator& __first, const _InputIterator& __last, _Predicate __pred, std::__true_type) { return __check_sorted(__first, __last, __pred); } template inline bool __check_sorted_set_aux(const _InputIterator&, const _InputIterator&, _Predicate, std::__false_type) { return true; } // ... special variant used in std::merge, std::includes, std::set_*. template inline bool __check_sorted_set(const _InputIterator1& __first, const _InputIterator1& __last, const _InputIterator2&) { typedef typename std::iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename std::iterator_traits<_InputIterator2>::value_type _ValueType2; typedef typename std::__are_same<_ValueType1, _ValueType2>::__type _SameType; return __check_sorted_set_aux(__first, __last, _SameType()); } template inline bool __check_sorted_set(const _InputIterator1& __first, const _InputIterator1& __last, const _InputIterator2&, _Predicate __pred) { typedef typename std::iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename std::iterator_traits<_InputIterator2>::value_type _ValueType2; typedef typename std::__are_same<_ValueType1, _ValueType2>::__type _SameType; return __check_sorted_set_aux(__first, __last, __pred, _SameType()); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 270. Binary search requirements overly strict // Determine if a sequence is partitioned w.r.t. this element. template inline bool __check_partitioned_lower(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { while (__first != __last && *__first < __value) ++__first; if (__first != __last) { ++__first; while (__first != __last && !(*__first < __value)) ++__first; } return __first == __last; } template inline bool __check_partitioned_upper(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { while (__first != __last && !(__value < *__first)) ++__first; if (__first != __last) { ++__first; while (__first != __last && __value < *__first) ++__first; } return __first == __last; } // Determine if a sequence is partitioned w.r.t. this element. template inline bool __check_partitioned_lower(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value, _Pred __pred) { while (__first != __last && bool(__pred(*__first, __value))) ++__first; if (__first != __last) { ++__first; while (__first != __last && !bool(__pred(*__first, __value))) ++__first; } return __first == __last; } template inline bool __check_partitioned_upper(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value, _Pred __pred) { while (__first != __last && !bool(__pred(__value, *__first))) ++__first; if (__first != __last) { ++__first; while (__first != __last && bool(__pred(__value, *__first))) ++__first; } return __first == __last; } #if __cplusplus >= 201103L struct _Irreflexive_checker { template static typename std::iterator_traits<_It>::reference __deref(); template() < __deref<_It>())> static bool _S_is_valid(_It __it) { return !(*__it < *__it); } // Fallback method if operator doesn't exist. template static bool _S_is_valid(_Args...) { return true; } template()(__deref<_It>(), __deref<_It>()))> static bool _S_is_valid_pred(_It __it, _Pred __pred) { return !__pred(*__it, *__it); } // Fallback method if predicate can't be invoked. template static bool _S_is_valid_pred(_Args...) { return true; } }; template inline bool __is_irreflexive(_Iterator __it) { return _Irreflexive_checker::_S_is_valid(__it); } template inline bool __is_irreflexive_pred(_Iterator __it, _Pred __pred) { return _Irreflexive_checker::_S_is_valid_pred(__it, __pred); } #endif } // namespace __gnu_debug #endif