



January 31, 1997

Mac OS Runtime Architectures

For System 7 Through Mac OS 9



Apple Computer, Inc.
© 1996, 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, HyperCard,
Mac, MacApp, Macintosh, OpenDoc,
and QuickTime are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
QuickDraw and ResEdit are
trademarks of Apple Computer, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

SOM and System Object Module are
licensed trademarks of IBM
Corporation.

UNIX is a registered trademark in
the United States and other
countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, ADC
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to ADC.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Figures, Tables, and Listings ix

Preface

About This Book

xv

What’s in This Book xvi
How to Use This Book xvii
Related Documentation xviii
Conventions Used in This Book xviii

Special Fonts xviii
Command Syntax xix
Types of Notes xix

For More Information xix

Chapter 1

CFM-Based Runtime Architecture

1-1

Overview 1-3
Closures 1-6

Code and Data Sections 1-8
Reference Counts 1-9
Using Code Fragment Manager Options 1-10

Preparing a Closure 1-15
Searching for Import Libraries 1-16
Checking for Compatible Import Libraries 1-19

The Structure of Fragments 1-23
Fragment Storage 1-24
The Code Fragment Resource 1-25

Extensions to Code Fragment Resource Entries 1-29
Sample Code Fragment Resource Entry Definitions 1-31

Special Symbols 1-34
The Main Symbol 1-34
The Initialization Function 1-35
The Termination Routine 1-36

iv

Chapter 2

Indirect Addressing in the CFM-Based Architecture

2-1

Overview 2-3
PowerPC Implementation 2-8

Glue Code for Named Indirect Calls 2-10
Glue Code for Pointer-Based Calls 2-11

CFM-68K Implementation 2-11
Direct and Indirect Calls 2-12
The Direct Data Area Switching Method 2-13

Chapter 3

Programming for the CFM-Based Runtime Architecture

3-1

Calling the Code Fragment Manager 3-3
Preparing Code Fragments 3-3
Releasing Fragments 3-6
Getting Information About Exported Symbols 3-6
Using Shadow Libraries 3-7

Requirements for Executing CFM-68K Runtime Programs 3-10
Using Stub Libraries at Build Time 3-11
Weak Libraries and Symbols 3-11
Multiple Names for the Same Fragment 3-13
Import Library Techniques 3-14

Use No Version Numbers and No Weak Symbols 3-15
Declare Weak Symbols in Client 3-16
Use PEF Version Numbering 3-16
Change Names for Newer Import Libraries 3-19
Create an Alias Library Name Using Multiple 'cfrg' 0 Entries 3-20
Put New Symbols in New Logical Libraries 3-21
Use Reexport Libraries 3-22

Using the Main Symbol as a Data Structure 3-24
Systemwide Sharing and Data-Only Fragments 3-24
Multiple Fragments With the Same Name 3-26

v

Chapter 4

PowerPC Runtime Conventions

4-1

Data Types 4-3
Data Alignment 4-4
PowerPC Stack Structure 4-6

Prologs and Epilogs 4-8
The Red Zone 4-10

Routine Calling Conventions 4-11
Function Return 4-17
Register Preservation 4-17

Chapter 5

CFM-68K Runtime Conventions

5-1

Data Types 5-3
Routine Calling Conventions 5-4

Parameter Deallocation 5-5
Stack Alignment 5-5
Fixed-Argument Passing Conventions 5-6
Variable-Argument Passing Conventions 5-7
Function Value Return 5-7
Stack Frames, A6, and Reserved Frame Slots 5-8
Register Preservation 5-8

Chapter 6

The Mixed Mode Manager

6-1

Overview 6-3
Universal Procedure Pointers and Routine Descriptors 6-5

CFM-Based Code Originates the Call 6-6
Classic 68K Code Originates the Call 6-7

Mixed Mode Manager Performance Issues 6-9
Mode Switching Implementations 6-10

Calling PowerPC Code From Classic 68K Code 6-10
Calling Classic 68K Code From PowerPC Code 6-13
Calling CFM-68K Code From Classic 68K Code 6-15
Calling Classic 68K Code From CFM-68K Code 6-16

vi

Chapter 7

Fat Binary Programs

7-1

Creating Fat Binary Programs 7-3
Accelerated and Fat Resources 7-4

Chapter 8

PEF Structure

8-1

Overview 8-3
The Container Header 8-4
PEF Sections 8-5

The Section Name Table 8-10
Section Contents 8-10

Pattern-Initialized Data 8-10
Pattern-Initialization Opcodes 8-12

The Loader Section 8-15
The Loader Header 8-16
Imported Libraries and Symbols 8-18

Imported Library Descriptions 8-18
The Imported Symbol Table 8-19

Relocations 8-21
The Relocation Headers Table 8-23
The Relocation Area 8-24
A Relocation Example 8-24
Relocation Instruction Set 8-27

The Loader String Table 8-35
Exported Symbols 8-36

The Export Hash Table 8-38
The Export Key Table 8-39
The Exported Symbol Table 8-40
Hashing Functions 8-41

PEF Size Limits 8-43

vii

Chapter 9

CFM-68K Application and Shared Library Structure

9-1

CFM-68K Application Structure 9-3
The Segment Header 9-3
The Jump Table 9-5
Transition Vectors and the Transition Vector Table 9-6
The 'CODE' 0 Resource 9-7
The 'CODE' 6 Resource 9-8
The 'rseg' 0 Resource 9-8
The 'rseg' 1 Resource 9-10

CFM-68K Shared Library Structure 9-10
Jump Table Conversion 9-11
Transition Vector Conversion 9-12
Static Constructors and Destructors 9-13

Chapter 10

Classic 68K Runtime Architecture

10-1

The A5 World 10-3
Program Segmentation 10-5
The Jump Table 10-6
Bypassing MC68000 Addressing Limitations 10-12

Increasing Global Data Size 10-14
Increasing Segment Size 10-15
Increasing the Size of the Jump Table 10-16
32-Bit Everything 10-17

How 32-Bit Everything Is Implemented 10-19
Expanding Global Data and the Jump Table 10-19
Intrasegment References 10-20
The Far Model Jump Table 10-20
The Far Model Segment Header Structure 10-23
Relocation Information Format 10-25

viii

Chapter 11

Classic 68K Runtime Conventions

11-1

Data Types 11-3
Classic 68K Stack Structure and Calling Conventions 11-4

Pascal Calling Conventions 11-6
SC Compiler C Calling Conventions 11-7
Register Preservation 11-9

Appendix A

Terminology Changes

A-1

Appendix B

The RTLib.o and NuRTLib.o Libraries

B-1

Runtime Interface B-1
Runtime Operations B-4

Segment Manager Hooks B-4
User Handlers B-5
Error Handling With kRTSetSegLoadErr B-7

kRTGetVersion and kRTGetVersionA5 B-10
kRTGetJTAddress and kRTGetJTAddressA5 B-10
kRTPreLaunch and kRTPostLaunch B-11
kRTLoadSegbyNum and kRTLoadSegbyNumA5 B-12

A Preload Example B-13

Glossary

GL-1

Index

IN-1

ix

Figures, Tables, and Listings

Chapter 1

CFM-Based Runtime Architecture

1-1

Figure 1-1

A closure 1-6

Figure 1-2

Multiple closures in a process 1-7

Figure 1-3

Sections associated with a connection 1-8

Figure 1-4

Fragments shared between processes 1-9

Figure 1-5

Using

kReferenceCFrag

1-12

Figure 1-6

Using

kFindCFrag

1-13

Figure 1-7

Using private connections 1-14

Figure 1-8

Linking to a definition stub library 1-19

Figure 1-9

Using the implementation version of a library at runtime 1-20

Figure 1-10

Library versions compatible with each other 1-22

Figure 1-11

Library versions incompatible with each other 1-22

Figure 1-12

Three fragments with initialization functions 1-36

Table 1-1

Two import libraries and their version numbers 1-21

Listing 1-1

Pseudocode for the CFM version-checking algorithm 1-23

Listing 1-2

The code fragment resource 1-25

Listing 1-3

A code fragment resource entry 1-26

Listing 1-4

Structure of a sample code fragment resource extension 1-29

Listing 1-5

The code fragment resource extension header 1-29

Listing 1-6

A code fragment resource extension of type

30EE

1-30

Listing 1-7

A sample

'cfrg'0

 resource for a PowerPC runtime
application 1-31

Listing 1-8

A sample

'cfrg'0

 resource for a CFM-68K runtime
application 1-32

Listing 1-9

A sample

'cfrg'0

 resource for an import library 1-33

Chapter 2

Indirect Addressing in the CFM-Based Architecture

2-1

Figure 2-1

Direct addressing of data 2-4

Figure 2-2

Indirect addressing of data 2-5

Figure 2-3

A transition vector 2-7

Figure 2-4

Unprepared and prepared PowerPC transition vectors 2-9

x

Listing 2-1

Glue code for a cross-fragment call 2-10

Listing 2-2

Glue code for a pointer-based call 2-11

Listing 2-3

Glue code for a simple function 2-14

Listing 2-4

Making an indirect call from within an indirectly
called function 2-14

Chapter 3

Programming for the CFM-Based Runtime Architecture

3-1

Figure 3-1

Two names for a single fragment 3-13

Figure 3-2

Changes to import library version numbers 3-17

Figure 3-3

Version numbering with weak imports 3-19

Figure 3-4

Multiple logical names for a single library 3-21

Figure 3-5

Using a reexport library 3-22

Figure 3-6

The reexport library removed at runtime 3-23

Figure 3-7

Systemwide sharing in a fragment containing code and data 3-25

Figure 3-8

Systemwide sharing using a data-only fragment 3-26

Figure 3-9

Identical but independent fragments 3-27

Table 3-1

Methods for maintaining import library compatibility 3-14

Listing 3-1

Preparing a fragment using

GetSharedLibrary

3-4

Listing 3-2

Preparing a disk-based fragment 3-4

Listing 3-3

Preparing a resource-based fragment 3-5

Listing 3-4

Finding symbol names 3-7

Listing 3-5

Sample code found in a shadow library 3-8

Listing 3-6

Testing for weak imports 3-12

Chapter 4

PowerPC Runtime Conventions

4-1

Figure 4-1

The PowerPC stack 4-6

Figure 4-2

A stack frame’s linkage area 4-7

Figure 4-3

The Red Zone 4-10

Figure 4-4

The organization of the parameter area of the stack 4-14

Figure 4-5

Parameter layout in registers and the parameter area 4-15

Figure 4-6

Passing a variable number of parameters 4-16

Table 4-1

Data types in the PowerPC runtime environment 4-3

Table 4-2

Embedded alignment modes 4-5

Table 4-3

Volatile and nonvolatile registers 4-17

xi

Listing 4-1

Sample prolog code 4-9

Listing 4-2

Sample epilog code 4-10

Listing 4-3

A variable-argument routine 4-16

Chapter 5

CFM-68K Runtime Conventions

5-1

Table 5-1

Data types in the CFM-68K runtime environment 5-3

Table 5-2

Volatile and nonvolatile registers 5-8

Chapter 6

The Mixed Mode Manager

6-1

Figure 6-1

Calling path from classic 68K code to a CFM-based routine 6-8

Figure 6-2

The stack before a mode switch 6-11

Figure 6-3

A classic 68K to PowerPC switch frame 6-12

Figure 6-4

A PowerPC to classic 68K switch frame 6-14

Figure 6-5

A classic 68K to CFM-68K switch frame 6-16

Figure 6-6

A CFM-68K to classic 68K switch frame 6-17

Chapter 7

Fat Binary Programs

7-1

Figure 7-1

The structure of an accelerated resource 7-5

Figure 7-2

The structure of a fat resource 7-6

Listing 7-1

Rez input for a stub list definition resource 7-8

Listing 7-2

Using an accelerated resource 7-9

Listing 7-3

Acceptable global declarations in an accelerated resource 7-11

Listing 7-4

Unacceptable global declarations and code in an accelerated
resource 7-12

Chapter 8

PEF Structure

8-1

Figure 8-1

Structure of a PEF container 8-3

Figure 8-2

A pattern-initialization instruction 8-11

Figure 8-3

Argument storage in pattern-initialized data 8-12

Figure 8-4

Data section after executing

interleaveRepeatBlockWithBlockCopy

8-14

Figure 8-5

Data section after executing

interleaveRepeatBlockWithZero

8-14

xii

Figure 8-6

PEF loader section 8-15

Figure 8-7

An imported symbol table entry 8-20

Figure 8-8

A symbol class field 8-20

Figure 8-9

Unprepared fragments 8-25

Figure 8-10

Relocations for the calling fragment 8-26

Figure 8-11

Relocations for the called fragment 8-27

Figure 8-12

Structure of the

RelocBySectDWithSkip

 instruction 8-29

Figure 8-13

Structure of the Relocate Value opcode group 8-29

Figure 8-14

Structure of the Relocate By Index opcode group 8-31

Figure 8-15

Structure of the

RelocIncrPosition

 instruction 8-32

Figure 8-16

Structure of the

RelocSmRepeat

 instruction 8-32

Figure 8-17 Structure of the RelocSetPosition instruction 8-33
Figure 8-18 Structure of the RelocLgByImport instruction 8-33
Figure 8-19 Structure of the RelocLgRepeat instruction 8-34
Figure 8-20 Structure of the RelocLgSetOrBySection instruction 8-35
Figure 8-21 A traditional hash table 8-36
Figure 8-22 Flattened hash table implementation 8-37
Figure 8-23 A hash table entry 8-39
Figure 8-24 A hash word 8-39

Table 8-1 Section types 8-8
Table 8-2 Sharing options 8-9
Table 8-3 Symbol classes 8-21
Table 8-4 Relocation variables 8-22
Table 8-5 Subopcodes for the RelocateValue opcode group 8-30
Table 8-6 Subopcodes for the Relocate By Index opcode group 8-31
Table 8-7 Subopcodes for the RelocLgSetOrBySection instruction 8-35

Listing 8-1 PEF container header data structure 8-4
Listing 8-2 Section header data structure 8-6
Listing 8-3 Loader header data structure 8-16
Listing 8-4 Imported library description data structure 8-18
Listing 8-5 Relocation header entry data structure 8-23
Listing 8-6 Relocation opcode values 8-28
Listing 8-7 Exported symbol table entry data structure 8-40
Listing 8-8 Hash word function 8-41
Listing 8-9 Hash word to hash index function 8-42
Listing 8-10 Exported symbol count to hash table size function 8-43

xiii

Chapter 9 CFM-68K Application and Shared Library Structure 9-1

Figure 9-1 Structure of a CFM-68K runtime segment header 9-4
Figure 9-2 CFM-68K runtime jump table structure 9-5
Figure 9-3 An application transition vector 9-6
Figure 9-4 The 'CODE'0 resource 9-7
Figure 9-5 The 'rseg'0 resource 9-9
Figure 9-6 Segmented versus flattened jump table entries 9-12
Figure 9-7 A transition vector before and after flattening 9-12
Figure 9-8 A transition vector at runtime 9-13

Chapter 10 Classic 68K Runtime Architecture 10-1

Figure 10-1 Classic 68K A5 world 10-4
Figure 10-2 Using the jump table and using self-relative branching 10-7
Figure 10-3 The 'CODE'0 resource 10-9
Figure 10-4 An unloaded jump table entry 10-10
Figure 10-5 A loaded jump table entry 10-11
Figure 10-6 Near model segment header 10-12
Figure 10-7 Branch islands and intersegment references 10-16
Figure 10-8 Far model unloaded jump table entry 10-21
Figure 10-9 Separation of near and far references in the far model jump

table 10-22
Figure 10-10 The far model jump table structure 10-23
Figure 10-11 The far model segment header 10-24

Table 10-1 Classic 68K runtime architecture limits and solutions 10-13
Table 10-2 Relocation information 10-26

Listing 10-1 Using 32-bit references for the target address of an
instruction 10-18

Chapter 11 Classic 68K Runtime Conventions 11-1

Figure 11-1 A 68K stack frame before and after calling a routine 11-5
Figure 11-2 Passing parameters onto the stack in Pascal 11-7
Figure 11-3 Passing parameters onto the stack in C 11-8

Table 11-1 Data types in the classic 68K runtime environment 11-3
Table 11-2 Volatile and nonvolatile registers 11-9

xiv

Appendix A Terminology Changes A-1

Table A-1 Changes to terminology A-1
Table A-2 Changes to names in the CodeFragments.h header file A-2
Table A-3 Changes to names of data types A-3

Appendix B The RTLib.o and NuRTLib.o Libraries B-1

Figure B-1 The stack when a user error handler is called B-8

Table B-1 Runtime routine operation values B-3
Table B-2 Runtime routine error values B-4
Table B-3 Error handler action codes B-9
Table B-4 Current version numbers B-10

Listing B-1 A preload handler example B-13

xv

P R E F A C E

About This Book

This book describes the Mac OS runtime architecture based upon the Code
Fragment Manager (CFM) as well as the original classic 68K runtime
architecture.

� The CFM-based runtime architecture was originally conceived and designed
to run on PowerPC-based computers running the Mac OS. A 68K
implementation, called CFM-68K, was later created to allow 68K-based
machines to run CFM-based code.

� The classic 68K runtime architecture is the architecture created for the
original 68K-based Macintosh computer.

A runtime architecture is a fundamental set of rules that defines how software
operates. These rules define

� how to address code and data

� how to handle and keep track of programs in memory (multiple applications
and so on)

� how compilers should generate code (for example, does it allow
self-modifying code?)

� how to invoke certain system services

Architectures are platform-independent, although the implementation of an
architecture may vary from machine to machine depending on the features (or
constraints) available.

In addition to describing the runtime architectures, this book also covers
information such as calling conventions for each architecture implementation,
data and register types and sizes, and details of structures encountered when
building Macintosh programs (segments, fragments, and so on).

This book assumes that you are familiar with Macintosh computers and writing
programs (using compilers, linkers, and so on).

xvi

P R E F A C E

What’s in This Book 0

Information in this book is grouped by architecture type: the CFM-based or the
original classic 68K runtime architecture.

The first nine chapters describe the architecture based on the Code Fragment
Manager (CFM) and give details of the PowerPC and CFM-68K implementations.

� Chapter 1, “CFM-Based Runtime Architecture,” gives an overview of
the architecture based on the Code Fragment Manager. It includes
general information about fragments, shared libraries, and the code fragment
resource.

� Chapter 2, “Indirect Addressing in the CFM-Based Architecture,” describes
the indirect addressing model used in the CFM-based runtime architecture. It
describes indirect addressing of data, the use of transition vectors, and also
information about the PowerPC and CFM-68K implementations of
this model.

� Chapter 3, “Programming for the CFM-Based Runtime Architecture,” gives
practical programming tips for writing CFM-based architecture code. It also
includes information about common pitfalls that can occur.

� Chapter 4, “PowerPC Runtime Conventions,” lists low-level conventions
such as register volatility and usage; default data types, sizes, and
alignments; and calling conventions.

� Chapter 5, “CFM-68K Runtime Conventions,” lists low-level conventions
such as register volatility and usage; default data types, sizes, and
alignments; and calling conventions. Note that much of this information is
different from the classic 68K runtime conventions.

� Chapter 6, “The Mixed Mode Manager,” describes the workings of the Mixed
Mode Manager, which allows transparent switching between CFM-based
and classic 68K code.

� Chapter 7, “Fat Binary Programs,”describes fat programs, which can contain
code for multiple runtime architectures.

� Chapter 8, “PEF Structure,” gives low-level information about the structure
of PEF (Preferred Executable Format) files, which are used to store both
PowerPC and CFM-68K fragments. This chapter is primarily a reference for

xvii

P R E F A C E

those writing programs that generate or analyze executable code (linkers,
debuggers, and so on).

� Chapter 9, “CFM-68K Application and Shared Library Structure,” describes
the file structure of CFM-68K applications and shared libraries in more
detail. This material is primarily for those writing development tools.

Chapters 10 and 11 describe the classic 68K runtime architecture, which is the
original runtime architecture for Macintosh computers.

� Chapter 10, “Classic 68K Runtime Architecture,” gives a summary of the
classic 68K runtime architecture, including discussions about the A5 world,
segmentation, and the jump table. It also includes information on how to
implement the far model (32-bit addressed) version of the classic 68K
runtime architecture in MPW.

� Chapter 11, “Classic 68K Runtime Conventions,” lists low-level conventions
such as register volatility and usage; default data types, sizes, and
alignments; and Pascal and C calling conventions.

Appendix A contains tables of terminology, constants, and data types that have
been changed from earlier documentation.

Appendix B contains information about the MPW RTLib libraries, which you
must use if you need to patch the Segment Manager routines in either the
classic 68K far model or CFM-68K runtime environments.

A glossary and index are provided at the end of the book.

How to Use This Book 0

Most of the information in this book is useful for anyone programming Mac
OS–based computers, but certain sections may be applicable only for
programmers writing development tools or other low-level applications. In
such cases, the opening paragraphs indicate the specialized nature of the
information they contain.

If you are writing programs for the CFM-based runtime architecture, you
should read chapters 1, 2, and 3 first in order, then move on to more specialized
chapters as necessary.

xviii

P R E F A C E

If you are writing programs for the classic 68K runtime architecture, read
Chapter 10, “Classic 68K Runtime Architecture,” and then refer to Chapter 11,
“Classic 68K Runtime Conventions,” as necessary.

Related Documentation 0

For information on CFM-based architectures and the PowerPC implementation
that is not included here, see Inside Macintosh: PowerPC System Software. For
additional information on the classic 68K runtime architecture and
implementation, consult other books in the Inside Macintosh series, especially
the Processes and Memory volumes.

This book does not describe how to build programs. For that information you
should read Building and Managing Programs in MPW. If you are not familiar
with using MPW, read Introduction to MPW first.

Conventions Used in This Book 0

This book uses special conventions to present certain types of information.
Words that require special treatment appear in specific fonts or font styles.

Special Fonts 0

This book uses several typographical conventions.

All code listings, reserved words, command options, resource types, and the
names of actual libraries are shown in Letter Gothic (this is Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in
the glossary.

xix

P R E F A C E

Command Syntax 0

This book uses the following syntax conventions:

Types of Notes 0

This book uses three types of notes.

Note
A note like this contains information that is useful but that
you do not have to read to understand the main text. �

IMPORTANT

A note like this contains information that is crucial to
understanding the main text. �

� W AR N I N G

Warnings like this indicate potential problems that you
should keep in mind as you build your programs. Failure
to heed these warnings could result in system crashes or
other runtime errors. �

For More Information 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring all

literal Letter Gothic text indicates a word that must appear exactly as
shown.

italics Italics indicate a parameter that you must replace with anything
that matches the parameter’s definition.

[] Brackets indicate that the enclosed item is optional.

. . . Ellipses (. . .) indicate that the preceding item can be repeated one
or more times.

| A vertical bar (|) indicates an either/or choice.

xx

P R E F A C E

current versions of Apple development tools and the most popular third-party
development tools. ADC offers convenient payment and shipping options,
including site licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

World Wide Web http://www.devcatalog.apple.com

C H A P T E R 1

Contents 1-1

Contents

1

Figure 1-0
Listing 1-0
Table 1-0

1 CFM-Based Runtime Architecture

Overview 1-3
Closures 1-6

Code and Data Sections 1-8
Reference Counts 1-9
Using Code Fragment Manager Options 1-10

Preparing a Closure 1-15
Searching for Import Libraries 1-16
Checking for Compatible Import Libraries 1-19

The Structure of Fragments 1-23
Fragment Storage 1-24
The Code Fragment Resource 1-25

Extensions to Code Fragment Resource Entries 1-29
Sample Code Fragment Resource Entry Definitions 1-31

Special Symbols 1-34
The Main Symbol 1-34
The Initialization Function 1-35
The Termination Routine 1-36

C H A P T E R 1

Overview 1-3

C
F

M
-B

ased R
untim

e A
rchitecture

1
CFM-Based Runtime Architecture 1

The CFM-based runtime architecture relies on fragments and the Code Fragment
Manager (CFM) for its operation. This architecture has been implemented as the
default architecture for PowerPC-based Mac OS computers and an optional
one, CFM-68K, for 68K-based machines. The key concepts are identical for both
implementations, so you should read this chapter if you plan to write either
PowerPC or CFM-68K code.

In addition, you should read Chapter 2, “Indirect Addressing in the CFM-Based
Architecture,” which contains more information related to the CFM-based
architecture. Chapter 3, “Programming for the CFM-Based Runtime
Architecture,” contains additional practical information that you may find
useful when writing CFM-based programs.

For specific information about the implementation of the CFM-based
architecture on the PowerPC and 68K microprocessors, you should read the
following chapters:

� Chapter 4, “PowerPC Runtime Conventions,” for PowerPC information

� Chapter 9, “CFM-68K Application and Shared Library Structure,” and
Chapter 5, “CFM-68K Runtime Conventions,” for CFM-68K information

Overview 1

In the CFM-based architecture, a fragment is the basic unit of executable code
and its associated data. All fragments share fundamental properties such as
basic structure and method of addressing code and data. The major advantage
of a fragment-based architecture is that a fragment can easily access code
or data contained in another fragment. For example, a fragment can import
routines or data items from another fragment or export them for another
fragment’s use. In addition, fragments that export items may be shared among
multiple clients.

C H A P T E R 1

CFM-Based Runtime Architecture

1-4 Overview

Note
The term fragment is not intended to suggest that the block
of code and data is in any way either small, detached, or
incomplete. Fragments can be of virtually any size, and
they are complete, executable entities. The term fragment
was chosen to avoid confusion with the terms already used
in Inside Macintosh volumes to describe executable code
(such as component and module). �

The Code Fragment Manager handles fragment preparation, which involves
bringing a fragment into memory and making it ready for execution. Fragments
can be grouped by use into applications and shared libraries, but fundamentally
the Code Fragment Manager treats them alike.

Fragment-based applications are launched from the Finder. Typically they have
a user interface and use event-driven programming to control their execution.

A shared library, however, is a fragment that exports code and data for use by
other fragments. Unlike a traditional static library, which the linker includes in
the application during the build process, a shared library remains a separate
entity. For a shared library, the linker inserts a reference to an imported function
or data item into the client fragment. When the fragment is prepared, the Code
Fragment Manager creates incarnations of the shared libraries required by the
fragment and binds all references to imported code and data to addresses in the
appropriate libraries. A shared library is stored independently of the fragment
that uses it and can therefore be shared among multiple clients.

Note
Shared libraries are sometimes referred to as dynamically
linked libraries (DLLs), since the application and the
externally referenced code or data are linked together
dynamically when the application launches. �

Using a shared library offers many benefits based on the fact that its code is not
directly linked into one or more fragments but exists as a separate entity that
multiple fragments can address at runtime. If you are developing several
CFM-based applications that have parts of their source code in common, you
should consider packaging all the common code into a shared library.

Here are some ways to take advantage of shared libraries:

� An application framework can be packaged as a shared library. This
potentially saves a good deal of disk space because that library resides only

C H A P T E R 1

CFM-Based Runtime Architecture

Overview 1-5

C
F

M
-B

ased R
untim

e A
rchitecture

1once on disk—where it can be addressed by multiple applications—rather
than being linked physically into numerous applications.

� System functions and tools, such as OpenDoc, can be packaged as
shared libraries.

� Updates and bug fixes for a single library can be released without the need to
recompile and send copies of all the applications that use the library.

Shared libraries come in two basic forms:

� Import libraries. These contain code and data that your application requires
to run. The Code Fragment Manager automatically prepares these libraries at
runtime. Import libraries do not occupy application memory but are stored
separately.

� Plug-ins. These are libraries that provide optional services, such as a spelling
checker for a word processor. The application must make explicit calls to the
Code Fragment Manager to prepare these libraries and must then find the
symbols associated with the libraries. Plug-ins are sometimes referred to as
drop-in additions or extensions.

Note
Although the terms are similar, shared library and import
library are not interchangeable. An import library is a
shared library, but a shared library is not necessarily an
import library. �

In the CFM-based runtime architecture, the Code Fragment Manager handles
the manipulation of fragments. Some of its functions include

� mapping fragments into memory and releasing them when no longer needed

� resolving references to symbols imported from other fragments

� providing support for special initialization and termination routines

Fragments can be shared within a process or between two or more processes. A
process defines the scope of an independently-running program. Typically each
process contains a separate application and any related plug-ins.

The physical incarnation of a fragment within a process is called a connection.
A fragment may have several unique connections, each local to a particular
process. Each connection is assigned a connection ID. For more information on
how the Code Fragment Manager groups connections into functional programs,
see “Closures” (page 1-6).

C H A P T E R 1

CFM-Based Runtime Architecture

1-6 Closures

Fragments are physically stored in containers, which can be any kind of storage
area accessible by the Code Fragment Manager. For example, in System 7 the
system software import library InterfaceLib is stored in the ROM of a
PowerPC-based Macintosh computer. Other import libraries are typically stored
in files of type 'shlb'. Fragments containing executable code are usually stored
in the data fork of a file, although it is possible to store a fragment as a resource
in the resource fork. For more information about container storage, see
“Fragment Storage” (page 1-24), and Chapter 8, “PEF Structure.”

Closures 1

The Code Fragment Manager uses the concept of a closure when handling
fragments. A closure is essentially a set of connection IDs that are grouped
according to the order they are prepared. The connections represented by a
closure are the root fragment, which is the initial fragment the Code Fragment
Manager is called to prepare, and any import libraries the root fragment
requires to resolve its symbol references.

During the fragment preparation process, the Code Fragment Manager
automatically prepares all the connections required to make up a closure. This
process occurs whether the Code Fragment Manager is called by the system
(application launch) or programmatically from your code (for example, when
preparing a plug-in).

Figure 1-1 shows a set of connections that make up a closure.

Figure 1-1 A closure

Connection
IDs

Connections

Closure 1 mooProg

mooLib

cowLib

dogLib

C H A P T E R 1

CFM-Based Runtime Architecture

Closures 1-7

C
F

M
-B

ased R
untim

e A
rchitecture

1Each closure is assigned a closure ID.

A fragment may be used in more than one process, but a separate connection is
created for each process. For example, if two applications require the standard
C library, a separate connection is created for each one.

Connections may be shared among closures within a process if your application
calls the Code Fragment Manager to prepare a plug-in. Figure 1-2 shows the
closure of an application and a closure of a plug-in sharing a fragment within a
process.

Figure 1-2 Multiple closures in a process

The Code Fragment Manager does not create new connections when sharing a
fragment within a process but uses the ones that are currently available.
Therefore it is possible for separate closures in the same process to refer to a
fragment by the same connection ID. Connections are not shared across
processes, however, so new connections (and connection IDs) are created when
a fragment appears in another process.

Reference count = 2

Closure 1 Closure 2
mooApp

mooLib

cowLib

dogLib

mooPlug

Process

C H A P T E R 1

CFM-Based Runtime Architecture

1-8 Closures

Code and Data Sections 1

Each connection has sections associated with it that contain either code or data
as shown in Figure 1-3.

Figure 1-3 Sections associated with a connection

Within a process, a connection is generally shared between multiple closures,
and therefore both code and data sections are shared. Fragments that are used
in multiple processes share their code, but they have the following choices for
sharing their data:

� Systemwide (or global) instantiation. The Code Fragment Manager allocates
a single copy of the library’s global data, and all connections for a particular
fragment share that data.

� Per-process instantiation. The Code Fragment Manager allocates one copy of
the library’s global data for each process. Each connection can access only its
own copy of the data.

In Figure 1-4, fragment cowLib is globally shared while fragment dogLib is
shared per-process.

Connection

mooProg

mooProg
code

mooProg
data

C H A P T E R 1

CFM-Based Runtime Architecture

Closures 1-9

C
F

M
-B

ased R
untim

e A
rchitecture

1Figure 1-4 Fragments shared between processes

In most cases, per-process sharing is preferred over systemwide sharing. For
more information about systemwide sharing, see “Systemwide Sharing and
Data-Only Fragments,” beginning on page 3-24.

Each library determines how its global data is to be shared, and this information
is stored in the library at link time. The library developer can indicate either
systemwide or per-process data instantiation for each separate data section in
a library.

Reference Counts 1

The Code Fragment Manager keeps a reference count for every connection
currently in a process. This value indicates the number of closures that reference
the connection. For example, in Figure 1-2, the shared fragments dogLib and
cowLib each have a reference count of 2. If the plug-in is released, the reference
count for each would be decremented. When the reference count of a
connection drops to zero, the connection is not part of any closure and the Code
Fragment Manager is free to release it if necessary.

mooApp process dogApp process

mooApp
code

dogLib
data

dogLib
code

cowLib
data

mooApp
data

Closure 1
mooApp

dogApp
code

dogLib
data

dogApp
data

Closure 2
dogApp

dogLib

cowLib

dogLib

cowLib

C H A P T E R 1

CFM-Based Runtime Architecture

1-10 Closures

The Code Fragment Manager also keeps similar count values for each section of
a shared fragment that indicates the number of connections associated with it.
For example, in Figure 1-4, the code section for dogLib has a reference count of
2, and the two data sections for dogLib each have a reference count of 1. If the
process containing dogApp terminates, the reference count for the dogLib data
section in that process drops to zero, so the Code Fragment Manager can release
the section. The reference count for the code section only drops to 1, however,
so it remains in memory.

Finally, the Code Fragment Manager also keeps track of the number of
connections associated with a given fragment container. If a fragment container
has no connections associated with it, the Code Fragment Manager can release
the container from memory.

Using Code Fragment Manager Options 1

If you prepare and release fragments explicitly from your code, you should be
aware of the different options available. These options are available (as the
CFragLoadOptions parameter) for the following Code Fragment Manager routines:

� GetSharedLibrary

� GetDiskFragment

� GetMemFragment

If you are calling one of these Code Fragment Manager routines to prepare a
plug-in, you should generally specify the kReferenceCFrag option when
invoking it. The Code Fragment Manager then prepares the fragment (and any
required import libraries) if a connection is not already present, adds a new
closure, and increments the reference count of any import libraries that the new
closure shares with others already in memory. The Code Fragment Manager
then returns a closure ID which you can use to access the symbols in the
closure.

IMPORTANT

Code Fragment Manager routines that do not create a new
closure return a connection ID rather than a closure ID. The
Code Fragment Manager increments reference counts on
existing connections only when a new closure is created. �

You can also use the kReferenceCFrag option to gain access to symbols in an
already instantiated connection. For example, say you have an application
mooApp as shown in Figure 1-5 A. The application mooApp prepares the plug-in

C H A P T E R 1

CFM-Based Runtime Architecture

Closures 1-11

C
F

M
-B

ased R
untim

e A
rchitecture

1mooPlug as shown in B, and mooPlug sometime later programmatically prepares
the shared library dogLib (shown in C). If you wanted to access the symbols in
dogLib from mooApp, you could do so by calling the Code Fragment Manager to
prepare dogLib using the kReferenceCFrag option. The Code Fragment Manager
adds a new closure and increases reference counts to reflect the presence of the
new closure. Figure 1-5 D shows the effect of using kReferenceCFrag to prepare
the shared library dogLib, which requires the library cowLib.

Note
kReferenceCFrag was previously called kLoadCFrag. �

C H A P T E R 1

CFM-Based Runtime Architecture

1-12 Closures

Figure 1-5 Using kReferenceCFrag

In some cases you may only want to determine if a connection associated with a
fragment exists. In such cases, you can use the kFindCFrag option to return a
connection ID of an existing connection. However, using the kFindCFrag option
does not add a closure or increase the connection’s reference count. You can

Reference
count = 1

Reference
count =1

Closure 1

mooApp

cowLib

Process

Reference
count = 1

Reference
count = 2

Reference count = 1

Closure 1

Closure 2

mooApp

cowLib

mooPlug

Process

Reference
count = 1

Reference
count = 3

Reference
count = 1

Reference count = 1

Closure 1

Closure 3

Closure 2

mooApp

cowLib dogLib

mooPlug

Process

Reference
count = 1

Reference
count = 4

Reference
count = 2

Reference count = 1

Closure 1

Closure 3

New
closure

Closure 2

mooApp

cowLib dogLib

mooPlug

Process

A B

DC

C H A P T E R 1

CFM-Based Runtime Architecture

Closures 1-13

C
F

M
-B

ased R
untim

e A
rchitecture

1theoretically access the symbols it contains, but if the reference count drops to 0,
the Code Fragment Manager might release the connection while your program
is still using it. For example, in Figure 1-6, say that mooApp prepares the plug-in
mooPlug, and mooPlug programmatically prepares the shared library dogLib.
Later, mooApp uses kFindCFrag to access symbols in dogLib. If mooPlug releases
dogLib, then any references to symbols in dogLib are left dangling.

Figure 1-6 Using kFindCFrag

Another useful option is kPrivateCFragCopy. Using the kPrivateCFragCopy
option when calling a Code Fragment Manager routine, you can create a new
connection for each request to prepare the fragment, even if the same
application makes multiple preparation requests. That is, you can have multiple
connections (each with its own private data section) from the same shared
library that all serve the same client fragment. Such a connection is called a
private connection. A fragment prepared in this manner, however, is not visible
as an import library (that is, the Code Fragment Manager does not recognize its
name as an import library and you cannot find it using the GetSharedLibrary
routine or the kFindCFrag option.)

Reference count = 1

Reference count = 1

Closure 1

Closure 3

Closure 2

mooApp

cowLib

dogLib

mooPlug

Process

Reference
count = 1

C H A P T E R 1

CFM-Based Runtime Architecture

1-14 Closures

Note
A private connection is also known as a per-load
instantiation. �

For example, the application mooApp in Figure 1-7 has created two “copies” of
the plug-in mooPlug. Each instance of mooPlug has its own data, but they all share
the same code. Note that cowLib is not duplicated for each instance of mooPlug;
any import libraries that are part of a private connection’s closure are treated
normally.

Figure 1-7 Using private connections

You can specify a private connection, for example, if you have a communications
application that uses a shared library to implement a tool for connecting to a
serial port. By requesting private connections, you can ensure that your tool can
connect to two or more serial ports simultaneously by maintaining separate
copies of the tool’s data. The tool itself can then be ignorant of how many ports
it is handling.

Process 1

mooPlug
code

mooPlug
data

Closure 1

mooApp

cowLib

Closure 2

Closure 3

mooPlug
data

mooPlug

mooPlug

C H A P T E R 1

CFM-Based Runtime Architecture

Preparing a Closure 1-15

C
F

M
-B

ased R
untim

e A
rchitecture

1

Preparing a Closure 1

When the Code Fragment Manager is called to prepare a fragment, it prepares
the closure associated with the fragment to ensure that the fragment can access
all its imported symbols during execution. This preparation process involves
the following steps:

1. Determine the closure associated with the root fragment (an application or a
plug-in, for example). The Code Fragment Manager does the following to
determine the closure:

� Finds compatible versions of all the import libraries the root fragment
requires. Note that some import libraries may themselves depend on other
import libraries.

� Brings into memory any fragments that do not currently have connections
to them.

� Assigns connection IDs to any new connections and assigns a closure ID
to the new closure.

See “Searching for Import Libraries,” beginning on page 1-16, for
information about the library search procedure and “Checking for
Compatible Import Libraries,” beginning on page 1-19, for information about
how the Code Fragment Manager checks version compatibility.

2. Instantiate (or locate, if already present) code and data sections for each
connection in the closure. This procedure assigns actual addresses to the
sections and, consequently, assigns addresses to all exported symbols.

3. Resolve all imported symbols. For every imported symbol required by
the new connections in the closure, the Code Fragment Manager finds
the corresponding exported symbol address and stores it in an internal
lookup table.

4. Do relocations. Using the lookup table compiled in step 3 and the section
addresses determined in step 2, the Code Fragment Manager replaces all
references to imported symbols (and any other pointer-based symbol
references) in the closure with actual addresses. See Chapter 2, “Indirect
Addressing in the CFM-Based Architecture,” and the section “Relocations,”
beginning on page 8-21, for more details.

5. Execute initialization functions (if any exist).

C H A P T E R 1

CFM-Based Runtime Architecture

1-16 Preparing a Closure

6. Return the closure ID and main symbol to the caller.

IMPORTANT

These steps apply for any fragment the Code Fragment
Manager is called to prepare (including plug-ins). �

In general, if the Code Fragment Manager cannot complete any step, then the
preparation fails and an error is returned. The only special case is when certain
libraries or symbols have been declared weak. A weak library or symbol is one
that is marked as being optional; the preparation process can continue even if
the library or symbol is not available. However, once a weak library or symbol
is determined to be present, it is handled normally for the rest of the
preparation process. For example, if a weak library is available but cannot be
prepared properly for some reason, the whole closure preparation fails. See
“Weak Libraries and Symbols,” beginning on page 3-11, for more information.

Note
A weak library is determined to be present or not present
in step 1 of the preparation process. Weak symbols are
determined in step 3. �

Searching for Import Libraries 1

When the Code Fragment Manager is called to prepare a fragment, if the
fragment requires other import libraries to complete the closure, the Code
Fragment Manager goes through an ordered search process to find physical
copies of those libraries. For example, the Code Fragment Manager can search
folders containing the application or the root fragment as well as a common
folder specially designated to hold shared libraries.

Currently the Code Fragment Manager looks for files that contain a resource of
type 'cfrg'. The 'cfrg'0 resource identifies the fragment name of the import
library. There can be more than one fragment name listed in a single 'cfrg'0
resource. This might happen if there are multiple import libraries contained in a
single file or if a single import library or application is to be identified by more
than one name. Fragments are typically stored in the data fork, although it is
possible to store a fragment in a resource. In either case, the 'cfrg'0 resource
points to the location of the fragment within the file. For more information
about the 'cfrg'0 resource, see “The Code Fragment Resource,” beginning on
page 1-25.

C H A P T E R 1

CFM-Based Runtime Architecture

Preparing a Closure 1-17

C
F

M
-B

ased R
untim

e A
rchitecture

1Once the Code Fragment Manager finds a library that is compatible with the
fragment it’s preparing, it stops searching and resolves imports in the fragment
to code or data in that library. If it reaches the end of its search without finding a
compatible library, the fragment preparation fails.

Note
Because the Code Fragment Manager is searching for the
import library by name, the file containing the library must
have a 'cfrg'0 resource. However, you can prepare
fragments that do not contain a 'cfrg'0 resource by calling
Code Fragment Manager routines from your program. See
“Calling the Code Fragment Manager,” beginning on
page 3-3, for more information. �

In System 7 through 7.5, the search process for import libraries is as follows:

1. Check connections in the same process to see if a connection for the import
library already exists.

If the connection is already in use in another closure, then the Code
Fragment Manager can simply increment its reference count and use it.
If the existing connection is associated with an incompatible version of the
import library, the preparation fails. In all the steps that follow, however,
finding an incompatible import library version merely causes the Code
Fragment Manager to move to the next step in the search procedure. See
“Checking for Compatible Import Libraries” (page 1-19) for more information
about how the Code Fragment Manager checks for compatible libraries.

2. Check the folder containing the root fragment.

If the root fragment folder is not the same as the application folder, the Code
Fragment Manager searches here first. The Code Fragment Manager looks
only in the top level of the folder, not in any subfolders contained within it.

3. Check the file containing the application.

Since a file can contain multiple fragments, the file containing the application
fragment may also contain import library fragments.

4. Check the application subfolder.

When you build your application, you can designate a library folder for the
Code Fragment Manager to search for import libraries. For more
information, see “The Code Fragment Resource,” beginning on page 1-25.

C H A P T E R 1

CFM-Based Runtime Architecture

1-18 Preparing a Closure

5. Check the folder containing the application.

The Code Fragment Manager looks only in the top level of the application
folder, not in any subfolders contained within it.

6. Check the Extensions folder.

The Extensions folder usually contains import libraries used by multiple
applications (libraries for QuickTime, for example). The Code Fragment
Manager searches the Extensions folder and one level of folders inside the
Extensions folder.

7. Check the ROM registry.

The ROM registry keeps track of all import libraries that are stored in the
ROM of a Mac OS–based computer. The Mac OS registers all ROM-based
import libraries in this registry at system startup time.

8. Check the file registry.

The final stage of the search path is a file and directory registry that the Code
Fragment Manager maintains internally. This registry, which is currently
reserved for system use, is a list of files and directories that, for various
reasons, cannot be put into the normal search path followed by the Code
Fragment Manager or would not be recognized as import libraries even if
they were in that path.

In System 7.6, the Code Fragment Manager combines steps 6, 7, and 8,
searching all three locations and choosing the import library that best fits the
compatibility requirements.

The Code Fragment Manager searches a folder by looking for files of type
'shlb' that contain a resource of type 'cfrg'. Within a folder, the Code
Fragment Manager also looks for alias files of type 'shlb' and resolves them to
their targets.

At any stage, the Code Fragment Manager selects the one import library of all
those available to it that best satisfies its compatibility version checking. If an
import library meets the relevant criteria, the library search stops. Otherwise,
the search continues to the next stage. If the final stage (the file and directory
registry) is reached and no suitable library can be found, the Code Fragment
Manager gives up and does not prepare the original fragment.

C H A P T E R 1

CFM-Based Runtime Architecture

Preparing a Closure 1-19

C
F

M
-B

ased R
untim

e A
rchitecture

1Checking for Compatible Import Libraries 1

Checking compatibility between a client fragment and an import library
essentially means checking for an intersection between the version range
required by the client fragment and the range supported by the import library.

When building a fragment that requires an import library, you must supply
information in a definition stub library that defines the library’s API. A stub
library contains symbol definitions but does not contain actual code. The linker
uses definition stub libraries to associate imported symbols with particular
import libraries. Figure 1-8 shows an application linking to a definition stub
library to produce the completed application. A reference such as
cowLib:setWindow means that the symbol setWindow can be found in the import
library cowLib.

Figure 1-8 Linking to a definition stub library

findGrass

tailFlick

setWindow

mooApp
object module

mooApp
application

cowLib
stub library

hoof
cowLib:findGrass

cowLib:tailFlick

cowLib:setWindow

cowLib:hoof

Unresolved
symbols

setWindow

hoof

findGrass

tailFlick

Exported
symbols

Linker

C H A P T E R 1

CFM-Based Runtime Architecture

1-20 Preparing a Closure

An import library that provides implementation code is dynamically linked to
the client fragment by the Code Fragment Manager during the preparation
process. This library (sometimes called the implementation library) must be
fully functional.

Note
Since an implementation library contains symbol
definitions, the implementation library can act as a
definition stub library at link time. �

Figure 1-9 shows an implementation library bound to the application at runtime.

Figure 1-9 Using the implementation version of a library at runtime

The definition stub library may not be the same version as the implementation
library (one may be an earlier version, for example), so the Code Fragment
Manager must check to make sure that they are compatible. Generally the
libraries are compatible if the library used at runtime can satisfy the
programming interface defined for it during the build process.

cowLib:findGrass

cowLib:tailFlick

cowLib:setWindow

mooApp
application

cowLib:hoof

code for setWindow

code for findGrass

code for tailFlick

cowLib
import library

setWindow

findGrass

tailFlick

hoof

C H A P T E R 1

CFM-Based Runtime Architecture

Preparing a Closure 1-21

C
F

M
-B

ased R
untim

e A
rchitecture

1When building an import library, you determine compatibility by defining
version numbers. You should set three version numbers (usually by specifying
linker options) for use in version checking:

� the current version number of the library you are creating

� the old implementation version number, which is the oldest version of this
library available at runtime that supports the client’s needs

� the old definition version number, which is the oldest version of the library
defined for the client fragment that is supported by the library you
are creating

When building a client fragment, the linker stores the current version and old
implementation version numbers of the import library in the client. Later, when
the Code Fragment Manager prepares the client fragment, it uses this
information to check for a compatible import library.

Table 1-1 shows two different versions of an import library cowLib and their
version numbers.

IMPORTANT

The current version number must always be greater than or
equal to both the old definition version number and the old
implementation version number. �

If you build an application mooApp with cowLib 13 and attempt to run with
cowLib 16, the compatibility ranges are as follows:

� cowLib 13 is not compatible with implementations of cowLib earlier than
version 10 (its old implementation number is set to 10).

� cowLib 16 (present in the Extensions folder, for example) is not compatible
with definitions of cowLib earlier than version 12 (its old definition version
number is set to 12).

Table 1-1 Two import libraries and their version numbers

Name
Current
version number

Old definition
version number

Old implementation
version number

cowLib 13 13 9 10

cowLib 16 16 12 14

C H A P T E R 1

CFM-Based Runtime Architecture

1-22 Preparing a Closure

Figure 1-10 shows the compatibility ranges graphically.

Figure 1-10 Library versions compatible with each other

The presence of an overlap between the two areas of compatibility indicates
that the two import libraries are compatible in this case.

However, reversing the roles of the two libraries (building with cowLib 16,
executing with cowLib 13) results in a different set of compatibility ranges
as follows:

� cowLib 16 is not compatible with implementations of cowLib earlier than
version 14 (the old implementation version number is 14).

� cowLib 13 is not compatible with definitions of cowLib earlier than version 9
(the old definition version number is 9).

In this case the two libraries are incompatible, as shown in Figure 1-11.

Figure 1-11 Library versions incompatible with each other

The library cowLib 16 may (for example) include additional routines that are not
supported by versions older than 14.

Required range

10 13

Supported range

12 16

Client

Implementation

9 13

Supported range

14 16

Client

Implementation

Required range

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-23

C
F

M
-B

ased R
untim

e A
rchitecture

1The Code Fragment Manager uses the algorithm shown in Listing 1-1 for
checking import library compatibility. It uses this algorithm to check the
compatibility of the fragment being prepared with all the import libraries from
which it imports code and data.

Listing 1-1 Pseudocode for the CFM version-checking algorithm

if (Definition.Current == Implementation.Current)
return(kLibAndAppAreCompatible);

else if (Definition.Current > Implementation.Current)
/*definition version is newer than implementation version*/
if (Definition.OldestImp <= Implementation.Current)

return(kImplAndDefAreCompatible);
else

return(kImplIsTooOld);
else

/*definition version is older than implementation version*/
if (Implementation.OldestDef <= Definition.Current)

return(kImplAndDefAreCompatible);
else

return(kDefIsTooOld);

The fact that only one instance of an import library can appear in a given
process may cause versioning conflicts. For example say an application mooApp
uses the import library mooLib. If mooApp loads a plug-in mooPlug that also
requires mooLib, then the Code Fragment Manager uses the available connection
for mooLib. If this version is not compatible with the version required by the
plug-in, then the preparation of the plug-in fails. (This failure occurs even if you
designated mooLib to be weak.)

The Structure of Fragments 1

Every fragment can contain separate code and data sections. A code or data
section can be up to 4 GB in size. Code and data sections do not have to be
contiguous in memory.

C H A P T E R 1

CFM-Based Runtime Architecture

1-24 The Structure of Fragments

Note
Since all fragments can contain both code and data
sections, any fragment can contain global variables. �

A code section contains position-independent executable code (that is, code
that is independent of its own memory location and the location of its
associated data). Code sections are read-only, so fragments can be stored in
ROM or file-mapped and paged in from disk as necessary.

A data section is typically allocated in the application heap. Each data section
may be instantiated multiple times, creating a separate copy for each connection
associated with the fragment. See “Closures,” beginning on page 1-6, for more
details. An import library’s data section may also be placed into the system
heap or temporary memory (when systemwide instantiation is selected).

Although a fragment’s code and data sections can be located anywhere in
memory, those sections cannot be moved within memory once they are
prepared. The Code Fragment Manager must resolve any dependencies a
fragment might have on other fragments, and this preparation involves placing
pointers to imported code and data into the fragment’s data section. To avoid
having to prepare fragments in this way more than once, the Mac OS requires
that a prepared fragment remain stationary as long as it stays in memory.

Note
Accelerated resources, which model the behavior of
classic 68K resources, do not have to be fixed in memory
between calls. �

Fragment Storage 1

The physical storage unit for a fragment is called its container. A container can
be any logically contiguous piece of storage, such as the data fork of a file (or
some portion thereof), the Macintosh ROM, or a resource. The System 7 version
of the Code Fragment Manager recognizes two container formats, the Preferred
Executable Format (PEF) and the Extended Common Object File Format
(XCOFF). Note that compatibility with these formats is not a requirement of the
CFM-based architecture, and it may change in the future.

� The Preferred Executable Format (PEF), as defined by Apple Computer, is
the current standard executable file format for CFM-based architectures. PEF
provides full support of a fragment’s attributes. See Chapter 8, “PEF
Structure,” for more details of this format.

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-25

C
F

M
-B

ased R
untim

e A
rchitecture

1� The Extended Common Object File Format (XCOFF) is a refinement of the
Common Object File Format (COFF), the standard executable file format on
many UNIX®-based computers. XCOFF containers tend to be larger than
their PEF counterparts and often take longer to load into memory. XCOFF
containers do not support initialization or termination routines, and they do
not store version information for import library compatibility checks. XCOFF
is supported on Mac OS–based computers primarily because early
development tools produced executable code in the XCOFF format.

Note
Not all object code in the XCOFF format can execute on
Mac OS–based computers. Any XCOFF code that uses
UNIX-style memory services or that otherwise depends
on UNIX features does not execute correctly on
Mac OS–based computers. XCOFF output from a compiler
also does not execute. �

The Code Fragment Resource 1

If the Code Fragment Manager is to search for a fragment by name, the file
containing the fragment must contain a code fragment resource in the
resource fork. A code fragment resource is a resource of type 'cfrg' with ID 0
('cfrg'0 resource).

The code fragment resource has the form shown in Listing 1-2.

Listing 1-2 The code fragment resource

struct CFragResource {
UInt32 reservedA; /* must be zero! */
UInt32 reservedB; /* must be zero! */
UInt16 reservedC; /* must be zero! */
UInt16 version;
UInt32 reservedD; /* must be zero! */
UInt32 reservedE; /* must be zero! */
UInt32 reservedF; /* must be zero! */
UInt32 reservedG; /* must be zero! */
UInt16 reservedH; /* must be zero! */
UInt16 memberCount;
CFragResourceMember firstMember;

};

C H A P T E R 1

CFM-Based Runtime Architecture

1-26 The Structure of Fragments

� The version field indicates the version of the code fragment resource. The
current version is 1.

� The memberCount field indicates how many fragment entries ('cfrg'0 entries)
are described by this resource.

� Each entry of type CFragResourceMember describes a fragment entry, listing
the type of fragment, its name, location, and so on.

Since the 'cfrg'0 resource is an array, it is possible to store information for
several fragments in one file. The fragments remain separate and the Code
Fragment Manager can prepare them independently, but they can be shipped
and marketed as a single file. In addition, the code fragment resource can point
to fragments of multiple architectures, allowing you to create fat applications
and shared libraries that can execute on multiple platforms. See Chapter 7, “Fat
Binary Programs,” for more information.

Note
Typically you can use a development tool (such as
MergeFragment in MPW) to place multiple fragments
in a file. �

The structure of the code fragment resource is identical for all fragment types,
although some of the field values may differ. Field values in the code fragment
resource are determined and set at link time, but some may be changed later
using a resource editor (such as ResEdit). Field values are defined in
CodeFragments.h.

A code fragment resource entry has the form shown in Listing 1-3.

Listing 1-3 A code fragment resource entry

struct CFragResourceMember {
CFragArchitecture architecture;
UInt16 reservedA; /* zero */
UInt8 reservedB; /* zero */
UInt8 updateLevel;
CFragVersionNumber currentVersion;
CFragVersionNumber oldDefVersion;
CFragUsage1Union uUsage1;
CFragUsage2Union uUsage2;
CFragUsage usage;

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-27

C
F

M
-B

ased R
untim

e A
rchitecture

1CFragLocatorKind where;
UInt32 offset;
UInt32 length;
UInt32 reservedC; /* zero */
UInt32 reservedD; /* zero */
UInt16 extensionCount; /* number of extensions */
UInt16 memberSize; /* total size in bytes */
unsigned char name [kDefaultCFragNameLen];

};

� The architecture field indicates the runtime environment of the fragment.
Current values for this field are as follows:

� kPowerPCCFragArch for the PowerPC runtime environment
� kMotorola68KCFragArch for the CFM-68K runtime environment
� kCompiledCFragArch, which is conditionally set at compile time. For

example, if you are compiling for the PowerPC runtime environment, this
value is set to kPowerPCCFragArch. You can specify this value in source code
that is used for both PowerPC and CFM-68K builds.

� The updateLevel field indicates whether this fragment is a base fragment or
one created to update another fragment. This field typically has the value
kIsCompleteCFrag to indicate a base fragment.

� The next two fields, currentVersion and oldDefVersion, store the current and
oldest definition version numbers that the Code Fragment Manager relies on
for checking compatibility with client fragments. If a fragment does not
export any symbols, it does not need to check compatibility, and these values
can be ignored.

� The uUsage1 field contains a union defined as

union CFragUsage1Union {
UInt32 appStackSize;

};

If the fragment is an application, appStackSize indicates the application stack
size. Typically appStackSize has the value kDefaultStackSize.

� The uUsage2 field contains a union defined as

union CFragUsage2Union {
SInt16 appSubdirID;

};

C H A P T E R 1

CFM-Based Runtime Architecture

1-28 The Structure of Fragments

If the fragment is an application, appSubdirID indicates the library directory.
By default, the Code Fragment Manager searches the folder containing the
application and the Extensions folder when looking for import libraries, but
you can specify a library directory in addition to the default search
directories (see “Searching for Import Libraries,” beginning on page 1-16, for
more information). If you do not specify a library directory, this field has the
value kNoAppSubFolder. In System 7, if you want to add another library
directory, you must change this field to the resource ID of an alias resource (a
resource of type 'alis') in the application’s resource fork. This resource
should describe the application’s library directory. For more information
about alias resources, see the chapter “Alias Manager” in Inside
Macintosh: Files.

� The usage field indicates the type of fragment. Possible values are as follows:

� kApplicationCFrag for an application
� kImportLibraryCFrag for an import library
� kDropInAdditionCFrag for a plug-in

� The where field indicates where the fragment is located. Possible values are as
follows:

� kDataForkCFragLocator if the fragment is in the data fork
� kMemoryCFragLocator if the fragment is stored in ROM
� kResourceCFragLocator if the fragment is stored in a resource

� The next two fields, offset and length, indicate the starting and ending
offsets of the fragment container. For example, the values kZeroOffset and
kCFragGoesToEOF indicate that the container for the fragment starts at the
beginning of the data fork and ends at the end of the data fork.

If the fragment is stored in a resource, the offset field describes the type of
resource, and the length field contains the resource ID number.

� The field extensionCount indicates the number of extensions. See “Extensions
to Code Fragment Resource Entries” (page 1-29) for more information.

� The field memberSize contains the total size, in bytes, of the code fragment
resource entry. This size includes any extensions.

� The name field contains the name of the fragment.

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-29

C
F

M
-B

ased R
untim

e A
rchitecture

1Extensions to Code Fragment Resource Entries 1

The basic code fragment resource entry structure shown in Listing 1-3 is used
for most applications and shared libraries. However, a code fragment resource
entry can also contain one or more extensions, which appear directly after the
fragment name. Such an extended code fragment resource entry stores
additional information about the fragment that may be used by third-party
software. For example, while the regular entry might simply indicate that a
fragment mooLib is an import library, an extension could also indicate that it is a
SOM class library that inherits from the class cow.

Note
A code fragment resource can contain any combination of
extended and regular entries. �

Padding is added after the name field to begin the extensions on a 4-byte
boundary (the length byte of the name string does not include this padding). All
extensions must be aligned on 4-byte boundaries, with padding added after
each if necessary. The memberSize field includes any padding added after the last
extension.

An extension to the code fragment resource has the form shown in Listing 1-4.

Listing 1-4 Structure of a sample code fragment resource extension

struct CFragResourceSearchExtension {
CFragResourceExtensionHeader extensionHeader;
ExtensionData data [1];

};

The extensionHeader field contains a data structure defined as shown in
Listing 1-5.

Listing 1-5 The code fragment resource extension header

struct CFragResourceExtensionHeader {
UInt16 extensionKind;
UInt16 extensionSize;

};

C H A P T E R 1

CFM-Based Runtime Architecture

1-30 The Structure of Fragments

� The extensionKind field defines the type of extension. Each type defines the
format of the information contained in the extension. Currently only one is
defined (extensionKind = 30EE).

� The extensionSize field specifies the total size, in bytes, of this extension,
including any padding necessary to round the extension to a 4-byte
boundary. This size added to the offset of the extension gives the offset of the
next extension (if any).

The information that follows the extensionHeader field depends on the value of
extensionKind. As an example, Listing 1-6 shows the format of the code
fragment resource extension of type 30EE.

Listing 1-6 A code fragment resource extension of type 30EE

struct CFragResourceSearchExtension {
CFragResourceExtensionHeader extensionHeader;
OSType libKind;
unsigned char qualifiers [1];

};

� The libKind field indicates the type of fragment. Currently defined values are
as follows:

� kFragDocumentPartHandler for a part handler
� kFragSOMClassLibrary for a SOM class library
� kFragInterfaceDefinition for an interface definition library
� kFragComponentMgrComponent for a component used by the Component

Manager

� After the libKind field, you can define up to four Pascal-style strings in the
qualifiers field. The values of these strings depend on the libKind field. The
currently defined values are as follows:

� For type kFragDocumentPartHandler, the first qualifier indicates the handler
type. The second qualifier indicates the handler subtype (if any).

� For type kFragSOMClassLibrary, the first qualifier indicates the base class.
� For type kFragInterfaceDefinition, the first qualifier indicates the

interface definition name.

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-31

C
F

M
-B

ased R
untim

e A
rchitecture

1� For type kFragComponentMgrComponent, the first qualifier indicates the
component type. The second qualifier indicates the component subtype.

For any extension, the fourth qualifier can hold the name of the fragment.
Unlike the string in the name field, this string is visible to the client fragment.

Sample Code Fragment Resource Entry Definitions 1

This section contains examples of the most common types of code fragment
resource entries.

A PowerPC Application 'cfrg' 0 Resource Definition 1

Listing 1-7 shows an example of a 'cfrg'0 resource definition for a PowerPC
application.

Listing 1-7 A sample 'cfrg'0 resource for a PowerPC runtime application

#include "CodeFragmentTypes.r"
resource 'cfrg' (0) {

{
kPowerPCCFragArch, /* runtime environment */
kIsCompleteCFrag, /* base-level library */
kNoVersionNum, /* current version number*/
kNoVersionNum, /* oldest definition version number */
kDefaultStackSize, /* use default stack size */
kNoAppSubFolder, /* no library directory */
kApplicationCFrag, /* fragment is an application */
kDataForkCFragLocator, /* fragment is in the data fork */
kZeroOffset, /* beginning offset of fragment */
kCFragGoesToEOF, /* ending offset of fragment */
"mooApp" /* name of the fragment*/

}

� The value kPowerPCCFragArch indicates that this fragment was created for use
with the PowerPC runtime environment.

� The value kIsCompleteCFrag indicates that the fragment is complete by itself.

� The constant kNoVersionNum in the next two fields has the value 0, a valid
version number.

C H A P T E R 1

CFM-Based Runtime Architecture

1-32 The Structure of Fragments

� The constant kDefaultStackSize in the next field indicates that the stack
should be given the default size for the current software and hardware
configuration. In System 7, you can use stack-adjusting techniques that call
GetApplLimit and SetApplLimit if you determine at runtime that your
application needs a larger or smaller stack.

� The constant kNoAppSubFolder indicates that there is no library search folder.

� The value kApplicationCFrag indicates that this is an application.

� The value kDataForkCFragLocator indicates that the fragment is stored in the
data fork of the file.

� The values kZeroOffset and kCFragGoesToEOF in the next two fields indicate
that the container for the fragment starts at the beginning of the data fork
and ends at the end of the data fork.

� The default fragment name is usually the name of the output file from the
linker, but you can assign a specific name if you wish.

A CFM-68K Application 'cfrg' 0 Resource Definition 1

Listing 1-8 shows a sample 'cfrg'0 resource definition for a CFM-68K runtime
application. The fields that have values different from those in a PowerPC
application 'cfrg'0 resource entry are underlined.

Listing 1-8 A sample 'cfrg'0 resource for a CFM-68K runtime application

#include "CodeFragmentTypes.r"
resource 'cfrg' (0) {

{
kMotorola68KCFragArch, /* runtime environment */
kIsCompleteCFrag, /* base-level library */
kNoVersionNum, /* no current version number*/
kNoVersionNum, /* no oldest definition version number */
kDefaultStackSize, /* use default stack size */
kNoAppSubFolder, /* no library directory */
kApplicationCFrag, /* fragment is an application */
kResourceCFragLocator, /* fragment is in a resource */
kRSEG, /* resource type = 'rseg' */
kSegIDZero, /* resource ID = 0 */
"mooApp" /* name of the application fragment*/

}

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-33

C
F

M
-B

ased R
untim

e A
rchitecture

1� The constant kMotorola68KCFragArch in the first field indicates that this
fragment was created for use with the CFM-68K runtime environment.

� The next underlined value, kResourceCFragLocator, indicates that this is a
segmented application stored in resources.

� The next two underlined fields, kRSEG and kSegIDZero, tell the Code Fragment
Manager that the initial container to load is contained in a resource of type
'rseg' with a resource ID 0.

For more information about the structure of CFM-68K applications, see
“CFM-68K Application Structure,” beginning on page 9-3.

A Shared Library 'cfrg' 0 Resource Definition 1

Shared libraries have essentially the same 'cfrg'0 resource entry for both
PowerPC and CFM-68K implementations (only the field indicating the runtime
environment differs).

Listing 1-9 shows the 'cfrg'0 resource for an import library (plug-ins are
identical except the fragment type is set to kDropInAdditionCFrag). Values that
differ from an application’s 'cfrg'0 resource are underlined.

Listing 1-9 A sample 'cfrg'0 resource for an import library

#include "CodeFragmentTypes.r"
resource 'cfrg' (0) {

{
kPowerPCCFragArch, /* runtime environment */
kIsCompleteCFrag, /* base-level library */
6, /* current version number*/
4, /* oldest definition version number */
kDefaultStackSize, /* use default stack size */
kNoAppSubFolder, /* no library directory */
kImportLibraryCFrag, /* fragment is a library */
kDataForkCFragLocator, /* fragment is in the data fork */
kZeroOffset, /* fragment starts at offset 0 */
kCFragGoesToEOF, /* fragment occupies entire fork */
"mooLib" /* name of the library fragment */

}

C H A P T E R 1

CFM-Based Runtime Architecture

1-34 The Structure of Fragments

� The first two underlined fields store the current and definition version
numbers that the Code Fragment Manager relies on for checking
compatibility with client fragments. If you do not specify version numbers
when you link, the version numbers are set to 0. See “Checking for
Compatible Import Libraries,” beginning on page 1-19, for more details.

� The application stack size field is ignored for shared libraries.

� The library directory field is ignored for shared libraries.

� The value kImportLibraryCFrag specifies that this is an import library. A
plug-in would have the value kDropInAdditionCFrag.

� As you do with an application, you may supply a specific library name.
However, for an import library you must do so before linking to a client
because the fragment name is bound to the client at link time.

Special Symbols 1

A fragment can define three special symbols that are separate from the list of
symbols exported by the fragment:

� a main symbol

� an initialization function

� a termination routine

The Main Symbol 1

The Code Fragment Manager returns the main symbol of a root fragment when
preparing a closure; main symbols of any import libraries are ignored. The use
of a fragment’s main symbol depends upon the type of fragment containing it.
For applications, the main symbol refers to the main routine, which is simply
the usual entry point. The main routine typically performs any necessary
application initialization not already performed by the initialization function
and then jumps into the application’s main event loop.

Applications must define a main symbol that is the application’s entry point.
Import libraries and plug-ins are not required to have a main symbol. However,
plug-ins having a single entry point can use a main symbol instead of an
exported symbol to avoid having to standardize on a particular name.

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-35

C
F

M
-B

ased R
untim

e A
rchitecture

1Note
In fact, the main symbol exported by a fragment does not
have to refer to a routine at all; it can refer instead to a
block of data. See “Using the Main Symbol as a Data
Structure” (page 3-24) for more information. �

The Initialization Function 1

A fragment’s initialization function is called as part of the Code Fragment
Manager’s fragment preparation process. You can use the initialization function
to perform any actions that should be performed before any of the fragment’s
other code or static data is accessed. For example, in System 7, you often have to
initialize various system services before you can use them (InitWindows for
example). To make sure that all the required services are initialized before they
are needed, you can put the calls to these services in an initialization function.

When a fragment’s initialization function is executed, it is passed a pointer to a
fragment initialization block, a data structure that contains information about
the fragment. In particular, the initialization block contains information about
the location of the fragment’s container. For example, if an import library’s code
fragment is contained in some file’s data fork, you can use that information to
find the file’s resource fork.

IMPORTANT

The initialization function must return a value. If an
initialization function returns a nonzero value, preparation
of the associated closure also fails. �

It’s important to know when the initialization function for a fragment is
executed. A good rule of thumb to remember is that a fragment’s initialization
function is executed whenever a new data section is instantiated for
that fragment.

If the preparation of a fragment causes a (currently unprepared) import library
to be prepared in order to resolve imports in the first fragment, the initialization
function of the import library is executed before that of the first fragment. This
makes sense because the initialization routine of the first fragment might need
to use code or data in the import library. For example, Figure 1-12 shows three
fragments and their initialization functions.

C H A P T E R 1

CFM-Based Runtime Architecture

1-36 The Structure of Fragments

Figure 1-12 Three fragments with initialization functions

If fragment A imports symbols from fragment B, and fragment B imports
symbols from fragment C, then C’s initialization function must be run first,
followed by B’s, and then A’s.

If you have two import libraries that depend upon each other, you may specify
during the build process which should be initialized first.

Note you can run into problems if the initialization function of the import library
requires routines that must be imported from another fragment. For example, in
Figure 1-12, if the initialization function AInit imports cow from library B, and
library B’s routine dog imports woof from library C, you cannot guarantee that
library C is initialized before it is needed. In general, your initialization function
should be kept simple by avoiding accessing imported symbols.

The Termination Routine 1

A fragment’s termination routine is executed only when a fragment’s data
instantiation is released. For example, if a fragment’s data is globally shared
between two applications, the fragment’s termination routine would not be
executed until both applications have quit. Note there is no guarantee that the
termination routine will be run if your application crashes or otherwise
terminates unnaturally.

You can use the termination routine to undo the actions of the initialization
function or perform simple cleanup operations to preserve data (such as
flushing file buffers). To avoid problems with circular dependencies, your
termination routine should not reference symbols from other fragments.

When a process quits, the closures associated with the process are released in a
first-in/first-out manner. That is, the first closure prepared is the first released.

moo()

AInit()

Fragment A

cow()
dog()

BInit()

Fragment B

woof()

CInit()

Fragment C

C H A P T E R 1

CFM-Based Runtime Architecture

The Structure of Fragments 1-37

C
F

M
-B

ased R
untim

e A
rchitecture

1This generally ensures that the Code Fragment Manager does not release a
connection that another closure may depend upon. For example, if a process
contains an application that prepared a plug-in, when the application quits, the
application’s closure is released first.

In general, your termination routine should be as simple as possible. For
example, you may have your termination routine flush internal I/O buffers to
any open files, but you don’t need to actually close the files since the process
termination sequence takes care of this action.

C H A P T E R 2

Contents 2-1

Contents

2

Figure 2-0
Listing 2-0
Table 2-0

2 Indirect Addressing in the
CFM-Based Architecture

Overview 2-3
PowerPC Implementation 2-8

Glue Code for Named Indirect Calls 2-10
Glue Code for Pointer-Based Calls 2-11

CFM-68K Implementation 2-11
Direct and Indirect Calls 2-12
The Direct Data Area Switching Method 2-13

C H A P T E R 2

Overview 2-3

Indirect A
ddressing in the C

F
M

-B
ased

2
Indirect Addressing in the CFM-Based Architecture 2

This chapter discusses the indirect addressing model used in the CFM-based
runtime architecture. This material is presented separately as it does not relate
directly to the Code Fragment Manager.

The overview section describes the fundamental concepts underlying the
indirect addressing model. Everyone who is writing programs for the
CFM-based architecture should read this section. In addition, this chapter
provides details of how the indirect addressing model is implemented for the
PowerPC and 68K Mac OS platforms. If you are writing a program that requires
such low-level details (a compiler, for example) you should read these sections
after the overview.

This chapter assumes knowledge of terms and concepts introduced in Chapter 1,
“CFM-Based Runtime Architecture.” In addition, read Chapter 3, “Programming
for the CFM-Based Runtime Architecture,” if you are planning to write CFM
architecture–based programs.

Overview 2

Two methods exist for addressing data: direct addressing and indirect
addressing. The choice of addressing method for any particular data item is
determined by the compiler. Direct addressing is accomplished by using a base
register to access an area of memory called the direct data area. Direct data
items can be referenced as an offset from the address stored in the base register.
Figure 2-1 shows an example of direct addressing.

Note
The term direct addressing as used in this chapter actually
assumes one level of indirection (using the base register)
and is therefore not the same as absolute addressing in
assembly-language terminology. Similarly, indirect
addressing actually possesses two traditional levels of
indirection. �

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

2-4 Overview

Figure 2-1 Direct addressing of data

Direct addressing is simple and efficient, but since the offset bits in a given
instruction can address only a certain amount of memory (typically ±32 KB),
space limitations can occur if you have large data items or many data items.

If you are writing a compiler, you should store as many items as possible in the
direct data area because this reduces access time. Small data items (that is, equal
to or smaller than pointers) should always be placed in the direct data area.

The alternative is indirect addressing, where the item in the direct data area is
not the data itself, but a pointer to that data. Since you are no longer restricted
by addressing limitations, you can access large data structures. Figure 2-2
shows an example of indirect addressing.

Data section

mooData

Base register
address

Offset

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

Overview 2-5

Indirect A
ddressing in the C

F
M

-B
ased

2

Figure 2-2 Indirect addressing of data

The additional advantage of accessing symbols indirectly through pointers is
that the symbols being referenced do not need to be present at build time. The
components that make up a functional program can be stored separately if you
can fix up the pointers to point to the correct symbols at runtime. In the
CFM-based architecture, indirect addressing makes the use of imported and
exported symbols possible.

Before preparation by the Code Fragment Manager, a fragment contains only a
reference for each imported symbol. During the fragment preparation process,
the Code Fragment Manager resolves all these references by searching for the
code and data they refer to and replacing the references with relevant addresses.

Indirect addressing also provides the following benefits:

� Symbols external to a fragment can be specified by name, not by address.
This allows the symbols to be grouped into import libraries.

� Data can be specified by name, not by address.

� Callback routines can be specified by name, not by address.

Data section

Base register
address

Offset

Data section

mooData

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

2-6 Overview

� Using the base register allows multiple connections with independent data
sections in the same address space. For example, in System 7, all applications
share the same address space, so allowing a fragment to have multiple
connections in that space makes it possible to have shared libraries.

� An import library can have multiple connections associated with it, each
linked to a different application.

Indirect addressing of data items is simple. Knowing the address stored in the
base register and the offset into the direct data area, you can access the pointer
to the data and consequently the data itself. For example, to find the proper
address of an imported data item, a fragment adds the offset of the pointer to
the import within the direct data area (determined at compile time) to the value
stored in the base register. The result is the address of a pointer to the data item.

Note
The same indirect method is used to access global
variables; the pointer merely points to the current fragment
rather than a different one. �

Indirect addressing of routines is a little more complicated, but it is essentially
similar. Indirect calls to routines must pass through the routine’s transition
vector. A transition vector is a data structure in the called fragment’s data
section whose first element is the address of the routine to be called. Any
pointer to a routine (such as those used by C++ virtual method calls) actually
points to the routine’s transition vector, whether or not the routine is in the
same fragment.

Indirect calls branch to the routine address (the first element of the transition
vector) and store the address of the transition vector in a specific register (the
details vary depending on the platform). This allows the called routine to access
other elements in the transition vector (if any). The generated code usually also
varies slightly for named calls (such as calls to imported routines) versus
pointer-based calls (C function pointers or C++ virtual functions, for example).

The basic structure of a transition vector is shown in Figure 2-3.

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

Overview 2-7

Indirect A
ddressing in the C

F
M

-B
ased

2

Figure 2-3 A transition vector

A routine’s transition vector is accessed through the base register, just like any
other piece of data. As with other data, it is generally more efficient to place
the transition vector in the direct data area. Control can then pass from the
transition vector to the called routine.

The transition vector can contain any number of elements in addition to the
routine address. These other elements may be used by the called routine in any
way useful. For example, the PowerPC and CFM-68K implementations
typically store a pointer to the called fragment’s direct data area in a routine’s
transition vector; this method of storing the pointer allows the called routine to
access its own data.

printf code

Data section

Code section

Import library

Other data

Code pointer
Transition vector

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

2-8 PowerPC Implementation

PowerPC Implementation 2

The PowerPC implementation of the indirect addressing model is fairly
straightforward. The PowerPC runtime environment uses general-purpose
register GPR2 as the base register. Note that the use of this register to access the
direct data area is a convention, not a requirement. Debuggers and other
analytical applications should not assume that GPR2 is the base register.

Note
Historically (from IBM documentation) the set of pointers
to a fragment’s indirectly accessed data was referred to as
the Table of Contents and its base register was called the
Table of Contents Register (RTOC). �

To access imported data or indirect global data, the build-time offset of the
global data item is added to the value in GPR2. The result is the address of a
pointer that points to the desired data.

To access imported routines, the offset of the routine is added to the value in
GPR2, as in the data version, but the result points not directly to the routine, but
to a transition vector.

The PowerPC transition vector typically contains two elements. The first must
be the address of the routine being called. By convention the second element
contains the address of the called fragment’s direct data area.

Prior to preparation, the transition vector contains

� the offset of the routine being called from the beginning of the code section

� the offset of the direct data area from the beginning of its data section

During preparation, the Code Fragment Manager adds the code and data
section start addresses to the offset values, generating absolute addresses for the
routine and the location of the direct data area. Figure 2-4 shows the
unprepared and prepared versions of the transition vector.

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

PowerPC Implementation 2-9

Indirect A
ddressing in the C

F
M

-B
ased

2

Figure 2-4 Unprepared and prepared PowerPC transition vectors

Note
The transition vector may contain any number of 4-byte
fields. Currently only the first two are used. During an
indirect call, GPR12 is assumed to point to the transition
vector itself; this convention allows the called routine to
access any additional fields in the transition vector beyond
the first two. �

In order for indirect calls to work properly, certain requirements must be met on
the part of the calling routine and the called routine. These requirements are as
follows:

� For each routine call, the compiler generates a PC-relative branch followed
by an instruction to restore GPR2.

� When entering the called routine, GPR12 points to the transition vector and
GPR2 contains the second word of the transition vector.

� When returning to the calling routine, the old GPR2 value resides on the
stack at 20(SP) (in the linkage area).

How these requirements are implemented is determined by convention. For
example, in the PowerPC runtime environment, glue code in the calling routine
handles loading the proper values into GPR2 and GPR12. Any other actions are
also determined by convention.

Offset of routine in code section

Offset of direct data area in data section

Unprepared
transition
vector

Address of routine

Address of direct data area

Prepared
transition
vector

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

2-10 PowerPC Implementation

Glue Code for Named Indirect Calls 2

If the routine call is referenced indirectly by name, the linker generates glue
code in the calling fragment and directs the compiler-generated branch to this
code. If the linker finds that a call is local (that is, not cross-fragment), it replaces
the GPR2 restore instruction with a NOP instruction.

The glue code takes the following steps to switch the direct data areas and
execute the actual called routine:

1. Loads the pointer for the transition vector into GPR12.

2. Saves the current value of GPR2.

3. Loads the next 4 bytes of the transition vector into GPR2 (effectively
switching the direct data area).

4. Jumps to the start of the actual routine.

Upon return, control passes directly to the caller (not the glue code) which
restores the saved value of GPR2.

Listing 2-1 shows some sample glue code.

Listing 2-1 Glue code for a cross-fragment call

bl moo_glue ; call the cross-fragment glue
lwz R2, R2_save_offs(SP) ; restore the caller’s base pointer

...

moo_glue:
lwz R12, tvect_of_moo(R2) ; get pointer to moo’s transition

; vector
stw R2, R2_save_offs(SP) ; save the caller’s base pointer
lwz R0, 0(R12) ; get moo’s entry point
lwz R2, 4(R12) ; load moo’s base pointer
mtctr R0 ; move entry point to Count Register
bctr ; and jump to moo

Note
The linker generates custom glue for each routine since the
glue code contains the direct data area offset of the
routine’s transition vector. �

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

CFM-68K Implementation 2-11

Indirect A
ddressing in the C

F
M

-B
ased

2

Glue Code for Pointer-Based Calls 2

Pointer-based function calls must make use of the transition vector since the
eventual call may be cross-fragment. (A routine pointer does not point to the
code, but to the transition vector of the called routine.)

The glue code for a pointer-based call, as shown in Listing 2-2, is very similar to
that for the named indirect call.

Listing 2-2 Glue code for a pointer-based call

lwz R12, address_of_TVector
bl ptr_glue
lwz R2, R2_save_offs(SP) ; restore the caller’s base pointer

...

ptr_glue:
lwz R0, 0(R12) ; get the entry point
stw R2, R2_save_offs(SP) ; save the caller’s base pointer
mtctr R0 ; move entry point to Count Register
lwz R2, 4(R12) ; load the new base pointer
bctr ; jump through the Count Register

CFM-68K Implementation 2

In the CFM-68K runtime environment, the A5 register acts as the base register.

To access global, static, or imported data, the build-time offset of the direct data
item is added to the value in A5. The result is the address of a pointer that
points to the desired data.

To access imported routines, the offset of the routine is added to the value in A5,
as in the data version, but the address at that location points not directly to the
routine, but to a transition vector.

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

2-12 CFM-68K Implementation

Note
CFM-68K transition vectors reside above the jump table in
the direct data area of the called routine. This positioning is
dictated by segmentation requirements. �

A CFM-68K import library’s transition vector is typically similar to that of a
PowerPC import library, containing two 4-byte elements: the address of the
routine being called and the address of the called fragment’s direct data area
(A5 world).

Note
Transition vectors in CFM-68K application fragments
include a third field of segment information to allow them
to properly address routines in a segmented application.
For more information about the structure of CFM-68K
applications and the application launch process, see
“CFM-68K Application Structure,” beginning on
page 9-3. �

Direct and Indirect Calls 2

A direct call does not require switching of the direct data area since it makes use
of the calling party’s direct data area by default. A direct assembly-language
call to the function mooFunc would simply be

BSR.L _$mooFunc

where _$mooFunc signifies the internal entry point of mooFunc.

IMPORTANT

When discussing routine calls and the direct data area
switching method, the external entry point refers to the
entry point of the routine when called indirectly through a
transition vector. A direct (in-fragment) call enters a routine
through the internal entry point. �

To allow the switching of the direct data area, the CFM-68K runtime
architecture specifies that a procedure pointer points to a transition vector.

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

CFM-68K Implementation 2-13

Indirect A
ddressing in the C

F
M

-B
ased

2

All indirect or cross-fragment calls go through a transition vector. The fragment
uses the code and data world pair to set up a direct data area associated with
the called routine. An indirect call to the function mooFunc would be as follows:

MOVE.L _@mooFunc,A1 ; load transition vector into A1
MOVE.L (A1)+, A0 ; get code address
JSR (A0) ; make the call
MOVE.L "lcl", A5 ; restore A5 from "cl"

; after the call.

The term "lcl", which can be either a memory-based load variable or a register
variable, is the location where the procedure saved its own A5 value prior to the
call.

Note
Unlike the PowerPC case, glue code in the called routine is
responsible for switching the direct data area in CFM-68K.
However, the other actions of the caller’s code (loading the
transition vector into a register, calling the routine, and
restoring the base register after the call) are identical. �

The Direct Data Area Switching Method 2

In the CFM-68K runtime environment, the standard direct data area switching
procedure takes the following steps.

1. The program uses the transition vector to jump to the external entry point of
the procedure. At this point, the A1 register points to the second word of the
transition vector, which contains the address of the direct data area.

2. The external entry point loads the A5 register with the new direct data area
address (using the register A1) and then enters the internal entry point.

3. The function’s prolog code is executed, part of which saves a copy of A5 in
case the function must in turn make other indirect or cross-fragment calls.

4. The program executes the function. If the routine makes any indirect or
cross-fragment calls, it restores the saved value of A5 after each such call.

5. After executing the function, the program then runs the epilog and throws
away its local variables (including the saved copy of A5).

6. After running the epilog, the program returns to the calling fragment.

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

2-14 CFM-68K Implementation

Direct callers and indirect callers can enter the procedure at different locations,
so you can set up slightly different prolog sequences depending on the type
of call.

Listing 2-3 illustrates glue code surrounding a simple function call.

Listing 2-3 Glue code for a simple function

MOVE.L (A1), A5 ; set up A5 from A1
LINK A6, #LOCALS ; (this is the internal entry point)
MOVEM.L <REGSET/A5>,-(A7) ; save new A5

<body of function here>

MOVEM.L (A7)+, <REGSET> ; note A5 not restored here
UNLK A6
RTD #PARAM_CT

If the function itself makes indirect or cross-fragment calls, you must save the
A5 value before the call and restore it after each return. Listing 2-4 shows how
to handle an indirect call within an indirectly called function:

Listing 2-4 Making an indirect call from within an indirectly called function

MOVE.L (A1), A5 ; set up A5 from A1
LINK A6, #LOCALS ; the reserved space
MOVEM.L D7/D6/A5, -(A7) ; save new A5 at -12(A6)

...

; now making cross-fragment call to
; the imported function mooCall

MOVE.L _@mooCall(A5), A1 ; load transition vector into A1 via
; the pointer to the transition vector

MOVE.L (A1)+,A0 ; get code address
JSR (A0) ; call function
MOVE.L -12(A6), A5 ; restore A5 from saved location

C H A P T E R 2

Indirect Addressing in the CFM-Based Architecture

CFM-68K Implementation 2-15

Indirect A
ddressing in the C

F
M

-B
ased

2

...

; no A5 restore here (but pop saved
MOVEM.L (A7)+, D7/D6 ; data registers)
UNLK A6 ; UNLK compensates for unbalanced stack
RTD #PARAM_CT

Note
You do not have to save your A5 value on the stack. In
some cases (such as when you know the called procedure
will make a lot of indirect calls) it may be advantageous to
save your A5 value in a data register, or even another
address register. �

In certain cases, you may omit some of the switching steps to optimize your
code. Three different optimization possibilities exist:

� You can choose to not save A5 in the prolog. This choice is useful only when
you are certain that the routine you are calling will never make any indirect
or cross-fragment calls and thus will never need to restore A5. Routines
using this optimization may still use A5, however.

� You can remove the external entry point and transition vector. This choice
removes the initial MOVE.L (A1), A5 instruction and is equivalent to tagging
the routine as internal during a compile. You should use this optimization
only if you are sure that the routine will never be called indirectly or from
another fragment.

� You can remove the MOVE.L (A1), A5 instruction but keep the transition
vector. This optimization works only for calling routines that never use the
A5 register during execution (for example, a leaf routine that doesn’t access
global variables). Note that all the following actions do use A5 and disqualify
routines from using this option:

� Direct (in-fragment) calls, because the called procedure may use A5, or the
call may have to go through the jump table (which uses A5). Note that
segmented shared libraries use the jump table if calling direct between
two code segments.

� Any cross-fragment call or access to an imported data item, because the
CFM-68K code uses the A5 register to access such data items indirectly.

C H A P T E R 3

Contents 3-1

Contents

3

Figure 3-0
Listing 3-0
Table 3-0

3 Programming for the CFM-Based
Runtime Architecture

Calling the Code Fragment Manager 3-3
Preparing Code Fragments 3-3
Releasing Fragments 3-6
Getting Information About Exported Symbols 3-6
Using Shadow Libraries 3-7

Requirements for Executing CFM-68K Runtime Programs 3-10
Using Stub Libraries at Build Time 3-11
Weak Libraries and Symbols 3-11
Multiple Names for the Same Fragment 3-13
Import Library Techniques 3-14

Use No Version Numbers and No Weak Symbols 3-15
Declare Weak Symbols in Client 3-16
Use PEF Version Numbering 3-16
Change Names for Newer Import Libraries 3-19
Create an Alias Library Name Using Multiple 'cfrg' 0 Entries 3-20
Put New Symbols in New Logical Libraries 3-21
Use Reexport Libraries 3-22

Using the Main Symbol as a Data Structure 3-24
Systemwide Sharing and Data-Only Fragments 3-24
Multiple Fragments With the Same Name 3-26

C H A P T E R 3

Calling the Code Fragment Manager 3-3

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3
Programming for the CFM-Based Runtime Architecture 3

This chapter contains practical information about programming for the
CFM-based runtime architecture, including guidelines for building shared
libraries. Note that the topics in this chapter are independent of one another
and do not need to be read in any particular order.

This chapter assumes familarity with the terms and concepts presented in
Chapter 1, “CFM-Based Runtime Architecture,” and Chapter 2, “Indirect
Addressing in the CFM-Based Architecture.”

Calling the Code Fragment Manager 3

If your application uses plug-ins, you must prepare them explicitly by calling
the Code Fragment Manager from your code. This section describes some of the
routines you can use to prepare fragments and find symbols exported from
other fragments.

IMPORTANT

In general, the Code Fragment Manager automatically
loads all import libraries required by your application at
the time your application is launched. You need to use the
routines described in this section only if your application
supports dynamically loaded plug-ins. �

Preparing Code Fragments 3

If the fragment is an import library that contains a 'cfrg'0 resource, you can
use the Code Fragment Manager’s GetSharedLibrary function to prepare the
fragment. If the fragment is stored in a disk file, you call the GetDiskFragment
function. If the fragment is stored in a resource, you need to place the resource
into memory (using normal Resource Manager and Memory Manager routines)
and then call the GetMemFragment function. In general, however, you should
avoid storing fragments in resources. Resource-based fragments do not gain the
benefits of file-based fragments (such as file mapping directly from the file’s
data fork), so you should use them only when you have no other choice.

For complete information about the Code Fragment Manager routines, see
Inside Macintosh: PowerPC System Software. The APIs defined in that book apply
for both the PowerPC and CFM-68K implementations.

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-4 Calling the Code Fragment Manager

In general, the overhead involved in preparing the code fragment and later
releasing it is not trivial, so you should avoid closing the connection to a
prepared fragment (that is, calling CloseConnection) until you are finished using
it.

IMPORTANT

When called to prepare a plug-in, the Code Fragment
Manager automatically prepares all the fragments that
make up the plug-in’s closure. That is, if the plug-in imports
symbols from an import library, that library is also prepared;
you do not have to explicitly prepare the library. �

Listing 3-1 shows how to prepare a fragment using GetSharedLibrary.

Listing 3-1 Preparing a fragment using GetSharedLibrary

myErr = GetSharedLibrary(myLibName, KPowerPCCFragArch, kPrivateCFragCopy,
 &myConnID, (Ptr*)&myMainAddr, myErrName);

if (myErr) {
AlertUser(myErr);

}

The fragment name is held in myLibName and it is specified to be a PowerPC
fragment. The Code Fragment Manager follows its standard search path to find
the library. See “Searching for Import Libraries,” beginning on page 1-16, for
more information on the search procedure.

Note that the preparation fails if the preparation of any of the fragments that
make up the closure fails. The error term myErrName then contains the name of
the fragment that caused the failure.

Listing 3-2 show how to prepare a disk-based fragment.

Listing 3-2 Preparing a disk-based fragment

myErr = GetDiskFragment(&myFSSpec, 0, kCFragGoesToEOF, myToolName,
kPrivateCFragCopy, &myConnID, (Ptr*)&myMainAddr,
myErrName);

if (myErr) {
AlertUser(myErr);

}

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Calling the Code Fragment Manager 3-5

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

Listing 3-3 shows how to prepare a resource-based fragment.

Listing 3-3 Preparing a resource-based fragment

Handle myHandle;
OSErr myErr;
ConnectionID myConnID;
Ptr myMainAddr;
Str255 myErrName;

myHandle = GetResource('tool', 128);
HLock(myHandle);
myErr = GetMemFragment(*myHandle, GetHandleSize(myHandle),

myToolName, kPrivateCFragCopy, &myConnID,
(Ptr*)&myMainAddr, myErrName);

if (myErr) {
AlertUser(myErr);

}

The code in Listing 3-3 places the resource into memory by calling the Resource
Manager function GetResource and locks it by calling the Memory Manager
procedure HLock. Then it calls GetMemFragment to prepare the fragment. The first
parameter passed to GetMemFragment specifies the memory address of the
fragment. Because GetResource returns a handle to the resource data, Listing 3-3
dereferences the handle to obtain a pointer to the resource data. To avoid
dangling pointers, you need to lock the block of memory before calling
GetMemFragment. The constant kPrivateCFragCopy passed as the fourth parameter
requests that the Code Fragment Manager allocate a new copy of the fragment’s
global data section.

Like other fragments a resource-based fragment must remain locked in memory
and has separate code and data sections. You have access to the connection ID
of the resource-based fragment, so you can call Code Fragment Manager
routines like CloseConnection and FindSymbol.

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-6 Calling the Code Fragment Manager

Note
Some PowerPC executable resources are specially written
to model a classic 68K stand-alone code resource. These
accelerated resources do not have all the freedom of a true
fragment. See “Accelerated and Fat Resources,” beginning
on page 7-4, for information about how to write and call an
accelerated resource. �

Releasing Fragments 3

To programmatically release fragments from memory, you use the
CloseConnection routine. A call to CloseConnection is simply

myErr = CloseConnection(&myID);

where myID is the ID value received when you called the Code Fragment
Manager to prepare the fragment. Note that you cannot call CloseConnection
using the ID value received when using the FindCFrag option or the ID passed
by a fragment’s initialization block (when executing an initialization function).

The CloseConnection routine actually releases the closure associated with the ID
and decrements the associated reference counts. If any reference counts drop to
0, the Code Fragment Manager releases the associated section, connection, or
fragment container.

Note that all import libraries and other fragments that are prepared on behalf of
your application (either as part of its normal startup or programmatically by
your application) are released by the Code Fragment Manager at application
termination; therefore, a library can be prepared and does not have to be
released by the application before it terminates.

Getting Information About Exported Symbols 3

In cases in which you prepare a fragment programmatically (that is, by calling
Code Fragment Manager routines), you can get information about the symbols
exported by that fragment by calling the FindSymbol, CountSymbols, and
GetIndSymbol functions.

The CountSymbols function returns the total number of symbols exported by a
fragment. CountSymbols takes as one of its parameters a connection ID;
accordingly, you must already have established a connection to a fragment
before you can determine how many symbols it exports.

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Calling the Code Fragment Manager 3-7

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

Given an index ranging from 0 to one less than the total number of exported
symbols in a fragment, the GetIndSymbol function returns the name, address,
and class of a symbol in that fragment. You can use CountSymbols in combination
with GetIndSymbol to get information about all the exported symbols in a
fragment. For example, the code in Listing 3-4 prints the names of all the
exported symbols in a particular fragment.

Listing 3-4 Finding symbol names

void MyGetSymbolNames (ConnectionID myConnID);

{
long myIndex;
long myCount; /*number of exported */

/*symbols in fragment*/
OSErr myErr;
Str255 myName; /*symbol name*/
Ptr myAddr; /*symbol address*/
SymClass myClass; /*symbol class*/

myErr = CountSymbols(myConnID, &myCount);
if (!myErr)

for (myIndex = 0; myIndex < myCount; myIndex++)
{

myErr = GetIndSymbol(myConnID, myIndex, myName,
&myAddr, &myClass);

if (!myErr)
printf("%P", myName);

}
}

If you already know the name of a particular symbol whose address and class
you want to determine, you can use the FindSymbol function. See Inside
Macintosh: PowerPC System Software for details.

Using Shadow Libraries 3

In some cases you might want to prepare import libraries on an “on-call” basis
the same way you would with plug-ins. For example, if you only occasionally

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-8 Calling the Code Fragment Manager

use routines from mooLib in your application, you may not want to take up
excess memory when mooLib is not required. In such cases, you should create a
shadow library. A shadow library is essentially a small library whose only
purpose is to prepare an import library when a symbol from that library
is required.

For example, suppose you have a simple header file with this function:

StatusType FunctionOne (ParamOneAType param1A, ParamOneBType param1B);

Listing 3-5 shows how to access these functions through a simple shadow library.

Listing 3-5 Sample code found in a shadow library

/* Function pointers used internally by the shadows. */
typedef StatusType (* FunctionOnePtr) (PramOneAType param1A, ParamOneBType param1B);

/* The initial version of the function pointers. */
static StatusType PrepareAndCallF1 (ParamOneAType param1A, ParamOneBType param1B);
static FunctionOnePtr gFunctionOne = PrepareAndCallF1;

/* The initial version of the function pointer, which does setup first, and then */
/* calls through to the actual function. */

static StatusType PrepareAndCallF1 (ParamOneAType param1A, ParamOneBType param1B)
{

OSErr err = Setup ();
if (err == noErr)

err = (*gFunctionOne) (param1A, param1B);
return err;

}

/* The shadow implememtation of FunctionOne, which calls through the */
/* function pointer, which itself could point to the setup version */
/* (first time) or to the actual routine (second time or later). */

StatusType FunctionOne (ParamOneAType param1A, ParamOneBType param1B)
{
return (*gFunctionOne) (param1A, param1B);
}

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Calling the Code Fragment Manager 3-9

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

static OSErr Setup (void)
{
CFragConnectionID connID;
OSErr err = GetSharedLibrary ("\pRealImplementation",

kCompiledCFragArch, kReferenceCFrag,
&connID, NULL, NULL);

if (err == noErr)
{
FunctionOnePtr p1;
err = FindSymbol (connID, "\pFunctionOne", (Ptr *) & p1, NULL);
if (err == noErr)

gFunctionOne = p1;
}

return err;
}

This example just uses local pointers to go to the “right” function. The first time
through, these pointers take you to routines that call the Code Fragment
Manager to prepare the real library. Subsequent times they take you to the real
routines. This implementation requires no changes to clients (for example, you
can change the import library without recompiling or relinking the clients).

Note that this example works only if all functions in the library return some sort
of success/failure indication. This could be through an explicit status value, a
null/nonnull pointer, and so on. Also, this example is not preemptive thread
safe, and it does not have sophisticated error checking. If you are writing code
to prepare a shadow library, you should anticipate errors such as the following:

� The initialization function in the library fails.

� The Code Fragment Manager cannot find a compatible library.

� The Code Fragment Manager cannot find the required symbols in the library.

Also, if your shadow library may be released at some point, you should include
code in the library’s termination routine to release any libraries it has prepared
and to perform any other necessary cleanup.

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-10 Requirements for Executing CFM-68K Runtime Programs

Requirements for Executing CFM-68K Runtime Programs 3

To run CFM-68K runtime programs, target computers must have the following
configuration:

� System software version 7.1 or later.

� A 68020 or later microprocessor.

� The CFM-68K runtime library, which contains the Code Fragment Manager
and shared library routines that the CFM-68K program accesses during
execution. This library may be available as part of the system software or as a
system extension called the CFM-68K Runtime Enabler.

If the Code Fragment Manager is not present when an attempt to launch a
CFM-68K application is made, a message indicates that the CFM-68K Runtime
Enabler is needed.

If you want to check on the availability of the Code Fragment Manager from
classic 68K code, you can call the Gestalt function with the selector
gestaltCFMAttr in a routine similar to the following:

Boolean HaveCFM()
{

long response;
return ((Gestalt(gestaltCFMAttr, &response) == noErr) &&

(((response >> gestaltCFMPresent) & 1) != 0));
}

For more information about Gestalt and the Gestalt Manager, see Inside
Macintosh: Operating System Utilities.

CFM-68K programs run transparently side by side with classic 68K applications.
The Process Manager reads the 'cfrg'0 resource at application launch time. The
'cfrg'0 resource tells the Process Manager whether the application contains
CFM-68K runtime code and, if so, where that code is located. If the Process
Manager cannot find a 'cfrg'0 resource, it assumes that the application is a
classic 68K application, where the executable code is contained within 'CODE'
resources in the application’s resource fork. For more details of the CFM-68K
application launch process, see Chapter 9, “CFM-68K Application and Shared
Library Structure.”

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Using Stub Libraries at Build Time 3-11

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

If the target 68K computer does not support file-mapping, it must have enough
RAM installed to load all the shared libraries required by the CFM-68K
program. At least 8 MB of RAM is suggested for target computers.

Using Stub Libraries at Build Time 3

Stub libraries are import libraries that export symbols but do not contain any
code. Instead of linking against fully functional import libraries, you can link
against a stub library, since all you need at build time is the definition of the
library’s API.

Stub libraries are also useful when you have a circular dependency between
import libraries. For example, if the library mooLib imports symbols from cowLib
and cowLib imports symbols from mooLib, then a problem arises: you cannot
build mooLib without linking with cowLib and you cannot build cowLib without
linking to mooLib. The solution is to begin by linking against a stub version of
one library. You can build mooLib by linking to a stub of cowLib (which allows
you to resolve imports from cowLib), and then you can build the real cowLib by
linking it to mooLib.

Weak Libraries and Symbols 3

During the build process, you can designate certain symbols or import libraries
to be weak (usually with linker options), which indicates to the Code Fragment
Manager that the symbol or library is not required for execution. For example,
an application mooProg may designate the QuickTime shared library as a weak
library. Then, while it can make use of QuickTime features if the library exists,
it can still launch and execute normally without it. Similarly, a weak symbol is
an imported symbol that does not have to be present at launch time. Weak
symbols are sometimes called soft imports.

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-12 Weak Libraries and Symbols

IMPORTANT

Although the Code Fragment Manager allows weak
imports to remain unresolved at runtime, the application is
still responsible for checking to see if the symbol or library
was found and taking appropriate action. For example, if a
library was not found, the application might display a
message and set a flag to avoid accessing routines or data
imported from that library. �

If the Code Fragment Manager cannot find imported symbols designated as
weak, all references to these imports are replaced with the value
kUnresolvedSymbolAddress. Listing 3-6 shows how you can check for weak
imports using this value.

Listing 3-6 Testing for weak imports

extern int dogCow (char *, ...);
...
if (dogCow == kUnresolvedSymbolAddress)

DebugStr("\dogCow is not available.");
else

printf("Hi Clarus\n");

The Code Fragment Manager checks for weak libraries before doing any
preparation (resolving symbols and so on), and if the library exists, it is
subsequently handled as a normal import library. For example, if an error
occurs during preparation of the library, the Code Fragment Manager may
abort the launch procedure, even though the library was designated as weak.

� W AR N I N G

You should not use the Gestalt function to check for weak
imports or weak libraries. �

If the Code Fragment Manager cannot find a weak library, you cannot
subsequently resolve symbols imported from that library by calling Code
Fragment Manager routines (GetSharedLibrary, for example).

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Multiple Names for the Same Fragment 3-13

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

Multiple Names for the Same Fragment 3

The CFM-based architecture allows you to assign multiple names to a single
fragment. For example, if you have a fragment that implements multiple SOM
classes, you can assign a separate name for each class, all of which point to the
same fragment.

You store multiple names as multiple 'cfrg'0 entries. As mentioned earlier, the
'cfrg'0 resource is actually an array, so you can store as many fragment
descriptions as you like.

For example, the 'cfrg'0 resource in Figure 3-1 contains two fragment entries,
mooFrag and cowFrag, which both point to the same fragment (that is, their
'cfrg'0 resource entries map to the same location). If the Code Fragment
Manager is called to prepare mooFrag and then called sometime later to prepare
cowFrag, it knows that they are the same fragment and treats them as such. For
example, if the preparation request for cowFrag came from the same process, it
increments the reference count for mooFrag and creates a closure using the
existing connection. In this manner it is possible to create “aliases” for
fragment names.

Figure 3-1 Two names for a single fragment

You can use aliasing to update older libraries without having to change the
client fragments that import from them. For example, say you build a library
cowFrag and create several applications that use it. Sometime later you build
another library mooFrag that contains all the functionality of cowFrag as well as

mooFrag mooFrag

cowFrag

'cfrg'0 resource

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-14 Import Library Techniques

some new features. If the 'cfrg'0 entry for mooFrag contains an entry for both
mooFrag and cowFrag, then the following are possible:

� Applications built with mooFrag can run with mooFrag and use all of the
available features.

� Applications built with cowFrag can run with mooFrag and use the features
previously available in cowFrag.

Import Library Techniques 3

Sometimes when you modify an import library, the new version may not
remain fully compatible with older versions. As a rule of thumb, the developer
should think about compatibility issues for versions of your import libraries in
the following cases:

� the API for the library changes

� the input or output behavior of any library routine changes

There are a number of ways to check or maintain compatibility between
successive versions of an import library. Table 3-1 shows some methods for
checking or maintaining compatibility. Each method has advantages and
disadvantages, and some of them may be used in conjunction with each other.

Table 3-1 Methods for maintaining import library compatibility

Method Advantages Disadvantages

Use no version
numbers and no
weak symbols

No work required at
build time.

Missing symbols cause
program failure.

Declare weak
symbols in client

Allows limited
functionality with
whatever symbols
are available.

Code must check for
presence of library
exports. Difficult to keep
track of all weak
symbols.

continued

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Import Library Techniques 3-15

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

These methods are described more completely in the sections that follow.

Use No Version Numbers and No Weak Symbols 3

Choosing not to use any version numbers or weak symbols when developing
import libraries provides rudimentary compatibility checking with no effort on
the developer’s part. That is, if a required symbol is not found, then the
program preparation fails.

Note
Choosing no version numbers means that all three version
numbers are set to zero. �

Use PEF version
numbering

The Code Fragment
Manager automatically
checks for compatibility.

Program fails if a
compatible library is not
found. Version numbers
can’t take into account
all possible compatibility
cases.

Change names for
newer import
libraries

Eliminates the need for
version or symbol
checking. Different
versions of a library can
appear in memory at
the same time.

Only useful if the newer
version cannot support
older clients. Multiple
names for libraries with
similar functionality can
be dangerous.

Create an alias
library name using
multiple 'cfrg'0
entries

Allows older clients to
use a newer library
with a different name.

Generally only useful
when combining older
implementations into
one library.

Put new symbols in
new logical libraries

The functionality of an
import library never
changes.

The number of import
library names
accumulates over time.

Use reexport
libraries

Allows older clients to
use multiple newer
libraries in place of an
older one.

Generally only useful
when an older
implementation splits
into several newer
libraries.

Table 3-1 Methods for maintaining import library compatibility (continued)

Method Advantages Disadvantages

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-16 Import Library Techniques

Declare Weak Symbols in Client 3

If symbols are added to a newer version of an import library, the developer can
make sure that the newer clients can still link to the older library by declaring
the new symbols to be weak. This method, however, has two drawbacks: the
client application must check for all weak imports, and the developer must
keep track of all weak exports.

For example, say you have a library mooLib 1.0, which contains the symbols dog
and cow. Later you update mooLib to 2.0 by adding the symbols woof and moof. If
woof and moof are declared weak by a client built with mooLib 2.0, the client can
still run with mooLib 1.0; it just cannot use the symbols woof and moof.

The developer’s code must check for the presence of all weak symbols before
attempting to use them and perhaps inform the end user of any limited
functionality if some symbols are not present. In addition, each time a new
version of the library is created, the developer must create a new weak export
list. For example, building clients with mooLib 2.0 requires a weak export list of
all symbols added after version 1.0. Building with version 3.0 would require a
list of weak symbols added between 1.0 and 2.0 and a list of symbols added
between 2.0 and 3.0. When building libraries for other developers, the developer
would have to supply an updated export list for every version released.

Use PEF Version Numbering 3

The Code Fragment Manager relies on version numbers stored in the import
library PEF containers to determine whether an implementation library is
compatible with the definition stub library. The developer can assign version
numbers as a redundancy check for possible library mismatches during a
library’s development. As shown in the example that follows, there are some
cases that this method does not solve. This section gives several examples
of when and how to change these version numbers when developing
import libraries.

When using PEF versioning, the developer should use the following rules:

� The first library should have all three version numbers set to zero.

� The current version number can be incremented each time the developer
releases a change to the library.

� The old definition version number should be incremented only if the
developer changes the library’s API in a manner that makes the library

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Import Library Techniques 3-17

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

incompatible with older clients (for example, removing a routine that older
clients expect to see).

� The old implementation number should be incremented only if the
developer makes additions to the API that new clients must depend on (for
example, adding a routine that all new clients will require).

IMPORTANT

The version numbers encoded in an import library are for
developer use only. The library compatibility version
numbers do not need to correspond to the version numbers
visible to the end user. �

Figure 3-2 shows the version numbers required for each update of a library
mooLib that contains the function moo.

Figure 3-2 Changes to import library version numbers

When you first build the library, you do not have to worry about compatibility,
so all the version numbers are set to 0.

Now, suppose you find a minor bug in the function moo in your first version.
After fixing the bug, you create version 1. Fragments built with version 0 can
run on machines that contain version 1 without having to be updated, because
the two versions of moo are compatible. Similarly, fragments built with version 1
can still run on machines that contain version 0 (even though it contains a bug).
Therefore, the old implementation and old definition numbers remain at 0
while the current version number is raised to 1.

Current version

Old definition version

Old implementation version

0

0

0

1

0

0

2

0

2

3

3

2

int moo()
/*bug*/

int moo()
/*bug fix*/

int moo()
/*no change*/

int new_moo()

int new_moo()
/*moo()removed*/

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-18 Import Library Techniques

Now, suppose you update the library again to add a different implementation
of function moo, called new_moo. The definition and implementation for function
moo remain the same. This version becomes version 2 of the import library.
Fragments built with either of the older versions still run on machines that have
version 2 because they won’t look for the function new_moo. However, fragments
built with version 2 cannot run on machines containing older versions of the
library because they cannot find an implementation for function new_moo.
Therefore, version 2 of mooLib has an old definition version of 0 and an old
implementation version of 2.

Finally, you remove function moo, so that only new_moo is supported, and build
version 3 of the import library. Fragments built with older versions of the
import library won’t run with version 3 because they expect moo to be present.
However, fragments built with version 3 run on machines that contain any
version that has an implementation for new_moo (in this case, version 2 or
version 3). Therefore, version 3 of mooLib should have a old definition version of
3 and an old implementation version of 2.

A drawback of simple PEF versioning is that if a compatible implementation
library is not found, the program fails. Although this result is the same as using
no versioning at all, PEF versioning can also prevent incompatible usage in
cases where the symbols have not changed. In addition, PEF versioning acts as
a redundancy check for possible library mismatches during development. Note
that even when a compatible library is found, the client fragment cannot
determine which version of the library was actually used.

In addition, each version number can represent only a single compatibility
range. Depending on how the developer changes the library, it is possible to
have pockets of compatibility appear in older versions that cannot be
represented by the version numbers. As a trivial example, say you create a
version 4 of mooLib that restores the function moo. Fragments built with version 4
cannot run with version 3 because version 3 does not contain moo; the old
definition version number must be 4. However, this choice also disqualifies
version 2, which does contain moo and would be a compatible library.

In some cases, the developer can increase the compatibility ranges by
designating weak symbols in addition to PEF versioning. For example, say
you have a library dogLib with the functions woof and arf. Normally, if you add
a new function bark to dogLib, you must increase the current and old
implementation version numbers as in the previous example. However, if the
fragment that imports from dogLib declares bark to be weak, you have a little

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Import Library Techniques 3-19

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

more flexibility. For example, if version 0 is the original dogLib and version 1
contains the bark function, the following are true:

� A client fragment built with version 0 of dogLib can run with either version 0
or version 1, since it neither knows about nor uses bark.

� A client fragment built with version 1 of dogLib can run with either version 0
or version 1 if the client declares bark to be weak. (Note that the client
fragment must check for the presence of bark and use it only if it is available.)

Therefore, if bark is weak, version 1 of dogLib can have both its old definition
and old implementation version numbers set to 0. Figure 3-3 shows the version
numbers for both variations of bark.

Figure 3-3 Version numbering with weak imports

Change Names for Newer Import Libraries 3

If the new version of the import library cannot support older clients, it is
essentially a new library, so the developer could give the new library a different
name to eliminate the need for version or symbol checking. For example, you
could call a revision to mooLib that is not compatible with older clients

Current version

Old definition version

Old implementation version

0

0

0

1

0

1

1

0

0

int arf()
int woof()

int arf()
int woof()

/*no change*/

int bark()

int arf()
int woof()

/*no change*/

int bark()
/*weak*/

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-20 Import Library Techniques

mooLib_2.0. However, since the Code Fragment Manager considers libraries
with different names to be totally separate libraries, it is possible to have several
instantiations of a library present in memory at the same time.

� W AR N I N G

By simply renaming an import library, it is possible for one
program to end up trying to use two different versions of
an import library. For example, say an application uses
mooLib and uses a third-party library that also requires
mooLib. If the third-party developer decides to upgrade
to mooLib_2.0, the application may end up trying to use
both mooLib and mooLib_2.0. Because of this danger, the
developer should avoid simply renaming newer versions
of import libraries. For a safer method, see “Put New
Symbols in New Logical Libraries” (page 3-21). �

Create an Alias Library Name Using Multiple 'cfrg' 0 Entries 3

A developer can create aliases for library names by including additional 'cfrg'0
entries that point to the same fragment (see “Multiple Names for the Same
Fragment” (page 3-13) for more information). This aliasing can be useful when
combining several libraries into one fragment. For example, say you have
libraries cowLib and dogLib that have been linked to a number of clients. You
then decide to merge cowLib and dogLib into a new library dogCowLib. To ensure
that clients originally built with cowLib or dogLib can still access those routines
in dogCowLib, you must create separate 'cfrg'0 entries for cowLib and dogLib.
These entries list the old fragment names but point to the container
for dogCowLib.

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Import Library Techniques 3-21

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

Put New Symbols in New Logical Libraries 3

A developer can give logical names to different portions of a library and then
have multiple 'cfrg'0 entries to point to a single implementation. For example,
consider the breakdown of mooLib in Figure 3-4.

Figure 3-4 Multiple logical names for a single library

The updated portion of each new version has its own logical name. For
example, if your program called a routine introduced between versions 1.1 and
2.0 of mooLib, it would look for the symbol in the library ;mooLib_1.1-2.0. The
advantage here is that the name of the library explicitly indicates the version of
mooLib that introduced any particular export. A disadvantage is that since a new
library name is added with each revision, the number of names may become
unwieldy over time.

Symbols

Time

mooLib
1.0;mooLib 1.0

mooLib
1.1

mooLib
2.0

mooLib
2.5

;mooLib 1.0-1.1

;mooLib 1.1-2.0

;mooLib 2.0-2.5

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-22 Import Library Techniques

Use Reexport Libraries 3

A developer can split the functionality of a library into several libraries (for
example, to reduce size or to isolate certain services). By using reexport
libraries, older clients can use multiple newer libraries in place of an older one.

For example, say you have a library dogCowLib which has been split into two
libraries dogLib and cowLib. Older clients still expect to import symbols from
dogCowLib, so you must provide one. The new version of dogCowLib contains no
code, however, but merely imports symbols from dogLib and cowLib and
reexports them as its own. Figure 3-5 shows the use of a reexport library.

Figure 3-5 Using a reexport library

dogCowLib:woof

dogCowLib:moo

Client

dogLib

dogCowLib

woof

cowLib

moo

dogLib:woof

cowLib:moo

woof

moo

Imported
symbols

Exported
symbols

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Import Library Techniques 3-23

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

When the Code Fragment Manager performs relocations, dogCowLib is
optimized out, with the result that symbol pointers point directly to dogLib or
cowLib. Figure 3-6 shows the old client linked to the new libraries at runtime.

Figure 3-6 The reexport library removed at runtime

More generally, a developer can use reexport libraries to link against a
collection of libraries that do not exist as real implementations. For example,
you can group symbols in arbitrary libraries according to functionality during
the build process and then use a reexport library at runtime to assign these
symbols to the actual implementation libraries.

A drawback to using reexport libraries is that the client application receives all
the connections associated with a reexport library even if they are not needed.
In Figure 3-5, for example, even if the client application does not need any
symbols in dogLib, the Code Fragment Manager prepares it anyway, since
dogCowLib requires it.

moo

woof

Client dogLibdogCowLib

woof

cowLib

moo

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-24 Using the Main Symbol as a Data Structure

Using the Main Symbol as a Data Structure 3

As mentioned before, the main symbol does not have to point to a routine, but
can point to a block of data instead. You can use this fact to good effect with
plug-ins, where the block of data referenced by the main symbol can contain
essential information about the plug-in. Using the main symbol in this fashion
has several advantages:

� The Code Fragment Manager returns the address of the main symbol
when you programmatically prepare a fragment, so you do not need to
call FindSymbol.

� You do not have to reserve and document the specific name of an export for
your plug-in.

However, not having a specific symbol name means that the plug-in’s purpose
is not quite as obvious.

A plug-in can store its name, icon, or information about its symbols in the main
symbol data structure. Storing symbolic information in this fashion eliminates
the need for multiple FindSymbol calls.

Systemwide Sharing and Data-Only Fragments 3

As discussed in Chapter 1, a fragment can select either per-process or systemwide
(global) sharing for its data sections. If you specify systemwide sharing,
however, you should do so only with fragments that contain no code. The
danger in having code in a fragment whose data is shared globally is that a
globally shared routine may end up making a call into a process. Such a call

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Systemwide Sharing and Data-Only Fragments 3-25

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

goes through the fragment’s direct data area, which holds a pointer to the called
routine’s transition vector. If two or more processes are sharing the fragment,
the target of the pointer can be unclear (each process could contain an eligible
called routine). Figure 3-7 illustrates the problem.

Figure 3-7 Systemwide sharing in a fragment containing code and data

Process 1

stdCowLib
data

stdCowLib
data

mooApp

stdCowLib

cowApp

stdCowLib

Process 2
mooLib code

mooLib data

Closure 1 Closure 2

mooLibmooLib

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-26 Multiple Fragments With the Same Name

A solution is to isolate the data that must be globally shared in a data-only
fragment. Function calls are stored in per-process data so there is no confusion
as to which process the calls refer. Figure 3-8 shows the fragment mooLib
separated into mooLib and mooLibGlobal.

Figure 3-8 Systemwide sharing using a data-only fragment

Multiple Fragments With the Same Name 3

The Code Fragment Manager associates fragments with physical entities (on
disk, in memory, and so on) rather than names, even within the same closure.
This referencing method means that it is possible to have the Code Fragment

Process 1

stdCowLib
data

mooApp

mooLib

stdCowLib

mooLibGlobal cowApp

mooLib

stdCowLib

mooLibGlobal

Process 2

Data Data

Data

stdCowLib
data

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

Multiple Fragments With the Same Name 3-27

P
rogram

m
ing for the C

F
M

-B
ased R

untim
e

3

Manager prepare two fragments with the same name (which may or may not be
identical). For example, consider Figure 3-9, which shows a hard disk that
contains two separate copies of the import library mooLib.

Figure 3-9 Identical but independent fragments

When the application mooApp launches, the Code Fragment Manager determines
that mooApp requires the import library mooLib and, following its search path,
eventually finds a copy in the default system libraries folder (the Extensions
folder, for example). This copy of mooLib is then bound to mooApp.

Later, you decide to launch the application cowApp, which also depends on the
import library mooLib. However, in searching for mooLib, the Code Fragment
Manager finds a copy of the library in the folder containing cowApp. Since this
location takes precedence over the Extensions folder, the Code Fragment
Manager binds this copy of mooLib to mooApp.

mooFolder

Extensions

cowFolder

cowApp

mooApp

mooLib

mooLib

C H A P T E R 3

Programming for the CFM-Based Runtime Architecture

3-28 Multiple Fragments With the Same Name

The result is that two separate copies of mooLib exist at the same time. Even
though they share the same name (and may in fact be completely identical),
they do not share data or code; as far as the Code Fragment Manager is
concerned, they are two separate fragments. This can lead to subtle problems
when the libraries have specified systemwide sharing of data. For example,
even if both copies of mooLib specified systemwide data sharing, they would not
share global data with each other. On the other hand, allowing multiple copies
of a library to exist can be useful for test or debugging purposes. For example,
cowApp could use a test copy of mooLib without disturbing the copy used by
mooApp.

C H A P T E R 4

Contents 4-1

Contents

4

Figure 4-0
Listing 4-0
Table 4-0

4 PowerPC Runtime Conventions

Data Types 4-3
Data Alignment 4-4
PowerPC Stack Structure 4-6

Prologs and Epilogs 4-8
The Red Zone 4-10

Routine Calling Conventions 4-11
Function Return 4-17
Register Preservation 4-17

C H A P T E R 4

Data Types 4-3

P
ow

erP
C

 R
untim

e C
onventions

4
PowerPC Runtime Conventions 4

This chapter covers specific low-level details of the PowerPC runtime
environment, including the following:

� data storage types

� stack structure

� routine calling conventions

These conventions may be useful for low-level programming (if you are writing
in assembly language, for example) or for optimizing higher-level code.

Data Types 4

Table 4-1 lists the binary data types and their sizes in the PowerPC runtime
environment.

Table 4-1 Data types in the PowerPC runtime environment

Type
Size
(bytes)

Alignment
(bytes) Range Notes

UInt8 1 1 0 to 255

SInt8 1 1 –128 to 127

SInt16 2 2 –32,768 to 32,767

UInt16 2 2 0 to 65,535

SInt32 4 4 –2–31 to 231 –1

UInt32 4 4 0 to 232–1

Boolean 1 1 0 = false,
nonzero = true

float 4 4 ±(2-149 to 2127) IEEE 754
standard

double 8 8 ±(2-1074 to 21023) IEEE 754
standard

Pointer 4 4 0 to FFFFFFFF

C H A P T E R 4

PowerPC Runtime Conventions

4-4 Data Alignment

All numeric and pointer data types are stored in big-endian format (that is, high
bytes first, then low bytes). Signed integers use two’s-complement
representation.

Data Alignment 4

The PowerPC runtime environment supports multiple data alignment modes.
These alignments fall into two categories:

� the natural alignment, which is the alignment of a data type when allocated
in memory or assigned a memory address

� the embedding alignment, which is the alignment of a data type within a
composite data item

For example, the alignment of a UInt16 variable may differ from that of a UInt16
data item embedded in a data structure.

Note
Data items passed as parameters in a routine call have their
own special alignment rules. See “Routine Calling
Conventions,” beginning on page 4-11, for more
information. �

Table 4-1 (page 4-3) shows the natural alignment of each data type, which is
simply the size of the data type. This alignment is fixed.

In data structures, you can specify an embedding alignment that varies
depending on the alignment mode selected. Typically you can select the
alignment mode using compiler options or pragmas. Table 4-2 shows the
possible alignment modes.

C H A P T E R 4

PowerPC Runtime Conventions

Data Alignment 4-5

P
ow

erP
C

 R
untim

e C
onventions

4

In all but the 68K alignment mode, the embedding alignment of a composite
(for example, a data structure or an array) is determined by the largest
embedding alignment of its members. The total size of a composite is rounded
up to be a multiple of its embedded alignment.

In 68K alignment mode, the embedded alignment of a composite is always
2 bytes. The total size of the composite is rounded up to a multiple of two.

In PowerPC alignment mode, if the first embedded element in a data structure
is type double, then the embedding alignment of all type double members in the
structure is 8. In such cases, the embedding alignment for the entire structure is
also 8 bytes.

Note that you may need to adjust embedded alignments if you are converting
code from the classic 68K environment to the PowerPC (or CFM-68K) runtime
environments. If you wish to enforce classic 68K alignment on your PowerPC
code, you can often specify compiler pragmas or options to do so. Note,
however, that the PowerPC processor is less efficient when accessing data that
is not placed according to its natural alignment.

Table 4-2 Embedded alignment modes

Data type PowerPC 68K Packed Natural

SInt8

UInt8

Boolean

1 1 1 1

SInt16

UInt16

2 2 1 2

SInt32

UInt32

4 2 1 4

float 4 2 1 4

double 4 or 8 2 1 8

Pointer 4 2 1 4

Composite 4 or 8 2 1 16

C H A P T E R 4

PowerPC Runtime Conventions

4-6 PowerPC Stack Structure

PowerPC Stack Structure 4

The PowerPC runtime environment uses a grow-down stack that contains
linkage information, local variables, and a routine’s parameter information as
shown in Figure 4-1.

Figure 4-1 The PowerPC stack

The typical PowerPC stack conventions use only a stack pointer (held in
register GPR1) and no frame pointer. This configuration assumes a fixed stack
frame size, which is known at compile time. Parameters are not passed by
pushing them onto the stack.

Stack grows
down

Local variables

Linkage area

Saved registers

Parameter area

Stack after
calling a

procedure

Stack before
calling a

procedure

SP

Parameter area

Linkage area

Parameter area

Linkage area

SP

Callee

Caller

Stack grows
down

Caller

C H A P T E R 4

PowerPC Runtime Conventions

PowerPC Stack Structure 4-7

P
ow

erP
C

 R
untim

e C
onventions

4

The calling routine’s stack frame includes a parameter area and some linkage
information. The parameter area has space for the parameters of any routines
the caller calls (not the parameters of the caller itself). Since the calling routine
might call several different routines, the parameter area must be large enough
to accomodate the largest parameter list of all the routines the caller calls. It is
the calling routine’s responsibility for setting up the parameter area before each
call to some other routine, and the called routine’s responsibility for accessing
the parameters placed within it. See “Routine Calling Conventions,” beginning
on page 4-11, for more information about the calling conventions.

The calling routine’s linkage area holds a number of values, some of which are
saved by the calling routine and some by the called routine. Figure 4-2 shows
the structure of the linkage area.

Figure 4-2 A stack frame’s linkage area

The elements within the linkage area are as follows:

� The base register (GPR2) value is saved at 20(SP) by the calling routine prior
to the call if

� the call is to an imported routine
� the call is a pointer-based call (which may or may not be cross-fragment)
This action ensures that the calling routine can still access its own direct data
area upon return. See “PowerPC Implementation,” beginning on page 2-8,
for more information. Local calls do not need to save this value.

Reserved

Reserved

Saved GPR2

Saved LR

Saved CR

Saved SP

+20

+16

+24

+12

+8

+4

SP

C H A P T E R 4

PowerPC Runtime Conventions

4-8 PowerPC Stack Structure

� The Link Register (LR) value is saved at 8(SP) by the called routine if it chooses
to do so.

� The Condition Register (CR) value may be saved at 4(SP) by the called
routine. As with the Link Register value, the called routine is not required to
save this value.

� The stack pointer is always saved by the calling routine as part of its
stack frame.

Note that the linkage area is at the top of the stack, adjacent to the stack pointer.
This positioning is necessary so the calling routine can find and restore the
values stored there and also to enable the called routine to find the caller’s
parameter area. This placement means that a routine cannot push and pop
parameters from the stack once the stack frame is set up.

The stack frame also includes space for the called routine’s local variables. In
general, the general-purpose registers GPR13 through GPR31 and the
floating-point registers FPR14 through FPR31 are reserved for the routine’s local
variables. However, if the routine contains more local variables than would fit
in the registers, it uses additional space on the stack. The size of the local
variable area is determined at compile time; once a stack frame is allocated, the
size of the local variable area cannot change.

Prologs and Epilogs 4

The called routine is responsible for allocating its own stack frame, making sure
to preserve 16-byte alignment on the stack. This action is accomplished by the
prolog before entering the actual routine. The compiler-generated prolog code
does the following:

� Decrements the stack pointer to account for the new stack frame.

� Writes the previous value of the stack pointer to its own linkage area. This
procedure ensures that the stack can be restored to its original state after
returning from the call.

� Saves all nonvolatile general-purpose and floating-point registers into the
saved-registers area. Note that if the called routine does not change a
particular nonvolatile register, it does not save it.

� Saves the Link Register and Condition Register values in the caller’s linkage
area, if needed.

C H A P T E R 4

PowerPC Runtime Conventions

PowerPC Stack Structure 4-9

P
ow

erP
C

 R
untim

e C
onventions

4

Note
The order in which the prolog executes these actions is
determined by convention, not by any requirements of the
PowerPC runtime architecture. �

Listing 4-1 shows some sample prolog code. Note that the order of these actions
differs from the order previously described.

Listing 4-1 Sample prolog code

linkageArea: set 24 ; size in PowerPC environment
params: set 32 ; callee parameter area
localVars: set 0 ; callee local variables
numGPRs: set 0 ; volatile GPRs used by callee
numFPRs: set 0 ; volatile FPRs used by callee)

spaceToSave: set linkageArea + params + localVars
spaceToSave: set spaceToSave + 4*numGPRs + 8*numFPRs

.moo: ; PROLOG
mflr r0, ; extract return address
stw r0,8(SP) ; save the return address
stwu SP, -spaceToSave(SP); skip over caller save area

After the called routine exits, the epilog code executes, which does the following:

� Restores the nonvolatile general-purpose and floating-point registers that
were saved in the stack frame.

� Restores the Condition Register and Link Register values that were stored in
the linkage area.

� Restores the stack pointer to its previous value.

� Returns to the calling routine using the address stored in the Link Register.

Listing 4-2 shows some sample epilog code.

C H A P T E R 4

PowerPC Runtime Conventions

4-10 PowerPC Stack Structure

Listing 4-2 Sample epilog code

; EPILOG
lwz r0,spaceToSave(SP)+8 ; get the return address
mtlr R0 ; reset Link Register
addic SP,SP,spaceToSave ; restore stack pointer
blr ; return

The calling routine is responsible for restoring its GPR2 value immediately after
returning from the called routine.

The Red Zone 4

The space beneath the stack pointer, where a new stack frame would normally
be allocated, is called the Red Zone. This area, as shown in Figure 4-3, may be
used for any purpose as long as a new stack frame does not need to be added to
the stack.

Figure 4-3 The Red Zone

For example, the Red Zone may be used by a leaf procedure. A leaf procedure
is a routine that does not call any other routines. Since it does not call any other
routines, it does not need to allocate a parameter area on the stack. Furthermore,
if it does not need to use the stack to store local variables, it need save and
restore only the nonvolatile registers that it uses for local variables. Since by

Linkage area

Parameter area

Red Zone

SP

C H A P T E R 4

PowerPC Runtime Conventions

Routine Calling Conventions 4-11

P
ow

erP
C

 R
untim

e C
onventions

4

definition no more than one leaf procedure is active at any time, there is no
possibility of multiple leaf procedures competing for the same Red Zone space.

A leaf procedure does not allocate a stack frame nor does it decrement the stack
pointer. Instead it stores the Link Register and Condition Register values in the
linkage area of the routine that calls it (if necessary) and stores the values of any
nonvolatile registers it uses in the Red Zone. This streamlining means that a leaf
procedure’s prolog and epilog do only minimal work; they do not have to set
up and take down a stack frame.

When an exception handler is called, the Exception Manager automatically
decrements the stack pointer by 224 bytes (the largest possible area used to save
registers), to skip over any possible Red Zone information, and then restores the
stack pointer when the handler exits. The Exception Manager does this because
an exception handler cannot know in advance if a leaf procedure is executing at
the time the exception occurs. If you are writing code that modifies the stack at
interrupt time, you must similarly decrement the stack pointer by 224 bytes to
preserve any Red Zone information and restore it after the interrupt call.

Note
The value of 224 bytes is the space occupied by nineteen
32-bit general-purpose registers plus eighteen 64-bit
floating-point registers, rounded up to the nearest 16-byte
boundary. If a leaf procedure’s Red Zone usage would
exceed 224 bytes, then it must set up a stack frame just like
routines that call other routines. �

Routine Calling Conventions 4

This section details the process of passing parameters to a routine in the
PowerPC runtime environment.

Note
These parameter passing conventions are part of Apple’s
standard for procedural interfaces. Object-oriented
languages may use different rules for their own method
calls. For example, the conventions for C++ virtual function
calls may be different from those for C functions. �

C H A P T E R 4

PowerPC Runtime Conventions

4-12 Routine Calling Conventions

A routine can have a fixed or variable number of arguments. In an ANSI-style C
syntax definition, a routine with a variable number of arguments typically
appears with ellipsis points (…) at the end of its input parameter list.

A variable-argument routine may have several required (that is, fixed)
parameters preceding the variable parameter portion. For example, the
routine definition

mooColor(number,[color1. . .])

gives no restriction on the number of color arguments, but you must always
precede them with a number argument. Therefore, number is a fixed parameter.

Typically the calling routine passes parameters in registers. However, the
compiler generates a parameter area in the caller’s stack frame that is large
enough to hold all parameters passed to the called routine, regardless of how
many of the parameters are actually passed in registers. There are several
reasons for this scheme:

� It provides the callee with space to store a register-based parameter if it
wants to use one of the parameter registers for some other purpose (for
instance, to pass parameters to a subroutine).

� Routines with variable-length parameter lists must often access their
parameters from RAM, not from registers. Such routines must reserve eight
registers (32 bytes) in the parameter area to hold the parameter values.

� To simplify debugging, some compilers may write parameters from the
parameter registers into the parameter area in the stack frame; this allows
you to see all the parameters by looking only at that parameter area.

You can think of the parameter area as a data structure that has space to hold all
the parameters in a given call. The parameters are placed in the structure from
left to right according to the following rules:

� All parameters are aligned on 4-byte (word) boundaries.

� Noncomposite parameters smaller than 4 bytes occupy the low order bytes of
their word.

� Composite parameters (such as data structures) are followed by padding to
make a multiple of 4 bytes, with the padding bytes being undefined.

C H A P T E R 4

PowerPC Runtime Conventions

Routine Calling Conventions 4-13

P
ow

erP
C

 R
untim

e C
onventions

4

For a routine with fixed parameters, the first 8 words (32 bytes) of the data
structure, no matter the size of the individual parameters, are passed in
registers according to the following rules:

� The first 8 words are placed in GPR3 through GPR10 unless a floating-point
parameter is encountered.

� Floating-point parameters are placed in the floating-point registers FPR1
through FPR13.

� If a floating-point parameter appears before all the general-purpose registers
are filled, the corresponding GPRs that match the size of the floating-point
parameter are skipped. For example, a float item causes one (4-byte) GPR to
be skipped, while an item of type double causes two GPRs to be skipped.

� If the number of parameters exceeds the number of usable registers, the
calling routine writes the excess parameters into the parameter area of its
stack frame.

Note
Currently the parameter area must be at least 8 words (32
bytes) in size. �

For example, consider a routine mooFunc with this declaration:

void mooFunc (SInt32 i1, float f1, double d1, SInt16 s1, double d2,
UInt8 c1, UInt16 s2, float f2, SInt32 i2);

To see how the parameters of mooFunc are arranged in the parameter area on the
stack, first convert the parameter list into a structure, as follows:

struct params {
SInt32 p_i1;
float p_f1;
double p_d1;
SInt16 p_s1;
double p_d2;
UInt8 p_c1;
UInt16 p_s2;
float p_f2;
SInt32 p_i2;

};

This structure serves as a template for constructing the parameter area on the
stack. (Remember that, in actual practice, many of these variables are passed in

C H A P T E R 4

PowerPC Runtime Conventions

4-14 Routine Calling Conventions

registers; nonetheless, the compiler still allocates space for all of them on the
stack, for the reasons just mentioned.)

The “top” position on the stack is for the field pi_1 (the structure field
corresponding to parameter i1). The floating-point field p_f1 is assigned to the
next word in the parameter area. The 64-bit double field p_d1 is assigned to
the next two words in the parameter area. Next, the short integer field p_s1 is
placed into the following 32-bit word; the original value of p_s1 is in the lower
half of the word, and the padding is in the upper half. The remaining fields of
the params structure are assigned space on the stack in exactly the same way,
with unsigned values being extended to fill each field to make it a 32-bit word.
The final arrangement of the stack is illustrated in Figure 4-4. (Because the stack
grows down, it looks as though the fields of the params structure are upside
down.)

Figure 4-4 The organization of the parameter area of the stack

+44

+40

+36

+32

+28

+20

+16

+8

+4

0

Stack grows
down

f2 FPR4

FPR3

FPR2

FPR1

GPR10

GPR9

GPR8

GPR7

GPR6

GPR5

GPR4

GPR3

x..............x

x.......................x

i2

d2

s2

c1

x..............x s1

d1

i1

f1

C H A P T E R 4

PowerPC Runtime Conventions

Routine Calling Conventions 4-15

P
ow

erP
C

 R
untim

e C
onventions

4

To see which parameters are passed in registers and which are passed on the
stack, you need to map the stack, as illustrated in Figure 4-4, to the available
general-purpose and floating-point registers. Therefore, the parameter i1 is
passed in GPR3, the first available general-purpose register. The floating-point
parameter f1 is passed in FPR1, the first available floating-point register. This
action causes GPR4 to be skipped.

The parameter d1 is placed into FPR2 and the corresponding general-purpose
registers GPR5 and GPR6 are unused. The parameter s1 is placed into the next
available general-purpose register, GPR7. Parameter d2 is placed into FPR3,
with GPR8 and GPR9 masked out. Parameter c1 is placed into GPR10, which
fills out the first 8 words of the data structure. Parameter s2 is then passed in
the parameter area of the stack. Parameter f2 is passed in FPR4, since there are
still floating-point registers available. Finally, parameter i2 is passed on the
stack. Figure 4-5 shows the final layout of the parameters in the registers and
the parameter area.

Figure 4-5 Parameter layout in registers and the parameter area

If you have a C routine with a variable number of parameters (that is, one that
does not have a fixed prototype), the compiler cannot know whether to pass a
parameter in the variable portion of the routine in the general-purpose (that is,
fixed-point) registers or in the floating-point registers. Therefore, the compiler
passes the parameter in both the floating-point and the general-purpose
registers, as shown in Figure 4-6.

i1 s1 c1

GPR3 GPR4 GPR5 GPR6 GPR7 GPR8 GPR9 GPR10

FPR1 FPR2

Parameter area

f1

FPR4

f2d1

FPR3

d2

i2s2

C H A P T E R 4

PowerPC Runtime Conventions

4-16 Routine Calling Conventions

Figure 4-6 Passing a variable number of parameters

The called routine can access parameters in the fixed portion of the routine
definition as usual. However, in the variable-argument portion of the routine,
the called routine must copy the GPRs to the parameter area and access the
values from there. Listing 4-3 shows a routine that accesses values by walking
through the stack.

Listing 4-3 A variable-argument routine

double dsum (int count, ...)
{

double sum = 0.0;
double * arg = (double *) (&count + 1 /* pointer arithmetic */);
while (count > 0) {

sum += *arg;
arg += 1; /* pointer arithmetic */
count -= 1;

}
return sum;
}

i1 s1 c1

GPR3 GPR4 GPR5 GPR6 GPR7 GPR8 GPR9 GPR10

FPR1 FPR2

Parameter area

f1

FPR4

f2d1

FPR3

d2

i2f2

f1 d1 d2

s2

C H A P T E R 4

PowerPC Runtime Conventions

Routine Calling Conventions 4-17

P
ow

erP
C

 R
untim

e C
onventions

4

Function Return 4

In the PowerPC runtime environment, floating-point function values are
returned in register FPR1 (or FPR1 and FPR2 for long double values). Other
values are returned in GPR3 as follows:

� Functions returning simple values smaller than 4 bytes (such as type SInt8,
Boolean, or SInt16) place the return value in the least significant byte or bytes
of GPR3. The most significant bytes in GPR3 are undefined.

� Functions returning 4-byte values (such as pointers, including array pointers,
or types SInt32 and UInt32) return them normally in GPR3.

� If a function returns a composite value (for example, a struct or union data
type) or a value larger than 4 bytes, a pointer must be passed as an implicit
left-most parameter before passing all the user-visible arguments (that is, the
address is passed in GPR3, and the actual parameters begin with GPR4). The
address of the pointer must be a memory location large enough to hold the
function return value. Since GPR3 is treated as a parameter in this case, its
value is not guaranteed on return.

Register Preservation 4

Table 4-3 lists registers used in the PowerPC runtime environment and their
volatility in routine calls. Registers that retain their value after a routine call are
called nonvolatile. All registers are 4 bytes long.

Table 4-3 Volatile and nonvolatile registers

Type Register
Preserved by a
routine call? Notes

General-
purpose
register

GPR0 No

GPR1 See next
column

Used as the stack
pointer to store
parameters and other
temporary data items.

continued

C H A P T E R 4

PowerPC Runtime Conventions

4-18 Routine Calling Conventions

General-
purpose
register
(continued)

GPR2 See next
column

Used as the base
register to access the
direct data area. GPR2
is preserved by direct
calls; for indirect calls
the caller must restore
the value after the call.

GPR3 See next
column

Holds the return value
or the address of the
return value in
function calls. For
routine calls that do
not return a value,
GPR3 is used to pass
parameter values.

GPR4-GPR10 No Used to pass
parameter values in
routine calls.

GPR11-GPR12 No

GPR13-GPR31 Yes

Floating-
point register

FPR0 No

FPR1-FPR13 No Used to pass floating-
point parameters in
routine calls.

FPR14-FPR31 Yes

Link Register LR No Stores the return
address of the calling
routine during a
routine call.

Count
Register

CTR No

continued

Table 4-3 Volatile and nonvolatile registers (continued)

Type Register
Preserved by a
routine call? Notes

C H A P T E R 4

PowerPC Runtime Conventions

Routine Calling Conventions 4-19

P
ow

erP
C

 R
untim

e C
onventions

4

Fixed-point
exception
register

XER No

Condition
Registers

CR0-CR1 No

CR2-CR4 Yes

CR5-CR7 No

Table 4-3 Volatile and nonvolatile registers (continued)

Type Register
Preserved by a
routine call? Notes

C H A P T E R 5

Contents 5-1

Contents

5

Figure 5-0
Listing 5-0
Table 5-0

5 CFM-68K Runtime Conventions

Data Types 5-3
Routine Calling Conventions 5-4

Parameter Deallocation 5-5
Stack Alignment 5-5
Fixed-Argument Passing Conventions 5-6
Variable-Argument Passing Conventions 5-7
Function Value Return 5-7
Stack Frames, A6, and Reserved Frame Slots 5-8
Register Preservation 5-8

C H A P T E R 5

Data Types 5-3

C
F

M
-68K

 R
untim

e C
onventions

5
CFM-68K Runtime Conventions 5

This chapter covers data storage and parameter-passing conventions for the
CFM-68K runtime environment. All CFM-68K runtime conventions are
language independent. These conventions may be useful for low-level
programming (if you are writing in assembly language, for example) or for
optimizing higher-level code.

Data Types 5

Table 5-1 lists the binary data types and their sizes in the CFM-68K runtime
environment. These types and sizes are identical to those in the PowerPC
runtime environment.

Table 5-1 Data types in the CFM-68K runtime environment

Type
Size
(bytes)

Alignment
(bytes) Range Notes

UInt8 1 1 0 to 255

SInt8 1 1 –128 to 127

SInt16 2 2 –32,768 to 32,767

UInt16 2 2 0 to 65,535

SInt32 4 4 –2–31 to 231 –1

UInt32 4 4 0 to 232–1

Boolean 1 1 0 = false,
nonzero = true

float 4 4 ±(2-149 to 2127) IEEE 754
standard

double 8 8 ±(2-1074 to 21023) IEEE 754
standard

Pointer 4 4 0 to FFFFFFFF

extended 10 or
12

4 SANE or
MC68881 data
type

C H A P T E R 5

CFM-68K Runtime Conventions

5-4 Routine Calling Conventions

All numeric and pointer data types are stored in big-endian format (that is, high
bytes first, then low bytes). Signed integers use two’s-complement
representation.

IMPORTANT

The layout of the extended data type is either that of the
SANE 80-bit data type or that of the 96-bit MC68881 data
type, depending on the software development environment
used. Because of this variability, you should not use the
extended data type for imported or exported routines or
data. �

The size of data structures and unions must be a multiple of two, and an extra
byte may be added at the end to meet this requirement. Items inside a data
structure (except for types UInt8 and SInt8) are placed on a 2-byte boundary
with an extra padding byte inserted if necessary. Type UInt8 and type SInt8
items (single variables or arrays) are merely placed in the next available byte.

Routine Calling Conventions 5

This section details the process of passing parameters to a routine in the
CFM-68K runtime environment.

Note
These parameter passing conventions are part of Apple’s
standard for procedural interfaces. Object-oriented
languages may use different rules for their own method
calls. For example, the conventions for C++ virtual function
calls may be different from those for C functions. �

A routine can have a fixed or variable number of arguments. In an ANSI-style C
syntax definition, a routine with a variable number of arguments typically
appears with ellipsis points (…) at the end of its input parameter list.

A variable-argument routine may have several required (that is, fixed)
parameters preceding the variable parameter portion. For example, the function
definition

mooColor(number,[color1. . .])

C H A P T E R 5

CFM-68K Runtime Conventions

Routine Calling Conventions 5-5

C
F

M
-68K

 R
untim

e C
onventions

5

gives no restriction on the number of color arguments, but you must always
precede them with a number argument. Therefore, number is a fixed parameter.

The calling routine passes parameters by pushing their values onto the stack,
and the stack grows downward (towards lower addresses) with each push. The
rightmost parameter is the first pushed onto the stack, with the others following
from right to left. For example, given the code

cow = mooFunc(moo1, moo2, moo3);

the calling routine first pushes the value of moo3 onto the stack, followed by moo2
and then moo1.

The return address of the routine is the last item pushed onto the stack.

Note
The order of passing parameters onto the stack in CFM-68K
is identical to that for the classic 68K C calling convention.
For information about the 68K stack structure, see “Classic
68K Stack Structure and Calling Conventions,” beginning
on page 11-4. �

Parameter Deallocation 5

In the CFM-68K runtime environment, responsibility for removing items from
the stack depends on the function type.

� In a fixed-argument type routine, the called routine deallocates (that is, pops
from the stack) the return address and all the passed parameters before, or as
part of, its return. The calling routine does not need to do any cleanup.

� If the called routine is a variable-argument type, it only pops the return
address before returning. The calling routine must then deallocate all the
parameters it pushed onto the stack.

Stack Alignment 5

To improve performance, the CFM-68K runtime architecture requires a 4-byte
(minimum) alignment for all parameters pushed onto the stack. This applies to
stack space used in function prologs (that is, stack space reserved for automatic
memory variables and temporaries) as well as space allocated using the alloca
dynamic stack allocation operation. Types UInt8, SInt8, Boolean, UInt16, and

C H A P T E R 5

CFM-68K Runtime Conventions

5-6 Routine Calling Conventions

SInt16 parameters are passed in the least significant byte or bytes with padding
added. Data types struct, union, and extended are passed in the most significant
bytes, with padding added afterwards if necessary.

Fixed-Argument Passing Conventions 5

Fixed parameters may either be items used to call a fixed-argument type
routine, or fixed items that precede the variable items in a variable-argument
function call. In either case, fixed parameters must occupy a multiple of 4 bytes
when pushed onto the stack, with padding added if necessary. Note that the
data can actually be pushed in any order as long as the final alignment matches
the required convention.

� Parameters of type UInt8, SInt8, and Boolean are pushed onto the stack
as 1 byte of data (the least significant byte) along with 3 bytes of
undefined padding.

� Parameters of type UInt16 and SInt16 are pushed onto the stack as 2 bytes
(least significant) of data plus 2 bytes of padding.

� Pointers to procedures and arrays are pushed normally (since they are
4 bytes long), as are UInt32, SInt32, and float data items.

� Type double parameters are passed by pushing the memory image of the
8-byte item onto the stack.

� Type extended parameters can be either 10 or 12 bytes long, depending on the
development environment. For 10-byte items, 2 padding bytes are pushed
onto the stack before pushing the parameter. A 12-byte extended data item is
pushed onto the stack normally (since it is a multiple of 4 bytes).

� If the size of a data structure or union is not a multiple of 4 bytes, 2 padding
bytes are added to the stack before pushing the parameter. Otherwise, the
parameter is pushed onto the stack normally. In both cases, the memory
image of the item is passed.

� Bit field layout is not defined. You should not use bit fields in procedures or
data structures that have shared library interfaces.

C H A P T E R 5

CFM-68K Runtime Conventions

Routine Calling Conventions 5-7

C
F

M
-68K

 R
untim

e C
onventions

5

Variable-Argument Passing Conventions 5

When passing variable arguments, padding is added to some data types when
pushing them onto the stack:

� Parameters of types UInt8, SInt8, UInt16, SInt16, and Boolean are converted
to type SInt32 (as if by assignment) and pushed onto the stack as a 4-byte
integer data item.

� Both float and double parameters are pushed onto the stack as 8-byte double
data items (float data types are converted to type double (as if by assignment)
before being pushed).

� All other data types are passed normally.

Function Value Return 5

In the CFM-68K runtime environment, the placement of the return value
depends on its size:

� Functions returning UInt8, SInt8, or Boolean data types place the return value
in the least significant byte of D0. The three most significant bytes in D0 are
undefined.

� Functions returning UInt16 or SInt16 data types place the return value in
the two least significant bytes of D0. The two most significant bytes in D0
are undefined.

� Functions returning pointers (including array pointers), UInt32, SInt32, or
float data types place the return value in D0.

� Functions returning small data structures or union data types place them in
the least significant bytes of D0. For example, a 4-byte structure takes up D0,
while a 2-byte structure occupies the two least significant bytes of D0, with
the extra bytes being undefined.

� If the function return value is larger than 4 bytes (this applies to double and
extended data types, as well as to large struct or union data types), a pointer
must be pushed onto the stack at call time after all the user-visible arguments
have been pushed. The address of the pointer must be a memory location
large enough to hold the function return value. When the function exits, it
returns this address in the D0 register.

C H A P T E R 5

CFM-68K Runtime Conventions

5-8 Routine Calling Conventions

Stack Frames, A6, and Reserved Frame Slots 5

The CFM-68K runtime architecture requires two long words in the stack frame
to be reserved (that is, unused) for future use. The word locations for these
reserved slots are -4(A6) and -8(A6).

Routines making calls through procedure pointers (that is, indirect or
cross-fragment calls) must have an A6 frame and must reserve the two long
words. Leaf routines or routines that make only direct (in-fragment) calls do not
need to use A6 as a link, and they do not require reserved stack frame slots.
However, some debugging options may require you to set up a stack frame.

In general, you should not use the A6 register except as a frame pointer, and if
you do set up an A6 stack frame, you must also reserve the two long frame slots.

Register Preservation 5

Table 5-2 lists registers used in the CFM-68K runtime environment and their
volatility in function calls. Registers that retain their value after a routine call
are called nonvolatile. All registers are 4 bytes long.

Table 5-2 Volatile and nonvolatile registers

Type Register
Preserved by
a routiine call? Notes

Data register D0 through D2 No

D3 through D7 Yes

Address
register

A0 No

A1 No Used to pass transition
vector addresses (+4)
when making indirect
or cross-fragment calls.

A2 through A4 Yes

continued

C H A P T E R 5

CFM-68K Runtime Conventions

Routine Calling Conventions 5-9

C
F

M
-68K

 R
untim

e C
onventions

5

Address
register
(continued)

A5 See next
column

Used to access global
data objects and the
jump table. A5 is
preserved by direct
(in-fragment) calls, but
not by cross-fragment
or indirect calls.

A6 Yes Used as the back link
and frame pointer
when making
cross-fragment calls.

A7 See next
column

A7 is the stack pointer
used to push and pop
parameters and other
temporary data items

Floating-
point register

F0 through F3 No When present.

F4 through F7 Yes When present.

Condition
Register

CR No Bits are set by compare
instructions and used
for conditional
branching.

Table 5-2 Volatile and nonvolatile registers (continued)

Type Register
Preserved by
a routiine call? Notes

C H A P T E R 6

Contents 6-1

Contents

6

Figure 6-0
Listing 6-0
Table 6-0

6 The Mixed Mode Manager

Overview 6-3
Universal Procedure Pointers and Routine Descriptors 6-5

CFM-Based Code Originates the Call 6-6
Classic 68K Code Originates the Call 6-7

Mixed Mode Manager Performance Issues 6-9
Mode Switching Implementations 6-10

Calling PowerPC Code From Classic 68K Code 6-10
Calling Classic 68K Code From PowerPC Code 6-13
Calling CFM-68K Code From Classic 68K Code 6-15
Calling Classic 68K Code From CFM-68K Code 6-16

C H A P T E R 6

Overview 6-3

T
he M

ixed M
ode M

anager
6

The Mixed Mode Manager 6

In certain cases, your CFM-based application or shared library may need to call
routines written in classic 68K code or vice versa. For example, a PowerPC
runtime program may need to call a system software routine that runs as
emulated classic 68K code. The Mixed Mode Manager allows you to make such
routine calls transparently.

You should read this chapter if you have any of the following concerns:

� You are writing CFM-based code, but want to make sure that it remains
compatible with existing classic 68K software (third-party plug-ins,
for example).

� You need to maintain binary compatibility with old classic 68K routines or
libraries whose source code is not available. You cannot recompile them
for the CFM-based architecture, but you still want to be able to use the
old routines.

� You are writing a low-level debugger or other tool that requires
understanding of the Mixed Mode Manager.

This chapter assumes you have general programming knowledge of both the
CFM-based runtime architecture and the classic 68K runtime architecture.

Overview 6

The Mixed Mode Manager is essentially a “black box” interface that allows
routines with different calling conventions to exchange parameter information.
The routines may reflect different architectures, different hardware, or both, but
the basic treatment is the same.

In addition to routine parameter information, the Mixed Mode Manager
requires the following information to make a mode switch:

� the calling conventions of the routine making the call

� a translation key that tells the Mixed Mode Manager how to manipulate the
parameters to meet the calling conventions of the routine being called

Currently the Mixed Mode Manager handles calls between CFM-based
architecture code and classic 68K architecture code.

C H A P T E R 6

The Mixed Mode Manager

6-4 Overview

The Mixed Mode Manager has two rules for the code that it handles:

1. The older classic 68K code does not need to be aware of the Mixed Mode
Manager and no modification is required for mode switching.

2. The newer CFM-based code must be aware of the Mixed Mode Manager and
take the steps necessary to invoke it if there is the possibility of a mode
switch. Typically a mode switch can occur when a routine calls code not
stored directly in the application or software (for example when loading and
executing code stored in a resource).

Given these assumptions, if there is the possibility of a mode switch, there are
four different types of calls that can be made:

� A CFM-based routine calls a classic 68K routine.

� A CFM-based routine calls a CFM-based routine.

� A classic 68K routine calls a CFM-based routine.

� A classic 68K routine calls a classic 68K routine.

How the call is handled depends on the type of code that originates the call:

1. A CFM-based routine originates the call.

Rule 2 requires the calling CFM-based routine to invoke the Mixed Mode
Manager if there is a possibility of a mode switch.
If the Mixed Mode Manager discovers that the called routine is classic 68K,
a mode switch is required. The Mixed Mode Manager should make the
switch and then execute the call. Any return values are passed back to the
calling routine.
If the Mixed Mode Manager discovers that the called routine is CFM-based,
no mode switch is necessary. The Mixed Mode Manager should allow the call
to be made normally.
Note that you need to call the Mixed Mode Manager only if the calling
conventions of the called routine are unknown. If you know that both the
calling routine and the called routine are CFM-based (when making routine
calls within an application, for example), you do not have to call the Mixed
Mode Manager.

2. A classic 68K routine originates the call.

Rule 1 requires that a classic 68K routine need no knowledge of the Mixed
Mode Manager.

C H A P T E R 6

The Mixed Mode Manager

Universal Procedure Pointers and Routine Descriptors 6-5

T
he M

ixed M
ode M

anager
6If the called routine is CFM-based, the supplier of the CFM-based routine

must make sure the Mixed Mode Manager is invoked. The Mixed Mode
Manager can then make the mode switch, execute the call, and pass back any
return values.
If the called routine is a classic 68K routine, neither the calling routine or the
called routine invokes the Mixed Mode Manager. The call proceeds normally.

IMPORTANT

The Mixed Mode Manager knows the size of the
parameters it translates but not their type, so it cannot
handle floating point parameters. If you need to pass
floating-point values in a possible Mixed Mode call, you
should pass pointers to the values instead. �

Universal Procedure Pointers and Routine Descriptors 6

While the Mixed Mode Manager is the mechanism for switching between
CFM-based code and classic 68K code, the actual interface between the two
types of code is the universal procedure pointer. A universal procedure pointer
may be either of the following:

� A pointer to classic 68K code.

� A pointer to a routine descriptor, a data structure that describes the address
of the called routine, its parameter signature, and its calling conventions. The
Mixed Mode Manager uses the routine descriptor as a key to translate
between the CFM-based and classic 68K calling conventions.

Both the calling code and the supplier of the called routine must agree to pass
universal procedure pointers to each other. In general, you do not have to
worry about which flavor of universal procedure pointer you are passing; as
long as you pass a pointer of type UniversalProcPtr, the Mixed Mode Manager
handles the rest and makes the mode switch when necessary. How you set up a
universal procedure pointer varies depending on the type of code that initiates
the call.

C H A P T E R 6

The Mixed Mode Manager

6-6 Universal Procedure Pointers and Routine Descriptors

Note
Note that the choices for universal procedure pointers
reflect the Mixed Mode Manager rules described earlier.
Classic 68K code can pass universal procedure pointers
without any code modification because all classic 68K
procedure pointers are simply redefined to be universal
procedure pointers. �

CFM-Based Code Originates the Call 6

If CFM-based code makes a pointer-based call to a routine that might be in
classic 68K code, you should call the routine CallUniversalProc to invoke a
universal procedure pointer instead of a standard procedure pointer. For
example, instead of simply calling an external routine using

(*moo)(cow);

you must call

CallUniversalProc((UniversalProcPtr) moo, mooProcInfo, cow);

where mooProcInfo describes the calling conventions of moo. See Inside Macintosh:
PowerPC System Software for more information on setting up the ProcInfo data
structure.

IMPORTANT

In general you need to call CallUniversalProc only when
calling external routines. Most CFM-based to CFM-based
calls (including pointer-based calls) know that the called
routine is CFM-based, so they do not need to call
CallUniversalProc. �

Calling CallUniversalProc invokes the Mixed Mode Manager, which decides if
a mode switch is necessary.

If the pointer it received (*moo in this case) turns out to point to a routine
descriptor, the call requires a mode switch.The Mixed Mode Manager uses the
routine descriptor to translate the parameter information into the form that the
classic 68K routine expects to see and then calls the routine. After executing
the routine, any return values are translated and passed back to the calling
CFM-based routine.

C H A P T E R 6

The Mixed Mode Manager

Universal Procedure Pointers and Routine Descriptors 6-7

T
he M

ixed M
ode M

anager
6If no mode switch is necessary the Mixed Mode Manager allows the call to be

made normally. When the called routine returns, control passes back directly to
the caller, not the Mixed Mode Manager.

Classic 68K Code Originates the Call 6

If classic 68K code initiates the call, then the calling routine is not required to
take any action; it is never even aware that a mode switch might be necessary.

The calling routine must always pass a universal procedure pointer. If the called
routine is also classic 68K code, the universal procedure pointer is simply a
classic 68K pointer (that is, a pointer to the called routine). The Mixed Mode
Manager is never invoked, and the call proceeds normally.

If the called routine is CFM-based code, the universal procedure pointer cannot
be a classic 68K pointer; it must therefore be a pointer to a routine descriptor.
The classic 68K caller is not required to change, so the supplier of the
CFM-based routine must provide the routine descriptor.

Note
The routine descriptor is not part of the called routine.
Rather, it is a shell or wrapper through which all external
calls to the routine must pass. �

The first instruction in the routine descriptor is an A-line instruction that invokes
the Mixed Mode Manager. The Mixed Mode Manager handles the mode switch
using the information stored in the routine descriptor and then calls the
transition vector of the CFM-based code. Figure 6-1 shows the calling path from
the classic 68K code to the CFM-based code.

C H A P T E R 6

The Mixed Mode Manager

6-8 Universal Procedure Pointers and Routine Descriptors

Figure 6-1 Calling path from classic 68K code to a CFM-based routine

After the call any return values are passed back to the classic 68K caller.

In order to satisfy the agreement to always pass universal procedure pointers,
you must create routine descriptors for any CFM-based routines that may be
called by classic 68K code. For example, if you supply a callback routine, you
must take additional steps to anticipate a possible mode switch when the
callback occurs. A classic 68K runtime function call such as

AEInstallEventHandler (kCoreEventClass, kAEOpenApplication,
HandleOapp,0,false);

must be changed to

UniversalProcPtr myHandleOappProc;
myHandleOappProc = NewAEEventHandlerProc (HandleOapp);
AEInstallEventHandler (kCoreEventClass,kAEOpenApplication,

myHandleOappProc,0,false)

Classic 68K code

Routine descriptor

Transition vector

CFM-based
code

C H A P T E R 6

The Mixed Mode Manager

Mixed Mode Manager Performance Issues 6-9

T
he M

ixed M
ode M

anager
6The NewAEEventHandlerProc macro (defined in AppleEvents.h) calls the Mixed

Mode Manager’s NewRoutineDescriptor function to create a routine descriptor
for HandleOapp.

Note
In certain cases where you cannot modify the CFM-based
code (if it is a third-party library whose source code is
unavailable, for example), it is possible to construct routine
descriptors in your classic 68K code. �

Mixed Mode Manager Performance Issues 6

The Mixed Mode Manager, while extremely useful for maintaining compatibility
between CFM-based code and classic 68K code, takes a significant number of
instruction cycles to perform a mode switch, so you should keep this in mind
when determining when and how often to switch between architectures.

In general this is not a problem if the time spent switching architectures is a
negligible percentage of the time spent in the called routines. For example, if
your classic 68K application calls a PowerPC graphics filter plug-in, most of the
execution time is spent crunching numbers in the plug-in, so performance is not
affected.

However, consider a short PowerPC patch for an emulated classic 68K software
program. Theoretically increasing the amount of native PowerPC code should
improve performance. However, if the mode-switching time is a significant
portion of the patch’s execution time and the patch is in a location where it is
called frequently, considerable “dead time” accumulates as the Mixed Mode
Manager switches back and forth; in such cases performance can actually
decrease. In extreme cases, the time spent mode switching is so great that a
classic 68K version of the patch results in better performance than a PowerPC
patch. To avoid such problems, you should create fat patches that contain both
CFM-based and classic 68K code. See “Mode Switching Implementations,”
beginning on page 6-10, and “Accelerated and Fat Resources,” beginning on
page 7-4, for more information on creating fat programs.

C H A P T E R 6

The Mixed Mode Manager

6-10 Mode Switching Implementations

Mode Switching Implementations 6

This section describes the implementations that the Mixed Mode Manager uses
to switch modes between PowerPC and emulated classic 68K and in switching
between CFM-68K and classic 68K.

Note that you need to read this section only if you need low-level details of how
the Mixed Mode Manager implements stack switch frames during a mode
switch (if you are writing a debugger, for example).

Calling PowerPC Code From Classic 68K Code 6

This section describes how the Mixed Mode Manager switches modes from the
classic 68K emulated environment to the PowerPC native environment. This
can happen when classic 68K code calls a system software routine or plug-in
that is implemented in the PowerPC instruction set.

Suppose that a classic 68K application calls a PowerPC routine. The application
is not aware that it is running under the 68LC040 Emulator, so it just pushes the
routine’s parameters onto the stack (or stores them into registers) and then
jumps to the routine or calls a trap that internally jumps to the routine. If the
routine exists as classic 68K code, no mode switch is required and the routine is
called as usual. If, however, the routine exists as PowerPC code, the calling
application must implicitly invoke the Mixed Mode Manager.

If the calling application merely jumps to the PowerPC code, the code must
begin with a routine descriptor, as explained in “Accelerated and Fat Resources,”
beginning on page 7-4. If the calling application calls a trap, the trap dispatch
table must contain—instead of the address of the routine’s executable code—the
address of a routine descriptor for that routine. This routine descriptor is
created at system startup time.

For example, suppose that your application calls the CountResources function,
as follows:

myResCount = CountResources('PROC');

C H A P T E R 6

The Mixed Mode Manager

Mode Switching Implementations 6-11

T
he M

ixed M
ode M

anager
6Suppose further that CountResources has been ported to the PowerPC

instruction set. When your application calls CountResources, the stack looks like
the one shown in Figure 6-2.

Figure 6-2 The stack before a mode switch

The trap dispatcher executes the CountResources routine descriptor, which
begins with an executable instruction that invokes the Mixed Mode Manager.
The Mixed Mode Manager retrieves the transition vector and creates a switch
frame on the stack. A switch frame is a stack frame that contains information
about the routine to be executed, the state of various registers, and the address
of the previous frame. Figure 6-3 shows the structure of a classic 68K to
PowerPC switch frame.

Note
In Figure 6-3 the low bit in the back chain pointer to the
saved A6 value is set. This bit signals to the Mixed Mode
Manager that a switch frame is on the stack. The
Mixed Mode Manager fails if the stack pointer has an
odd value. �

SP

4

8

10
Result space

Parameter

Return address

0

PROC

1000E

Stack grows
down

C H A P T E R 6

The Mixed Mode Manager

6-12 Mode Switching Implementations

Figure 6-3 A classic 68K to PowerPC switch frame

Result space

Parameter

Saved A6

28

24

20

12

8

4

0

Local variables

Return address

Saved RTOC

Reserved

Saved LR

Saved CR

Back chain (low bit is set)

Classic 68K
caller

stack frame

Classic 68K
to

PowerPC
switch frame

PowerPC
callee stack

frame

Parameters
(8 words minimum,
more if needed)

Stack grows
down

1

0

PROC

PROC

1000E

Reserved

C H A P T E R 6

The Mixed Mode Manager

Mode Switching Implementations 6-13

T
he M

ixed M
ode M

anager
6In addition to creating a switch frame, the Mixed Mode Manager also sets up

several CPU registers:

� The PowerPC base register (GPR2) must be set to the direct data area of the
fragment containing the CountResources routine. This value is obtained from
the transition vector whose address is extracted from the routine descriptor.

� The Link Register (LR) must be set to point to code that cleans up the stack
and restarts the emulator.

At this point, it’s safe to execute the native CountResources code. When
CountResources completes, the Mixed Mode Manager pops the return address
and parameters off the stack (since CountResources follows Pascal calling
conventions). The GPR2, LR, and CR are restored to their saved values, and the
switch frame is popped off the stack. The Mixed Mode Manager then jumps
back into the 68LC040 Emulator, and the application continues execution.

Calling Classic 68K Code From PowerPC Code 6

This section describes how the Mixed Mode Manager switches modes from
the PowerPC native environment to the classic 68K emulated environment.
When PowerPC code calls classic 68K code, the call must go through the routine
CallUniversalProc.

The call to CallUniversalProc invokes the Mixed Mode Manager, which verifies
that a mode switch is necessary. At that point, the Mixed Mode Manager saves
all nonvolatile registers and other necessary information on the stack in
a switch frame. Figure 6-4 shows the structure of a PowerPC to classic 68K
switch frame.

C H A P T E R 6

The Mixed Mode Manager

6-14 Mode Switching Implementations

Figure 6-4 A PowerPC to classic 68K switch frame

Once the switch frame is set up, the Mixed Mode Manager sets up the 68LC040
Emulator’s context block and then jumps into the emulator. When the routine
has finished executing, it attempts to jump to the return address pushed onto
the stack. That return address points to a “return-to-native” signal (currently
stored in the reserved area of the stack) that is used by the Mixed Mode

Saved LR

Saved CR

Switch frame indicator
0

Local variables

Back chain

Return address

A6 back chain

PowerPC to
classic 68K

switch frame

68K input
parameters

Stack grows
down

Classic 68K
callee

stack frame

Reserved

Saved PowerPC
registers
(GPR13–GPR31)

PowerPC
stack frame

Result space

0xFFFFFFFF

C H A P T E R 6

The Mixed Mode Manager

Mode Switching Implementations 6-15

T
he M

ixed M
ode M

anager
6Manager and the emulator to transfer back to PowerPC code. Once this is done,

the Mixed Mode Manager restores native registers that were previously saved
and deallocates the switch frame. Control then returns to the caller of
CallUniversalProc.

IMPORTANT

As currently implemented, the instruction that causes a
return from the 68LC040 Emulator to the native PowerPC
environment clears the low-order 5 bits of the Condition
Code Register (CCR). This prevents 68K callback
procedures from returning information in the CCR. If you
want to port classic 68K code that calls an external routine
that returns results in the CCR, you must instead call a
classic 68K stub that saves that information in some other
place. �

Calling CFM-68K Code From Classic 68K Code 6

Calling CFM-68K code from a classic 68K routine is very similar to calling
PowerPC code from emulated classic 68K code. However, since no virtual
machine switch is needed, the switch frame is simpler.

When the Mixed Mode Manager is invoked through the trap in the routine
descriptor, it sets up a classic 68K to CFM-68K switch frame before calling the
CFM-68K routine. Figure 6-5 shows the switch frame.

Note
The low bit of the saved A6 register is set to indicate that a
switch frame is on the stack. This is analogous to the set
low bit of the back frame in the classic 68K to PowerPC
switch frame. �

C H A P T E R 6

The Mixed Mode Manager

6-16 Mode Switching Implementations

Figure 6-5 A classic 68K to CFM-68K switch frame

After returning from the called routine, the Mixed Mode Manager copies the
return value to its proper location (in a register or on the stack) and pops the
stack frame and return address off the stack. If the calling routine uses Pascal
calling conventions, the calling routine’s parameters are also popped off the
stack. Control then passes back to the classic 68K code.

Calling Classic 68K Code From CFM-68K Code 6

Calling classic 68K code from CFM-68K code is analogous to calling classic 68K
code from PowerPC code. The call to CallUniversalProc invokes the Mixed
Mode Manager, which verifies that a mode switch is necessary. The Mixed
Mode Manager sets up a CFM-68K to classic 68K switch frame before calling
the classic 68K code. Figure 6-6 shows the structure of the switch frame.

Result space

Saved A6 (low bit is set)

8

4

0

Local variables

Return address

Return address

A6 back chain

Classic 68K
caller stack

frame

Classic 68K
to CFM-68K
switch frame

CFM-68K
callee stack

frame

Stack grows
down

1

0

CFM-68K
parameters

Classic 68K
parameters

C H A P T E R 6

The Mixed Mode Manager

Mode Switching Implementations 6-17

T
he M

ixed M
ode M

anager
6Figure 6-6 A CFM-68K to classic 68K switch frame

After returning from the call, the return value is copied to register D0, and
the switch frame is popped off the stack. Control then passes back to the
CFM-68K code.

Return address

Switch frame indicator
0

Local variables

Saved A6

Return address

A6 back chain

CFM-68K to
classic 68K

switch frame

Classic 68K
parameters

Stack grows
down

Classic 68K
callee stack

 frame

Reserved

CFM-68K
parameters

CFM-68K
stack frame

Result space

0xFFFFFFFF

C H A P T E R 7

Contents 7-1

Contents

7

Figure 7-0
Listing 7-0
Table 7-0

7 Fat Binary Programs

Creating Fat Binary Programs 7-3
Accelerated and Fat Resources 7-4

C H A P T E R 7

Creating Fat Binary Programs 7-3

Fat B
inary P

rogram
s

7
Fat Binary Programs 7

A fat binary program (often simply called a fat program) is an program that
contains executable code for more than one runtime architecture. Typically you
create fat programs when you want compatibility between hardware platforms.
For example, a fat application with PowerPC code and CFM-68K code can be
executed on both PowerPC-based and 68K-based Macintosh computers. A user
can store a fat application on a portable hard drive and then move it between a
68K-based computer and a PowerPC- based computer.

In addition, fat programs designed to patch code or resources can improve
performance by reducing the work of the Mixed Mode Manager. Since a fat
program can contain both CFM-based code and classic 68K code, it can execute
whichever code is necessary to avoid a mode switch.

Creating Fat Binary Programs 7

There are two primary reasons for building fat programs:

� You would like to build an application that runs on both PowerPC-based and
68K-based machines. Fat programs of this type contain PowerPC code and
either CFM-68K or classic 68K code.

� You are building a shared library, and you would like to have one library file
that runs on both PowerPC and 68K-based machines. Fat programs of this
type contain PowerPC code and CFM-68K code.

It is very easy to build a fat application to run PowerPC code and classic 68K
code, because you can place the PowerPC code in the data fork of an application
file, and the classic 68K code can be placed in 'CODE' resources in the resource
fork of the same file. If the application is launched on a PowerPC-based
Macintosh computer, the Process Manager recognizes the 'cfrg'0 resource and
knows to execute the PowerPC fragment in the data fork of the file. The
PowerPC Process Manager simply ignores the 'CODE' resources in the resource
fork. If the application is launched on a 68K-based Macintosh computer, the
Process Manager ignores the 'cfrg'0 resource and executes the 'CODE' resources
in the resource fork.

To create a fat application that contains both PowerPC code and CFM-68K code
is slightly more complicated, because both PowerPC and CFM-68K runtime
fragments require a 'cfrg'0 resource.

C H A P T E R 7

Fat Binary Programs

7-4 Accelerated and Fat Resources

IMPORTANT

If you want to run CFM-based code on both
PowerPC-based and 68K-based Macintosh computers, you
must build the fragment as a fat program. �

As described in “The Code Fragment Resource,” beginning on page 1-25, the
'cfrg'0 resource is an array that identifies, among other things, the instruction
set, type, and name of the fragment. It also identifies the location of the PEF
container for the fragment. As an array, the 'cfrg'0 resource can point to
multiple containers.

A fat application for both PowerPC and CFM-68K runtime architectures
contains code for each instruction set and a 'cfrg'0 resource array that points to
both containers. If you launch your application on a 68K Macintosh, the 68K
Process Manager reads the 'cfrg'0 resource and launches the CFM-68K
runtime version of the application. If you launch your application on a
PowerPC-based Macintosh, the PowerPC Process Manager reads the 'cfrg'0
resource and launches the PowerPC version of the application.

You can also create a fat shared library containing both a CFM-68K runtime
library and a PowerPC runtime library. Both the PowerPC and CFM-68K
fragments are stored in the data fork, with the 'cfrg'0 resource pointing to their
locations. In this way, you can ship a single library file that supports both
CFM-68K and PowerPC runtime applications.

Accelerated and Fat Resources 7

In some cases you may want to put an executable CFM-based code fragment
into a resource to obtain a CFM-based version of a classic 68K stand-alone code
module. For example, you might recompile an existing Hypercard XCMD
(eXternal CoMmanD) procedure (which is stored in a resource of type 'XCMD')
into PowerPC code. However, because the Hypercard application that calls
your XCMD procedure could be classic 68K code, a mode switch to the
PowerPC environment might be required before your definition procedure can
be executed. As a result, you need to add a routine descriptor at the beginning
of the resource, as shown in Figure 7-1. These kinds of resources are called
accelerated resources because they are faster implementations of their classic
68K counterparts. You can transparently replace classic 68K code resources with
accelerated PowerPC code resources without having to change the software (for
example, an application) that uses them.

C H A P T E R 7

Fat Binary Programs

Accelerated and Fat Resources 7-5

Fat B
inary P

rogram
s

7

Figure 7-1 The structure of an accelerated resource

IMPORTANT

Storing CFM-based code in resources is generally not
recommended and should be done only in cases where you
have no control over the code that calls it. If you are
designing a plug-in interface, the plug-ins should be stored
in the data fork. �

The routine descriptor is necessary for the Mixed Mode Manager to know
whether it needs to change modes in order to execute the code. The routine
descriptor also lets the Mixed Mode Manager know whether it needs to call the
Code Fragment Manager to prepare the fragment.

The procDescriptor field of the routine record—contained in the routineRecords
field of the routine descriptor—should contain the offset from the beginning of
the resource (that is, the beginning of the routine descriptor) to the beginning of
the executable code fragment. In addition, the routine flags for the specified
code should have the kProcDescriptorIsRelative bit set, indicating that the
address is relative, not absolute. If the code contained in the resource is
CFM-based code, you should also set the kFragmentNeedsPreparing bit.

Routine
descriptor

PowerPC
code fragment

C H A P T E R 7

Fat Binary Programs

7-6 Accelerated and Fat Resources

You can also create fat resources, that is, resources containing both classic 68K
and PowerPC versions of some routine. Figure 7-2 shows the general structure
of such a resource.

Figure 7-2 The structure of a fat resource

In this case, the routine descriptor contains two routine records in its
routineRecords field, one describing the classic 68K code and one describing the
PowerPC code. As with any code-bearing resource, the procDescriptor field of
each routine record should contain the offset from the beginning of the resource
to the beginning of the appropriate code. The flags for both routine records
should have the kProcDescriptorIsRelative flag set, and the routine flags for
the PowerPC routine record should have the kFragmentNeedsPreparing flag set.

Note
You can also create a fat resource that contains CFM-68K
code and classic 68K code, although there are no obvious
advantages. However, doing so may simplify static data
access or code compatibility in some cases. �

Routine
descriptor

PowerPC
code fragment

Classic 68K
code

C H A P T E R 7

Fat Binary Programs

Accelerated and Fat Resources 7-7

Fat B
inary P

rogram
s

7

Since a fat resource contains a routine descriptor at its entry point, it assumes
that the host system contains the Mixed Mode Manager. If this is not the case, a
problem can arise when the Mixed Mode trap is invoked. A solution is to create
a variant called a safe fat resource, which begins with extra classic 68K code to
check for the presence of the Mixed Mode Manager. If the Mixed Mode
Manager is present, the code should move a routine descriptor to the beginning
of the resource. If the Mixed Mode Manager is not present, it should add a
branch instruction at the beginning to jump directly to the classic 68K portion of
the resource. Thus the first call to the resource uses a few extra instruction
cycles, but subsequent calls are faster.

Note
In MPW, the interface file MixedMode.r provides Rez
templates that you can use to create the accelerated
resource shown in Figure 7-1 or the fat resource shown in
Figure 7-2. The file also contains sample code for creating a
safe fat resource. �

� W AR N I N G

Do not call accelerated resources at interrupt time. If the
resource containing the code has not been prepared,
the Code Fragment Manager will be called to do so, and the
Code Fragment Manager cannot run at interrupt time. �

Sometimes it’s useful to keep the executable code of a definition function in
some location other than a resource. To do this, you need to create a stub
definition resource that is of the type expected by the system software and that
simply jumps to your code. For example, Listing 7-1 shows the Rez input for a
stub list definition resource.

Listing 7-1 Rez input for a stub list definition resource

data 'LDEF' (128, "MyCustomLDEF", preload, locked) {
/*need to fill in destination address before using this stub*/
$"41FA 0006" /*LEA PC+8, A0 ;A0 <- ptr to destination address*/
$"2050" /*MOVEA.L (A0), A0;AO <- destination address*/
$"4ED0" /*JMP (A0) ;jump to destination address*/
$"00000000" /*destination address*/

};

C H A P T E R 7

Fat Binary Programs

7-8 Accelerated and Fat Resources

Your application (or other software) is responsible for filling in the destination
address before the list definition procedure is called by the List Manager. For
classic 68K code, the destination address should be the address of the list
definition procedure itself. For PowerPC-based code, the destination address
should be a universal procedure pointer (that is, the address of a routine
descriptor for the list definition procedure).

It’s important to understand the distinction between accelerated resources and
a normal resource-based fragment (sometimes called a private resource), so that
you know when to create them and how to load and execute the code they
contain. An accelerated resource is any resource containing PowerPC code that
has a single entry point at the top (the routine descriptor) and that models the
traditional behavior of a classic 68K stand-alone code resource. There are many
examples, including menu definition procedures (stored in resources of type
'MDEF'), control definition functions (stored in resources of type 'CDEF'),
window definition functions (stored in resources of type 'WDEF'), list definition
procedures (stored in resources of type 'LDEF'), HyperCard extensions (stored
in resources of type 'XCMD'), and so forth. A private resource is any other kind of
executable resource whose code is called directly by your application.

In most cases, you don’t need to do anything special to get the system software
to recognize your accelerated resource and to call it at the appropriate time. For
example, the Menu Manager automatically loads a custom menu definition
procedure into memory when you call GetMenu for a menu whose 'MENU'
resource specifies that menu definition procedure. Similarly, HyperCard calls
code like that shown in Listing 7-2 to load a resource of type 'XCMD' into
memory and execute the code it contains.

Listing 7-2 Using an accelerated resource

Handle myHandle;
XCmdBlock myParamBlock;

myHandle = Get1NamedResource('XCMD', '\pMyXCMD');
HLock(myHandle);

/*Fill in the fields of myParamBlock here.*/

CallXCMD(&myParamBlock, myHandle);
HUnlock(myHandle);

C H A P T E R 7

Fat Binary Programs

Accelerated and Fat Resources 7-9

Fat B
inary P

rogram
s

7

The caller of an accelerated resource executes the code either by jumping to the
code (if the caller is classic 68K code) or by calling the Mixed Mode Manager
CallUniversalProc function (if the caller is PowerPC code). In either case, the
Mixed Mode Manager calls the Code Fragment Manager to prepare the
fragment, which is already loaded into memory. With accelerated resources,
you don’t need to call the Code Fragment Manager yourself. In fact, you don’t
need to do anything special at all for the system software to recognize and use
your accelerated resource if you’ve built it correctly. This is because the system
software is designed to look for, load, and execute those resources in the
appropriate circumstances. In many cases, your application passes to the
system software just a resource type and resource ID. The resource must begin
with a routine descriptor, so that the dereferenced handle to the resource is a
universal procedure pointer.

The code shown in Listing 7-2 (or similar code for any other accelerated
resource) can be executed multiple times with no appreciable performance loss.
If the code resource remains in memory, the only overhead incurred by
Listing 7-2 is to lock the code, fill in the parameter block, jump to the code, and
then unlock it. However, because of the way in which the system software
manages your accelerated resources, there are several important restrictions on
their operation:

� An accelerated resource cannot contain a termination routine, largely
because the Code Fragment Manager does not know when the resource is
released. The Code Fragment Manager effectively forgets about the
connection to your resource as soon as it has prepared the resource for
execution.

� An accelerated resource must contain a main symbol, which must be a
procedure. For example, in an accelerated 'MDEF' resource, the main procedure
must be the menu definition procedure itself (which typically dispatches to
other routines contained in the resource).

� You cannot call the Code Fragment Manager routine FindSymbol to get
information about the exported symbols in an accelerated resource. More
generally, you cannot call any Code Fragment Manager routine that requires
a connection ID as a parameter.

� The fragment’s data section is instantiated in place (that is, within the block
of memory into which the resource itself is loaded). For in-place instantiation,
you need to build an accelerated resource using an option that specifies that
the data section of the fragment not be compressed. See the documentation

C H A P T E R 7

Fat Binary Programs

7-10 Accelerated and Fat Resources

for your software development system to determine how to specify
uncompressed data sections.

� Accelerated resources can move in memory or be purged like classic 68K
resources (note that the code in Listing 7-2 unlocks the 'XCMD' resource after
executing it). If the resource moves between calls, some of the global data in
the resource might become invalid. For example, a global pointer may end
up dangling if the code or data it points to has moved.

To allow accelerated PowerPC resources to be manipulated just like classic 68K
code resources, the Mixed Mode Manager and the Code Fragment Manager
cooperate to make sure that the code is ready to be executed when it is called. If
the resource code hasn’t been moved since it was prepared for execution, then
no further action is necessary. If, however, the code resource has moved or been
reloaded elsewhere in memory, some of the global data in the resource might
have become invalid. To help avoid dangling pointers, the Code Fragment
Manager always updates any pointers in the fragment’s data section that are
initialized at compile time and not modified at runtime.

IMPORTANT

The Code Fragment Manager cannot update all global data
references in an accelerated resource that has moved in
memory. Therefore, an accelerated resource must not use
global pointers (in C code, pointers declared as extern or
static) that are either initialized at runtime or contained in
dynamically allocated data structures to point to code or
data contained in the resource itself. An accelerated
resource can use uninitialized global data to point to
objects in the heap. In addition, an accelerated resource can
use global pointers that are initialized at compile time to
point to functions, other global data, and literal strings, but
these pointers cannot be modified at runtime. �

The best way to avoid the global data restrictions on an accelerated resource is
to put the global data used by the accelerated resource into an import library.
Since the accelerated resource is a fragment, it can import both code and data
from the library. The import library’s code and data are fixed in memory, and
the library is unloaded only when your application terminates, not when the
accelerated resource is purged.

If you must declare global variables in your accelerated resource, you should
check Listing 7-3 for examples of acceptable declarations. Note that these

C H A P T E R 7

Fat Binary Programs

Accelerated and Fat Resources 7-11

Fat B
inary P

rogram
s

7

declarations assume the resource code does not change the values of the
initialized variables.

Listing 7-3 Acceptable global declarations in an accelerated resource

int a; /*uninitialized; not modified if resource moves*/
Ptr myPtr; /*uninitialized; not modified if resource moves; */

/* can be assigned at runtime to point to heap object*/
Handle *h; /*uninitialized; not modified if resource moves; */

/* can be assigned at runtime to point to heap object*/
int *b = &a; /*updated each time resource moves*/
char *myStr = "Hello, world!"; /*updated each time resource moves*/
extern int myProcA(), myProcB();
struct {

int (*one)();
int (*two)();
char *str;

} myRec = {myProcA, myProcB, "Hello again!"};
/*all three pointers are updated each time resource moves*/

Listing 7-4 shows examples of data declarations and code that do not work in
an accelerated resource that is moved or purged.

Listing 7-4 Unacceptable global declarations and code in an accelerated resource

int a;
int *b;
int *c = &a;
Ptr (*myPtr) (long) = NewPtr;
static Ptr MyNewPtr();
struct myHeapStruct {

int *b;
Ptr (myPtr) (long);

} *hs;

b = &a; /*b does not contain &a after resource is moved*/
c = NULL; /*c does not contain NULL after resource is moved*/
c = (int *) NewPtr(4); /*dangling pointer after resource is moved*/
myPtr = MyNewPtr; /*dangling pointer after resource is moved*/

C H A P T E R 7

Fat Binary Programs

7-12 Accelerated and Fat Resources

hs = NewPtr(sizeof(myHeapStruct));
/*hs still points to nonrelocatable heap block after move*/

hs->b = &a; /*hs->b will not point to global a after move*/
hs->myPtr = MyNewPtr;

/*hs->myPtr will not point to MyNewPtr after move*/

C H A P T E R 8

Contents 8-1

Contents

8

Figure 8-0
Listing 8-0
Table 8-0

8 PEF Structure

Overview 8-3
The Container Header 8-4
PEF Sections 8-5

The Section Name Table 8-10
Section Contents 8-10

Pattern-Initialized Data 8-10
Pattern-Initialization Opcodes 8-12

The Loader Section 8-15
The Loader Header 8-16
Imported Libraries and Symbols 8-18

Imported Library Descriptions 8-18
The Imported Symbol Table 8-19

Relocations 8-21
The Relocation Headers Table 8-23
The Relocation Area 8-24
A Relocation Example 8-24
Relocation Instruction Set 8-27

The Loader String Table 8-35
Exported Symbols 8-36

The Export Hash Table 8-38
The Export Key Table 8-39
The Exported Symbol Table 8-40
Hashing Functions 8-41

PEF Size Limits 8-43

C H A P T E R 8

Overview 8-3

P
E

F
 S

tructure
8

PEF Structure 8

This chapter describes the structure of the PEF storage standard, which is the
format used to store programs in the Code Fragment Manager–based runtime
architecture. You need this information if you read from or write to PEF
containers—if you are writing a compiler or other development tool, for example.

After a high-level view of a PEF container in the “Overview” section, there
follow sections that describe the elements of a PEF container in more detail.

Note that the PEF storage standard is not exclusive to the CFM-based
architecture. Other architectures can follow the specification described here and
use PEF containers to store their code and data. In such cases, the appropriate
PEF handler for that architecture takes the role of the Code Fragment Manager.

Overview 8

The CFM-based architecture stores information in PEF containers, which are
simply storage blocks that contain PEF information. A PEF container can be
stored in a file, a resource, or section of memory. The Code Fragment Manager
can transparently prepare any of these forms.

A PEF container has four major parts as shown in Figure 8-1.

Figure 8-1 Structure of a PEF container

Container header

Section headers (0...n)

Section name table

Section contents (0...n)

C H A P T E R 8

PEF Structure

8-4 The Container Header

The four parts are as follows:

� The container header contains information about the container itself, such as
the runtime architecture that it was created for, version information, and so
on.

� Each section header contains information (size, alignment, and so on) about
the various sections in the PEF container. Both code and data can be stored in
sections.

� The section name table contains the names of each section.

� The section contents area contains the contents of the sections described by
the section headers.

PEF containers typically include one or more sections of executable code, one or
more sections of initialized data, and a loader section.

Each part is described in more detail in the sections that follow.

The Container Header 8

The container header contains information about the specific PEF container. The
container header data structure is of fixed size (40 bytes) and has the form
shown in Listing 8-1.

Listing 8-1 PEF container header data structure

struct PEFContainerHeader {
OSType tag1;
OSType tag2;
OSType architecture;
UInt32 formatVersion;
UInt32 dateTimeStamp;
UInt32 oldDefVersion;
UInt32 oldImpVersion;
UInt32 currentVersion;
UInt16 sectionCount;
UInt16 instSectionCount;
UInt32 reservedA;

};

C H A P T E R 8

PEF Structure

PEF Sections 8-5

P
E

F
 S

tructure
8

The fields in the container header are as follows:

� The tag1 field (4 bytes) designates that the container uses an Apple-defined
format. This field must be set to Joy! in ASCII.

� The tag2 field (4 bytes) identifies the type of container (currently set to peff
in ASCII).

� The architecture field (4 bytes) indicates the architecture type that the
container was generated for. This field holds the ASCII value pwpc for the
PowerPC CFM implementation or m68k for CFM-68K.

� The formatVersion field (4 bytes) indicates the version of PEF used in the
container. The current version is 1.

� The dateTimeStamp field (4 bytes) indicates when the PEF container was
created. The stamp follows the Macintosh time-measurement scheme (that is,
the number of seconds measured from January 1, 1904).

� The next three fields, oldDefVersion, oldImpVersion, and currentVersion
(4 bytes each), contain version information that the Code Fragment Manager
uses to check shared library compatibility. For more information about version
checking, see “Checking for Compatible Import Libraries” (page 1-19).

� The sectionCount field (2 bytes) indicates the total number of sections
contained in the container.

� The instSectionCount field (2 bytes) indicates the number of instantiated
sections. Instantiated sections contain code or data that are required for
execution.

� The reservedA field (4 bytes) is currently reserved and must be set to 0.

PEF Sections 8

A PEF container can contain any number of sections. A section usually contains
code or data. A special case is the loader section, which is discussed separately
in “The Loader Section” (page 8-15). For each section there is a header, which
includes information such as the type of section, its presumed runtime address,
its size, and so on, and a corresponding section contents area.

Sections are numbered from 0, based on the position of their header, and the
sections are identified by these numbers. However, the corresponding section

C H A P T E R 8

PEF Structure

8-6 PEF Sections

contents do not have to be in the same order as the section headers. The only
requirement is that instantiated section headers (that is, headers for sections
containing code or data) must precede noninstantiated ones in the section
header array.

The section header data structure is of fixed size (28 bytes) and has the form
shown in Listing 8-2.

Listing 8-2 Section header data structure

struct PEFSectionHeader {
SInt32 nameOffset;
UInt32 defaultAddress;
UInt32 totalSize;
UInt32 unpackedSize;
UInt32 packedSize;
UInt32 containerOffset;
UInt8 sectionKind;
UInt8 shareKind;
UInt8 alignment;
UInt8 reservedA;

};

The fields in the section header are as follows:

� The nameOffset field (4 bytes) holds the offset from the start of the section
name table to the location of the section name. The name of the section is
stored as a C-style null-terminated character string.

If the section has no name, the nameOffset field contains -1.

� The defaultAddress field (4 bytes) indicates the preferred address (as
designated by the linker) at which to place the section’s instance. If the Code
Fragment Manager can place the instance in the preferred memory location,
the load-time and link-time addresses are identical and no internal
relocations need to be performed.

� The totalSize field (4 bytes) indicates the size, in bytes, required by the
section’s contents at execution time. For a code section, this size is merely the
size of the executable code. For a data section, this size indicates the sum of
the size of the initialized data plus the size of any zero-initialized data.

C H A P T E R 8

PEF Structure

PEF Sections 8-7

P
E

F
 S

tructure
8

Zero-initialized data appears at the end of a section’s contents and its length
is exactly the difference of the totalSize and unpackedSize values.

For noninstantiated sections, this field is ignored.

� The unpackedSize (4 bytes) is the size of the section’s contents that is explicitly
initialized from the container. For code sections, this field is the size of the
executable code. For an unpacked data section, this field indicates only
the size of the initialized data. For packed data this is the size to which the
compressed contents expand. The unpackedSize value also defines the
boundary between the explicitly initialized portion and the
zero-initialized portion.

For noninstantiated sections, this field is ignored.

� The packedSize field (4 bytes) indicates the size, in bytes, of a section’s
contents in the container. For code sections, this field is the size of the
executable code. For an unpacked data section, this field indicates only the
size of the initialized data. For a packed data section (see Table 8-1 (page 8-8))
this field is the size of the pattern description contained in the section.

� The containerOffset field (4 bytes) contains the offset from the beginning of
the container to the start of the section’s contents. Packed data sections and
the loader section should be 4-byte aligned. Code sections and data sections
that are not packed should be at least 16-byte aligned.

� The sectionKind field (1 byte) indicates the type of section as well as any
special attributes. Table 8-1 (page 8-8) shows the currently supported section
types. Note that instantiated read-only sections cannot have zero-initialized
extensions.

� The shareKind field (1 byte) controls how the section information is shared
among processes by the Code Fragment Manager. You can specify any of the
sharing options shown in Table 8-2 (page 8-9).

� The alignment field (1 byte) indicates the desired alignment for instantiated
sections in memory as a power of 2. A value of 0 indicates 1-byte alignment,
1 indicates 2-byte (halfword) alignment, 2 indicates 4-byte (word) alignment,
and so on. Note that this field does not indicate the alignment of raw data
relative to a container. The Code Fragment Manager does not support this
field under System 7.

In System 7, the Code Fragment Manager gives 16-byte alignment to all
writable sections. The alignment of read-only sections, which are used
directly from the container, is dependent on the alignment of the section's

C H A P T E R 8

PEF Structure

8-8 PEF Sections

contents within the container and the overall alignment of the container
itself. When the container is not file-mapped, the overall container alignment
is 16 bytes. When the container is file-mapped, the entire data fork is
mapped and aligned to a 4KB boundary. The overall alignment of a
file-mapped container thus depends on the container's alignment within the
data fork. Note that file-mapping is currently supported only on PowerPC
machines, and only when virtual memory is enabled.

� The reservedA field (1 byte) is currently reserved and must be set to 0.

Table 8-1 shows the various types of sections that can appear in PEF containers
and the corresponding value in the sectionKind field.

Table 8-1 Section types

Value Type Instantiated? Description

0 Code Yes Contains read-only executable code in an
uncompressed binary format. A container can have
any number of code sections.

Code sections are always shared.

1 Unpacked
data

Yes Contains uncompressed, initialized, read/write
data followed by zero-initialized read/write data.

A container can have any number of data sections,
each with a different sharing option.

2 Pattern-
initialized
data

Yes Contains read/write data initialized by a pattern
specification contained in the section’s contents. The
contents essentially contain a small program that
tells the Code Fragment Manager how to initialize
the raw data in memory.

A container can have any number of
pattern-initialized data sections, each with its own
sharing option.

See “Pattern-Initialized Data” (page 8-10) for more
information about creating pattern specifications.

3 Constant Yes Contains uncompressed, initialized, read-only data.

A container can have any number of constant
sections, and they are implicitly shared.

continued

C H A P T E R 8

PEF Structure

PEF Sections 8-9

P
E

F
 S

tructure
8

Table 8-2 shows the sharing options available for PEF sections and the
corresponding value in the shareKind field.

4 Loader No Contains information about imports, exports, and
entry points. See “The Loader Section” (page 8-15)
for more details.

A container can have only one loader section.

5 Debug N/A Reserved for future use.

6 Executable
data

Yes Contains information that is both executable and
modifiable. For example, this section can store code
that contains embedded data.

A container can have any number of executable
data sections, each with a different sharing option.

7 Exception N/A Reserved for future use.

8 Traceback N/A Reserved for future use.

Table 8-2 Sharing options

Type Value Description

Process share 1 Indicates that the section is shared within
a process, but a fresh copy is created for
different processes.

Global share 4 Indicates that the section is shared between all
processes in the system.

Protected share 5 Indicates that the section is shared between all
processes, but is protected. Protected sections are
read/write in privileged mode and read-only in
user mode.

This option is not available in System 7.

Table 8-1 Section types (continued)

Value Type Instantiated? Description

C H A P T E R 8

PEF Structure

8-10 PEF Sections

The Section Name Table 8

The PEF container section name table contains the names of the sections stored
as C-style null-terminated character strings. The strings have no specified
alignment. Note that the section name table must immediately follow the
section headers in the container.

Section Contents 8

The contents of a PEF section varies depending on the section type. For code
and unpacked data sections, the section contains the executable code or
initialized data as they would appear when loaded into memory. For some
other sections, the raw section data must be manipulated by the Code Fragment
Manager before loading. For example, a pattern-initialized data section does not
contain simple data, but rather it contains a pattern specification that tells the
loader how to initialize the section.

Section data within a container must be at least 16-byte aligned if the section
type is instantiated and directly usable (code or data, for example, but not
pattern-initialized). Noninstantiated sections should be at least 4-byte aligned.
Note that gaps may appear between sections due to alignment restrictions; you
cannot be sure that adding the offset of a section to its length will locate the
beginning of the next section.

Pattern-Initialized Data 8

Because the data stored in a PEF container acts only as a template for the
instantiated version of the data section at runtime, it is preferable to compact
the stored data section. Pattern-initialized data (pidata) allows you to replace
repetitious patterns of data (for example, in transition vector arrays and C++
VTables) with small instructions that generate the same result. These instructions
save space (resulting in a data section about one third the size of a similar
uncompressed one) and can be executed quickly at preparation time.

Note
The choice of data generation patterns reflects the code
generation model used to build CFM-based runtime
fragments. �

C H A P T E R 8

PEF Structure

PEF Sections 8-11

P
E

F
 S

tructure
8

To execute the pattern-initialization instructions, a data location counter must
be set to the first byte of the data section in memory and an instruction location
counter must be set to the first byte of the pattern-initialized data. Each opcode
instruction (and its associated arguments) is executed in turn until the end of
the pattern-initialized data section is reached. The data location counter is
incremented each time a data byte is written.

Figure 8-2 shows the general format of a pattern-initialization instruction.

Figure 8-2 A pattern-initialization instruction

Each instruction, depending on its definition, takes one or more arguments. The
first is stored in the 5 bits of the count field while any additional arguments are
stored in bytes that immediately follow the instruction byte. Each instruction
may also require raw data used in the initialization process; this raw data
appears after the argument bytes.

The instruction byte can hold count values up to 31. If you need to specify a
count value larger than 31, you should place 0 in the count field. This indicates
that the first argument following the instruction byte is the count value.

Argument values are stored in big-endian fashion, with the most significant bits
first. Each byte holds 7 bits of the argument value. The high-order bit is set for
every byte except the last (that is, an unset high-order bit indicates the last byte
in the argument). For example, Figure 8-3 shows how the values 50 and 881
would be stored.

Opcode Count

0 2 3 7

3 bits 5 bits

C H A P T E R 8

PEF Structure

8-12 PEF Sections

Figure 8-3 Argument storage in pattern-initialized data

The argument value is determined by shifting the current value up 7 bits and
adding in the low-order 7 bits of the next byte, doing so until an unset
high-order bit is encountered.

You can encode up to a 32-bit value using this format. In the case of a 32-bit
value, the fifth byte must have 0 in its high-order bit, and only the
least-significant 32 bits of the 35-bit accumulation are used.

Note
The advantage of this format is that while a 32-bit value is
stored in 5 bytes, smaller values can be stored in
correspondingly fewer bytes. �

Pattern-Initialization Opcodes 8

The sections that follow describe the currently defined pattern-initialization
instructions. Opcodes 101, 110, and 111 are reserved for future use.

Zero (Opcode 000) 8

This instruction initializes Count bytes to 0 beginning at the current data location.

0 0 1 1 0 0 1 0 = 50

1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 = 881+

0 7

0 7 8 15

Continuation bit

Instruction byte Argument

000 Count

0 2 3 7

C H A P T E R 8

PEF Structure

PEF Sections 8-13

P
E

F
 S

tructure
8

blockCopy (Opcode 001) 8

This instruction initializes the next blockSize bytes from the current data location
to the values in the following raw data bytes.

repeatedBlock (Opcode 010) 8

This instruction repeats the blockSize number of data bytes repeatCount times,
beginning at the current data location.

IMPORTANT

The repeat count value stored in the instruction is one
smaller than the actual value (repeatCount -1). �

interleaveRepeatBlockWithBlockCopy (Opcode 011) 8

This instruction requires three parameters and commonSize + (customSize *
repeatCount) bytes of raw data. The first commonSize bytes of raw data make up
the common (repeating) pattern and the next customSize bytes make up the first
custom (nonrepeating) section. There are repeatCount number of custom
sections. The instruction places the common pattern followed by the first
custom section, then the common pattern, then the second custom section, and
so on. After performing this procedure repeatCount times, a final common data
pattern is added at the end. Figure 8-4 shows the data section after
initialization.

001 blockSize Raw data

0 2 3 7

+

010 blockSize Raw datarepeatCount -1

0 2 3 7

+ +

011 commonSize Common datarepeatCount

0 2 3 7

+ + Custom data 1 Custom data
repeatCount

+customSize +

C H A P T E R 8

PEF Structure

8-14 PEF Sections

Figure 8-4 Data section after executing interleaveRepeatBlockWithBlockCopy

interleaveRepeatBlockWithZero (Opcode 100) 8

This instruction is similar to the interleaveRepeatBlockWithBlockCopy instruction
except the common pattern is commonSize bytes of zero instead of raw data.
Figure 8-5 shows the data section after initialization.

Figure 8-5 Data section after executing interleaveRepeatBlockWithZero

Common
data

commonSize
bytes

customSize
bytes

Custom data 1 Common
data

Common
data

Custom data
repeatCount

Custom data 2

100 commonSize Custom data 1repeatCount

0 2 3 7

+ + Custom data 2 Custom data
repeatCount

+customSize +

commonSize
bytes

customSize
bytes

Custom data 1Zeros Custom data
repeatCount

Custom data 2Zeros Zeros

C H A P T E R 8

PEF Structure

The Loader Section 8-15

P
E

F
 S

tructure
8

The Loader Section 8

The loader section is a special section that contains information used by the
Code Fragment Manager to prepare the fragment. It contains information about
the symbols imported to, and exported from, the fragment as well as
instructions that tell the Code Fragment Manager how to fix up references
to symbols.

The general layout and content of the loader section appears in Figure 8-6.

Figure 8-6 PEF loader section

Loader header

Imported library table

Imported symbol table

Relocation headers table

Relocations

Loader string table

Export hash table

Export key table

Exported symbol table

C H A P T E R 8

PEF Structure

8-16 The Loader Section

The contents of the loader section are as follows:

� The loader header contains information about the location of other
components of the loader section.

� The import information (library descriptions and symbol tables) describes
the imports for the container.

� The relocation headers table provides information about relocations to be
applied to a given section.

� The relocations area contains relocation instructions that describe how to fix
up references to symbols within each section.

� The loader string table contains the names of the container’s imported and
exported symbols.

� The export information is contained in a hashed data structure, which has
three parts:

� The export hash table, which contains hash chain information (the number
of elements in the chain and the location of the first element) for each
index value in the table.

� The export key table, which contains the hash values of the exports.
� The exported symbol table, which contains additional information about

the exported symbols.
The sections that follow describe these components in more detail.

All tables use zero-based indexes. It is recommended that offset values for
elements with no entries be set to 0.

The Loader Header 8

The loader header data structure is of fixed size (56 bytes) and has the form
shown in Listing 8-3.

Listing 8-3 Loader header data structure

struct PEFLoaderInfoHeader {
SInt32 mainSection;
UInt32 mainOffset;
SInt32 initSection;
UInt32 initOffset;

C H A P T E R 8

PEF Structure

The Loader Section 8-17

P
E

F
 S

tructure
8

SInt32 termSection;
UInt32 termOffset;
UInt32 importedLibraryCount;
UInt32 totalImportedSymbolCount;
UInt32 relocSectionCount;
UInt32 relocInstrOffset;
UInt32 loaderStringsOffset;
UInt32 exportHashOffset;
UInt32 exportHashTablePower;
UInt32 exportedSymbolCount;

};

The fields in the loader header are as follows:

� The mainSection field (4 bytes) specifies the number of the section in this
container that contains the main symbol. If the fragment does not have a
main symbol, this field is set to -1.

� The mainOffset field (4 bytes) indicates the offset (in bytes) from the
beginning of the section to the main symbol.

� The initSection field (4 bytes) contains the number of the section containing
the initialization function’s transition vector. If no initialization function
exists, this field is set to -1.

� The initOffset field (4 bytes) indicates the offset (in bytes) from the
beginning of the section to the initialization function’s transition vector.

� The termSection field (4 bytes) contains the number of the section containing
the termination routine’s transition vector. If no termination routine exists,
this field is set to -1.

� The termOffset field (4 bytes) indicates the offset (in bytes) from the beginning
of the section to the termination routine’s transition vector.

� The importedLibraryCount field (4 bytes) indicates the number of
imported libraries.

� The totalImportedSymbolCount field (4 bytes) indicates the total number of
imported symbols.

� The relocSectionCount field (4 bytes) indicates the number of sections
containing load-time relocations.

� The relocInstrOffset field (4 bytes) indicates the offset (in bytes) from the
beginning of the loader section to the start of the relocations area.

C H A P T E R 8

PEF Structure

8-18 The Loader Section

� The loaderStringsOffset field (4 bytes) indicates the offset (in bytes) from the
beginning of the loader section to the start of the loader string table.

� The exportHashOffset field (4 bytes) indicates the offset (in bytes) from the
beginning of the loader section to the start of the export hash table. The hash
table should be 4-byte aligned with padding added if necessary.

� The exportHashTablePower field (4 bytes) indicates the number of hash index
values (that is, the number of entries in the hash table). The number of
entries is specified as a power of two. For example, a value of 0 indicates one
entry, while a value of 2 indicates four entries.

If no exports exist, the hash table still contains one entry, and the value of this
field is 0.

� The exportedSymbolCount field (4 bytes) indicates the number of symbols
exported from this container.

Imported Libraries and Symbols 8

The loader section must describe every import library required by the fragment
and the symbols imported from those libraries. The following two sections
describe the format of these descriptions.

Imported Library Descriptions 8

An imported library description, which contains information about a required
import library, is of fixed size (24 bytes) and has the form shown in Listing 8-4.

Listing 8-4 Imported library description data structure

struct PEFImportedLibrary {
UInt32 nameOffset;
UInt32 oldImpVersion;
UInt32 currentVersion;
UInt32 importedSymbolCount;
UInt32 firstImportedSymbol;
UInt8 options;
UInt8 reservedA;
UInt16 reservedB;

};

C H A P T E R 8

PEF Structure

The Loader Section 8-19

P
E

F
 S

tructure
8

The fields of the description are as follows:

� The nameOffset field (4 bytes) indicates the offset (in bytes) from the beginning
of the loader string table to the start of the null-terminated library name.

� The oldImpVersion and currentVersion fields (4 bytes each) provide version
information for checking the compatibility of the imported library.

� The importedSymbolCount field (4 bytes) indicates the number of symbols
imported from this library.

� The firstImportedSymbol field (4 bytes) holds the (zero-based) index of the
first entry in the imported symbol table for this library.

� The options byte contains bit flag information as follows:

� The high-order bit (mask 0x80) controls the order that the import libraries
are initialized. If set to 0, the default initialization order is used, which
specifies that the Code Fragment Manager should try to initialize the
import library before the fragment that imports it. When set to 1, the import
library must be initialized before the client fragment.

� The next bit (mask 0x40) controls whether the import library is weak.
When set to 1 (weak import), the Code Fragment Manager continues
preparation of the client fragment (and does not generate an error) even if
the import library cannot be found. If the import library is not found, all
imported symbols from that library have their addresses set to 0. You can
use this information to determine whether a weak import library is
actually present.

� The reservedA and reservedB fields are currently reserved and must be set to 0.

The Imported Symbol Table 8

The imported symbol table is an array of imported symbol entries. Symbols
imported from the same library are grouped together in the table, but they may
appear in any order within that grouping. A table entry is of fixed size (4 bytes)
and has the form shown in Figure 8-7.

C H A P T E R 8

PEF Structure

8-20 The Loader Section

Figure 8-7 An imported symbol table entry

The elements of the table entry are as follows:

� The symbol class field (1 byte) designates the class of the imported symbol.

� The imported symbol name offset field (3 bytes) indicates the offset (in bytes)
from the beginning of the loader string table to the null-terminated name of
the symbol.

The symbol class byte of an imported symbol entry is structured as shown in
Figure 8-8.

Figure 8-8 A symbol class field

For imported symbols, the high-order flag bit (mask 0x80) indicates whether the
symbol is weak. When this bit is set, the imported symbol does not have to be
present at fragment preparation time in order for execution to continue.
However, your code must check that the imported symbol exists before
attempting to use it. The other flag bits are currently reserved.

The symbol classes are defined in Table 8-3. The symbol classes are used for
annotation only.

Symbol class Imported symbol name offset

8 bits

0 7 8 31

24 bits

Flags Class

4 bits 4 bits

0 3 4 7

C H A P T E R 8

PEF Structure

The Loader Section 8-21

P
E

F
 S

tructure
8

Relocations 8

Relocations (sometimes called fix-ups) are part of a process by which the Code
Fragment Manager replaces references to code and data with actual addresses
at runtime. The loader section contains information on how to perform these
relocations. These relocations apply to any symbols accessed via pointers, such
as imported code and data, or a fragment’s own pointer-based function calls.

By the very nature of pointer-based references, you cannot know the actual
address that a pointer refers to at build time. Instead, the compiler includes
placeholders than can be fixed up by the Code Fragment Manager at
preparation time.

For example, a reference to an imported routine points to a transition vector.
Before preparation, the pointer in the calling fragment that points to the
transition vector has the value 0. After instantiating the called fragment at
preparation time, the actual address of the transition vector becomes known.
The Code Fragment Manager then executes a relocation instruction that adds
the address of the transition vector to the pointer that references it. The pointer
then points to the transition vector in the called fragment’s data section.

Relocation information is stored in PEF containers using a number of specialized
instructions and variables, which act much like machine-language instructions
for a pseudo-microprocessor. These elements reduce the number of bytes
required to store the relocation information and reduce the time required to
perform the relocations.

The pseudo-microprocessor maintains state information in pseudo-registers.
For the state to be correct for each instruction, relocation instructions must be
executed in order from start to finish for each section.

Table 8-3 Symbol classes

Class name Value Description

kPEFCodeSymbol 0 A code address

kPEFDataSymbol 1 A data address

kPEFTVectSymbol 2 A standard procedure pointer

kPEFTOCSymbol 3 A direct data area (Table of Contents) symbol

kPEFGlueSymbol 4 A linker-inserted glue symbol

C H A P T E R 8

PEF Structure

8-22 The Loader Section

The relocation instructions make use of the variables shown in Table 8-4. The
initial values are set by the Code Fragment Manager prior to executing the
relocations for each section.

Table 8-4 Relocation variables

Name Description

relocAddress Holds an address within the section where the
relocations are to be performed. The initial value is the
base address of the section that is to be relocated.

importIndex Holds a symbol index, which is used to access an
imported symbol’s address.(The address can then be
used for relocation.) The initial value is 0.

sectionC Holds the memory address of an instantiated section
within the PEF container; this variable is used by
relocation instructions that relocate section addresses.
The initial value is the memory address of section 0 if
that section is present and instantiated. Otherwise the
initial sectionC value is 0.

Note that relocation instructions can change the value of
SectionC; this affects subsequent relocation instructions
that refer to this variable.

The name sectionC is given for convenience only; use of
this variable is not restricted to code sections.

sectionD Holds the memory address of an instantiated section
within the PEF container; this variable is used by
relocation instructions that relocate section addresses.
The initial value is the memory address of section 1 if
that section is present and instantiated. Otherwise the
initial sectionD value is 0.

Note that relocation instructions can change the value of
sectionD; this affects subsequent relocation instructions
that refer to this variable.

The name sectionD is given for convenience only; use of
this variable is not restricted to data sections.

C H A P T E R 8

PEF Structure

The Loader Section 8-23

P
E

F
 S

tructure
8

Note
The sectionC and sectionD variables actually contain the
memory address of an instantiated section minus the
default address for that section. The default address for a
section is contained in the defaultAddress field of the
section header. However, in almost all cases the default
address should be 0, so the simplified definition suffices. �

The relocation instructions themselves generally accomplish one of the
following functions:

� assign a value to one of the relocation variables

� add an imported symbol’s address to the current location (pointed to by
relocAddress), then increment importIndex and relocAddress

� add the sectionC value to the current location, then increment relocAddress

� add the sectionD value to the current location, then increment relocAddress

� add the sectionC value to the current location and increment relocAddress,
then add the sectionD value to the new current location, and increment
relocAddress again

The Relocation Headers Table 8

If an instantiated section requires one or more relocations, it has an entry in the
relocation headers table. A header entry data structure is of fixed size (12 bytes)
and has the form shown in Listing 8-5.

Listing 8-5 Relocation header entry data structure

struct PEFLoaderRelocationHeader {
UInt16 sectionIndex;
UInt16 reservedA;
UInt32 relocCount;
UInt32 firstRelocOffset;

};

C H A P T E R 8

PEF Structure

8-24 The Loader Section

The header fields are as follows:

� The sectionIndex field (2 bytes) designates the section number to which this
relocation header refers.

� The reservedA field (2 bytes) is currently reserved and must be set to 0.

� The relocCount field (4 bytes) indicates the number of 16-bit relocation blocks
for this section.

� The firstRelocOffset field (4 bytes) indicates the byte offset from the start of
the relocations area to the first relocation instruction for this section.

Note that the relocCount field is the number of 16-bit relocation blocks (that is,
one half the total number of bytes of relocation instructions). Although most
relocation instructions are 16 bits long, some are longer, so the number of
complete relocation instructions may be less than the relocCount value.

The Relocation Area 8

The relocation area consists of a sequence of relocation instructions that
describe how to fix up pointers to the fragment’s own code and data and to
imported symbols during the preparation process. These instructions are
grouped by section number, and they are accessed through the relocation
headers described earlier. See “Relocation Instruction Set” (page 8-27) for a
detailed description of the relocation instructions.

A Relocation Example 8

This section gives an example of how various relocation instructions are used.
In this example, a fragment calls the imported routine moo. At build time, all
pointers to moo in the calling fragment are set to 0, since the compiler or linker
cannot know the actual runtime address of the routine. Similarly, in the
fragment that contains moo, the transition vector for moo contains only offset
values for the location of its code and its data world. Figure 8-9 shows the
unprepared state for the two fragments.

C H A P T E R 8

PEF Structure

The Loader Section 8-25

P
E

F
 S

tructure
8

Figure 8-9 Unprepared fragments

Calling fragment’s
 data section

Address of
transition

vector for moo

Transition vector
for moo

0

Called fragment’s
 data section

Offset of moo
in code section

Offset of base
register address
in data section

Called fragment’s
 code section

moo

Base register
address

C H A P T E R 8

PEF Structure

8-26 The Loader Section

After instantiating both fragments, the Code Fragment Manager fixes up the
calling fragment’s pointer by executing instructions as follows (see Figure 8-10):

1. Set relocAddress to point to the data pointer for moo.

2. Set importIndex to select the imported symbol entry for moo.

3. Execute a relocation instruction that adds the address of the imported
symbol moo (that is, the address of its transition vector) to the 4 bytes at
relocAddress.

Figure 8-10 Relocations for the calling fragment

After being fixed up, the calling fragment’s pointer now points to the transition
vector for moo.

The pointers for the called fragment are fixed up as follows (see Figure 8-11):

1. Set relocAddress to point to the beginning of the transition vector for moo.

2. Set sectionC to point to the beginning of the code section containing moo.

Calling fragment’s
 data section

relocAddress

Calling fragment’s
imports

...

...

address of
transition vector

for moo

address of import 0

address of import 1

address of import 2

address of import n

importIndex

C H A P T E R 8

PEF Structure

The Loader Section 8-27

P
E

F
 S

tructure
8

3. Set sectionD to point to the beginning of the called fragment’s data section.

4. Execute a relocation instruction that adds sectionC to the contents of the
location pointed to by relocAddress; increments relocAddress (4 bytes); adds
sectionD to the contents of the location pointed to by the new relocAddress;
and increments relocAddress again.

Figure 8-11 Relocations for the called fragment

After being fixed up, the transition vector for moo now contains the actual
address of moo and the base register address for its data world. The routine moo
is now prepared for execution.

Relocation Instruction Set 8

Relocation instructions are stored in 2-byte relocation blocks. Most instructions
take up one block that combines an opcode and related arguments. Instructions
that are larger than 2 bytes have an opcode and some of the operands in the first

Called fragment’s
 data section

Called fragment’s
 code section

Transition vector
for moo

Offset of moo
in code section

Offset of base
register address
in data section

SectionCSectionD

relocAddress moo

Base register
address

C H A P T E R 8

PEF Structure

8-28 The Loader Section

2-byte block, with other operands in the following 2-byte blocks. The opcode
occupies the upper (higher-order) bits of the block that contains it. Relocation
instructions can be decoded from the high-order 7 bits of their first block.
Listing 8-6 shows the high-order 7 bits for the currently defined relocation
opcode values. Binary values indicated by “x” are “don’t care” operands. For
example, any combination of the high-order 7 bits that starts with two zero bits
(00) indicates the RelocBySectDWithSkip instruction.

All currently defined relocation instructions relocate locations as words (that is,
4-byte values).

Listing 8-6 Relocation opcode values

enum {

kPEFRelocBySectDWithSkip = 0x00, /* binary: 00xxxxx */

kPEFRelocBySectC = 0x20, /* binary: 0100000 */
kPEFRelocBySectD = 0x21, /* binary: 0100001 */
kPEFRelocTVector12 = 0x22, /* binary: 0100010 */
kPEFRelocTVector8 = 0x23, /* binary: 0100011 */
kPEFRelocVTable8 = 0x24, /* binary: 0100100 */
kPEFRelocImportRun = 0x25, /* binary: 0100101 */

kPEFRelocSmByImport = 0x30, /* binary: 0110000 */
kPEFRelocSmSetSectC = 0x31, /* binary: 0110001 */
kPEFRelocSmSetSectD = 0x32, /* binary: 0110010 */
kPEFRelocSmBySection = 0x33, /* binary: 0110011 */

kPEFRelocIncrPosition = 0x40, /* binary: 1000xxx */
kPEFRelocSmRepeat = 0x48, /* binary: 1001xxx */

kPEFRelocSetPosition = 0x50, /* binary: 101000x */
kPEFRelocLgByImport = 0x52, /* binary: 101001x */
kPEFRelocLgRepeat = 0x58, /* binary: 101100x */
kPEFRelocLgSetOrBySection = 0x5A, /* binary: 101101x */

};

C H A P T E R 8

PEF Structure

The Loader Section 8-29

P
E

F
 S

tructure
8

IMPORTANT

If you wish to create your own relocation instructions, the 3
highest order bits must be set (111xxxx) to indicate a
third-party opcode. All other undocumented opcode values
are reserved. �

The following sections describe the individual instructions in more detail.

RelocBySectDWithSkip 8

The RelocBySectDWithSkip instruction (opcode 00) has the structure shown in
Figure 8-12.

Figure 8-12 Structure of the RelocBySectDWithSkip instruction

This instruction first increments relocAddress by skipCount * 4 bytes. It then
adds the value of sectionD to the next relocCount contiguous words. After the
instruction is executed, relocAddress points just past the last modified word.

The Relocate Value Group 8

Instructions in the Relocate Value group of opcodes all begin with 010 and have
the structure shown in Figure 8-13.

Figure 8-13 Structure of the Relocate Value opcode group

00

2 bits

0 21 109 15

8 bits 6 bits

skipCount relocCount

010 subopcode runLength -1

3 bits 4 bits 9 bits

0 3 6 7 152

C H A P T E R 8

PEF Structure

8-30 The Loader Section

Instructions in this group add a value to the next runLength items starting at
address relocAddress. The subopcode indicates the type and size of the items to
be added as shown in Table 8-5. After execution, relocAddress points to just
past the last modified item.

IMPORTANT

The value stored in this instruction is one less than the
actual run length (runLength-1). �

Table 8-5 Subopcodes for the RelocateValue opcode group

Value Instruction name Description

0000 RelocBySectC Add the value in the variable sectionC to the
next runLength contiguous 4-byte items (words).

0001 RelocBySectD Add the value in the variable sectionD to the
next runLength contiguous 4-byte items (words).

0010 RelocTVector12 Add values to runLength 12-byte items as
follows: add the value in sectionC to the first
word and the value in sectionD to the second
word. No value is added to the third word.

0011 RelocTVector8 Add values to runLength 8-byte items as follows:
add the value in sectionC to the first word and
the value in sectionD to the second word.

0100 RelocVTable8 Add values to runLength 8-byte items as follows:
add the value in sectionD to the first word and
do not add any value to the second word.

0101 RelocImportRun Add the addresses of a sequence of imported
symbols to the next runLength contiguous 4-byte
items (words). The importIndex variable is
incremented by 1 after every 4-byte relocation
(runLength times total).

C H A P T E R 8

PEF Structure

The Loader Section 8-31

P
E

F
 S

tructure
8

The Relocate By Index Group 8

Instructions in the Relocate By Index group all begin with 011 and have the
structure shown in Figure 8-14.

Figure 8-14 Structure of the Relocate By Index opcode group

Instructions in this group fix up values according to the subopcode values
shown in Table 8-6.

Table 8-6 Subopcodes for the Relocate By Index opcode group

Value Instruction name Description

0000 RelocSmByImport Add the address of the imported
symbol whose index is held in index to
the word pointed to by relocAddress.
After the addition, relocAddress points
to just past the modified word, and
importIndex is set to index +1.

0001 RelocSmSetSectC Set the variable sectionC to the
memory address of the instantiated
section specified by index.

0010 RelocSmSetSectD Set the variable sectionD to the
memory address of the instantiated
section specified by index.

0011 RelocSmBySectio
n

Add the address of the instantiated
section specified by index to the word
pointed to by relocAddress. After
execution, relocAddress points to just
past the modified word.

011 subopcode index

3 bits

0 32 7 156

4 bits 9 bits

C H A P T E R 8

PEF Structure

8-32 The Loader Section

RelocIncrPosition 8

The RelocIncrPosition instruction (opcode 1000) has the structure shown in
Figure 8-15.

Figure 8-15 Structure of the RelocIncrPosition instruction

This instruction increments relocAddress by offset bytes. The value of offset is
treated as an unsigned value.

IMPORTANT

The value stored in this instruction is one less than the
actual offset (offset-1). �

RelocSmRepeat 8

The RelocSmRepeat instruction (opcode 1001) has the structure shown in
Figure 8-16.

Figure 8-16 Structure of the RelocSmRepeat instruction

This instruction repeats the preceding blockCount relocation blocks repeatCount
number of times. Note that you cannot nest this instruction within itself or
within the RelocLgRepeat instruction.

1000 offset -1

4 bits 12 bits

0 4 153

1001 blockCount -1 repeatCount -1

4 bits 4 bits 8 bits

0 43 8 157

C H A P T E R 8

PEF Structure

The Loader Section 8-33

P
E

F
 S

tructure
8

IMPORTANT

The values of blockCount and repeatCount stored in this
instruction are one less than the actual values. �

RelocSetPosition 8

The RelocSetPosition instruction (opcode 101000) takes two relocation blocks (4
bytes) rather than the usual one; the extra bytes allow you to specify an
unsigned offset parameter of up to 26 bits.

The RelocSetPosition instruction has the structure shown in Figure 8-17.

Figure 8-17 Structure of the RelocSetPosition instruction

This instruction sets relocAddress to the address of the section offset offset.

RelocLgByImport 8

The RelocLgByImport instruction (opcode 101001) takes two relocation blocks
(4 bytes); the extra bytes allow you to specify an unsigned index parameter of
up to 26 bits.

The RelocLgByImport instruction has the structure shown in Figure 8-18.

Figure 8-18 Structure of the RelocLgByImport instruction

101000 +offset (high) offset (low)

6 bits 10 bits 16 bits

0 65 15 0 15

101001 +index (high) index (low)

6 bits 10 bits 16 bits

0 65 15 0 15

C H A P T E R 8

PEF Structure

8-34 The Loader Section

This instruction adds the address of the imported symbol whose index is held
in index to the word pointed to by relocAddress. After the addition, relocAddress
points to just past the modified word, and importIndex is set to index +1.

RelocLgRepeat 8

The RelocLgRepeat instruction (opcode 101100) takes two relocation blocks and
has the structure shown in Figure 8-19.

Figure 8-19 Structure of the RelocLgRepeat instruction

This instruction repeats the preceding blockCount relocation blocks repeatCount
number of times. The RelocLgRepeat instruction is very similar to the
relocSmRepeat (opcode 1001) instruction, but it allows for larger repeat counts.

You cannot nest this instruction, either within itself or within the relocSmRepeat
instruction.

IMPORTANT

Note that the repeat value stored in this instruction is the
actual value (repeatCount), while for the relocSmRepeat
instruction the value stored is repeatCount-1. The block
count value stored is blockCount-1 for both repeat
instructions. �

RelocLgSetOrBySection 8

The RelocLgSetOrBySection instruction (opcode 101101) takes two relocation
blocks and has the form shown in Figure 8-20.

+ repeatCount (low)

6 bits 4 bits 6 bits 16 bits

0 65 10 159

101100 blockCount -1

0 15

repeatCount (high)

C H A P T E R 8

PEF Structure

The Loader Section 8-35

P
E

F
 S

tructure
8

Figure 8-20 Structure of the RelocLgSetOrBySection instruction

This instruction performs instructions identical to those shown in “The Relocate
By Index Group” (page 8-31), but with a larger (up to 22-bit, unsigned) section
number. The action specified depends on the value of subopcode as shown in
Table 8-7.

The Loader String Table 8

The loader string table contains character strings that specify the names of
imported and exported symbols and the names of imported libraries. Strings for
imported symbols and imported libraries must be null terminated, but strings
referenced by export symbol table entries (that is, strings for exported symbols)
do not have this requirement. (The Code Fragment Manager uses the upper 16
bits of the hash value to determine the length of the string). None of the strings
contain a Pascal-style length byte.

Table 8-7 Subopcodes for the RelocLgSetOrBySection instruction

Subopcode Action

0000 Add the address of the instantiated section specified
by index to the word at relocAddress. After the
addition, relocAddress points to just past the
modified word. (Same as RelocSmBySection.)

0001 Set the variable sectionC to the memory address of
the instantiated section specified by index. (Same as
RelocSmSetSectC.)

0010 Set the variable sectionD to the memory address of
the instantiated section specified by index. (Same as
RelocSmSetSectD.)

+ index (low)

6 bits 4 bits 6 bits 16 bits

0 65 10 159

101101 subopcode

0 15

index (high)

C H A P T E R 8

PEF Structure

8-36 The Loader Section

Exported Symbols 8

All exported symbols in a PEF container are stored in a hashed form, allowing
the Code Fragment Manager to search for them efficiently when preparing a
fragment. Hashing is a method of processing and organizing symbols so they
can be searched for quickly.

PEF uses a modified version of the traditional hash table. The traditional model
is shown in Figure 8-21.

Figure 8-21 A traditional hash table

A hash word is computed for every symbol and a hash index value is computed
for every hash word. The hash words are grouped together in hash chains
according to their index values, and each chain corresponds to an entry in the
hash table.

The PEF implementation, as shown in Figure 8-22, effectively flattens the
traditional hash table. Functionally the hash tables in Figure 8-21 and Figure 8-22
are identical.

Hash table

0

1

2

3

4

Symbol name a
Hash word a

Symbol name b

Hash word b

Symbol name c

Hash word c

Symbol name d

Hash word d

Symbol name e

Hash word e

Symbol name f

Hash word f

Hash chains

...

2

m

Hash
index
values

C H A P T E R 8

PEF Structure

The Loader Section 8-37

P
E

F
 S

tructure
8

Figure 8-22 Flattened hash table implementation

Each hash chain is stored consecutively in the export key table and the exported
symbol table. For each hash index value, the hash table stores the number of
entries in its chain and the starting table index value for that chain.

The general procedure for creating a hashed data structure is as follows:

1. Compute the number of hash index values. This value is based on the
number of exported symbols in the container. See “The Exported Symbol
Count to Hash Table Size Function” (page 8-42) for a suggested method of
calculating this value.

2. Compute the hash word value and hash index value for every exported
symbol. (The hash index value is dependent on both the symbol and the size
of the hash table.) See “The Name to Hash Word Function” (page 8-41) and
“The Hash Word to Hash Index Function” (page 8-42) for details of the
required calculations.

3. Sort the exported symbols by hash index value. This procedure effectively
indexes the exported symbols. Each symbol has a table index value that
references its hash word in the export key table and an entry in the exported
symbol table.

Export hash table

Hash index
values

Number
in chain

Index of
first element

...

0

1

2

3

4

0

-

1

-

4

...

1

0

3

0

2

Export key table

hash word a

hash word b

hash word c

hash word d

hash word e

hash word f

Exported
symbol table

symbol a

symbol b

symbol c

symbol d

symbol e

symbol f

2
n

Table index

0

1

2

3

4

5

Hash
index = 0

Hash
index = 2

Hash
index = 4

C H A P T E R 8

PEF Structure

8-38 The Loader Section

4. Construct the hash table using the size determined in step 1. Each hash table
entry contains a chain count indicating the number of exported symbols in
the chain (that is, the number that have this hash index value) and the offset
in the export key and symbol tables to the first symbol in the chain.

The Code Fragment Manager can search for exported symbols by name or by
table index number. When searching for a symbol by (zero-based) table index
number, the Code Fragment Manager looks up the index value in the exported
symbol table to obtain a pointer to the name of the symbol. Then it uses the
same index to get the hash word value of the symbol in the export key table.
(The length of the name is encoded in the hash word.)

Searching for exported symbols by name is somewhat more complicated. The
Code Fragment Manager first computes the hash word of the symbol it is trying
to locate. Then it computes a hash index value from the hash word and the size
of the hash table. Using this value as an index into the hash table, the Code
Fragment Manager obtains a chain count value and a table index value for the
first entry in the hash chain (as determined in step 4). Then, beginning at the
table index value, it searches the export key table for a hash word to match the
one it previously calculated. If the Code Fragment Manager finds a match, it
uses the matching table index value to look up the name in the symbol table. If
the symbol names match, the Code Fragment Manager returns information
about the symbol. If the Code Fragment Manager cannot find a match after
searching the number of entries equivalent to the chain count value, it marks
the symbol as not found.

The sections that follow describe the elements of the hashed data structure in
more detail.

The Export Hash Table 8

The number of entries in the hash table is 2 raised to the value in the
exportHashTablePower field of the loader header (page 8-18). The number of
entries is determined from the number of exported symbols. If there are no
exports, the table still contains one entry. See “Hashing Functions” (page 8-41)
for details of the hashing process and the suggested method for computing the
number of hash table entries.

C H A P T E R 8

PEF Structure

The Loader Section 8-39

P
E

F
 S

tructure
8

A hash table entry is of fixed size (4 bytes) and has the form shown in Figure 8-23.

Figure 8-23 A hash table entry

The field values are as follows:

� The first field (14 bits) contains the number of items in this chain.

� The second field (18 bits) contains the table index value of the first symbol in
the chain (see Figure 8-22 (page 8-37)).

The Export Key Table 8

The export key table contains a key (a hash word) for every exported symbol.
The structure of a hash word is fixed (4 bytes) and has the form shown in
Figure 8-24.

Figure 8-24 A hash word

� The first field contains the length of the export symbol name in bytes.

� The second field contains the name of the symbol encoded using a hash key.

For more information about calculating the hash word, see “The Name to Hash
Word Function” (page 8-41).

Chain count Index of first export

14 bits

0 13 14 31

18 bits

Length of
export symbol

Encoded
symbol name

16 bits

0 15 16 31

16 bits

C H A P T E R 8

PEF Structure

8-40 The Loader Section

The Exported Symbol Table 8

The exported symbol table contains an entry for every symbol exported by the
fragment. All exports with a given hash index value are grouped together in the
symbol table (see Figure 8-22 (page 8-37)).

An exported symbol table entry data structure is of fixed size (10 bytes) and has
the form shown in Listing 8-7.

Listing 8-7 Exported symbol table entry data structure

struct PEFExportedSymbol {
UInt32 classAndName;
UInt32 symbolValue;
SInt16 sectionIndex;

};

Note
Each entry is 10 bytes long. No padding bytes are used
between successive entries. �

The fields in the entry are as follows:

� The classAndName field (4 bytes) contains two entries:

� The first byte designates the symbol class of the exported symbol. See
Table 8-3 (page 8-21) for a listing of classes. Flag bits for exported symbols
are reserved for future use.

� The following 3 bytes designate the offset from the beginning of the loader
string table to the name of the symbol. The name of the symbol is not null
terminated, but you can determine the length of the string from the upper
2 bytes of the symbol’s hash word (found in the export key table).

� The symbolValue field (4 bytes) typically indicates the offset from the
beginning of the symbol’s section to the exported symbol.

� The sectionIndex field (2 bytes) indicates the number of the section that
contains this symbol. Note that this is a signed field.

The symbolValue field has special meaning when the section number is negative.
If the section number is -2, the symbolValue field contains an absolute address. If
the section number is -3, the symbolValue field contains an imported symbol
index, indicating that the imported symbol is being reexported.

C H A P T E R 8

PEF Structure

The Loader Section 8-41

P
E

F
 S

tructure
8

Hashing Functions 8

This section describes hashing algorithms used to create the hashed data
structure for exported symbols.

The Name to Hash Word Function 8

The hash word function computes a 32-bit hash word for a symbol name. The
upper 16 bits contains the length of the name, and the symbol name is encoded
using a hash key in the lower 16 bits. You are required to use this algorithm to
calculate the hash word. Listing 8-8 shows a C implementation of the hash
word function.

Listing 8-8 Hash word function

/* Computes a hash word for a given string. nameText points to the */
/* first character of the string (not the Pascal length byte). The */
/* string may be null terminated. */

enum {
kPEFHashLengthShift = 16,
kPEFHashValueMask = 0x0000FFFF

};

UInt32 PEFComputeHashWord (BytePtr nameText, UInt32 nameLength)
{

BytePtr charPtr = nameText;
SInt32 hashValue = 0;
UInt32 length = 0;
UInt32 limit;
UInt32 result;
UInt8 currChar;

#define PseudoRotate(x) (((x) << 1) - ((x) >> 16))

for (limit = nameLength; limit > 0; limit -= 1)
{

currChar = *charPtr++;
if (currChar == NULL) break;
length += 1;

C H A P T E R 8

PEF Structure

8-42 The Loader Section

hashValue = PseudoRotate (hashValue) ^ currChar;
}

result = (length << kPEFHashLengthShift) |
((UInt16) ((hashValue ^ (hashValue >> 16)) & kPEFHashValueMask));

return result;

} /* PEFComputeHashWord () */

The Hash Word to Hash Index Function 8

The hash index (or hash slot number) function converts the 32-bit hash word
value into a small index number.You are required to use this algorithm for
calculating the index number. Listing 8-9 shows the hash word to hash
index function.

Listing 8-9 Hash word to hash index function

#define PEFHashTableIndex(fullHashWord,hashTablePower) \
(((fullHashWord) ^ ((fullHashWord) >> (hashTablePower))) & \
((1 << (hashTablePower)) - 1))

The Exported Symbol Count to Hash Table Size Function 8

Listing 8-10 shows a suggested method of calculating the hash table size. (This
algorithm provides a good tradeoff between minimizing search time and
minimizing table size, but you may substitute a similar algorithm.) The hash
table size function computes the size of the hash table based on the number of
exported symbols in the PEF container. The number of hash table entries is
always a power of 2. The function in Listing 8-10 returns the value of the
exponent. The value kExponentLimit can be arbitrary, but it must not exceed 30.
The constant kAverageChainLimit is normally set to 10, but you can adjust this to
make a trade off between the size of the chain and search time.

C H A P T E R 8

PEF Structure

PEF Size Limits 8-43

P
E

F
 S

tructure
8

Listing 8-10 Exported symbol count to hash table size function

UInt8 PEFComputeHashTableExponent (SInt32 exportCount)
{

SInt32 exponent;

const SInt32 kExponentLimit = 16;
const SInt32 kAverageChainLimit = 10;

for (exponent = 0; exponent < kExponentLimit; exponent += 1) {
if ((exportCount / (1 << exponent)) < kAverageChainLimit)

break;
}

return exponent;

} /* PEFComputeHashTableExponent () */

PEF Size Limits 8

The PEF structure has the following size limits:

� The total size of the container cannot be larger than 4 GB.

� The maximum offset allowed into the section name table is 2 GB.

� The total number of sections cannot exceed 65,535.

� The total number of instantiated sections (that is, those containing code or
data) cannot exceed 32,767.

� The maximum size of the loader string table is 16 MB.

� The total number of imported symbols is limited to 2 26. However, the
number of reexported imports is limited to 2 24.

� The number of exported symbols is limited to 2 18.

� A single hash chain cannot contain more than 16,384 entries.

C H A P T E R 8

PEF Structure

8-44 PEF Size Limits

In general, 32-bit integers (UInt32) are used to store size and count values in
PEF containers, resulting in a maximum allowable integer of 2 32. In many
cases, this is a theoretical rather than actual limit, since other PEF limitations
may restrict the largest allowable value.

Note that the Code Fragment Manager itself imposes limits that are not related
to the PEF specification. For example, there is a length limit of 255 characters for
imported and exported symbol names and a 63 character limit for imported
library names. For specifics, check the current Code Fragment Manager
documentation.

C H A P T E R 9

Contents 9-1

Contents

9

Figure 9-0
Listing 9-0
Table 9-0

9 CFM-68K Application and Shared
Library Structure

CFM-68K Application Structure 9-3
The Segment Header 9-3
The Jump Table 9-5
Transition Vectors and the Transition Vector Table 9-6
The 'CODE' 0 Resource 9-7
The 'CODE' 6 Resource 9-8
The 'rseg' 0 Resource 9-8
The 'rseg' 1 Resource 9-10

CFM-68K Shared Library Structure 9-10
Jump Table Conversion 9-11
Transition Vector Conversion 9-12
Static Constructors and Destructors 9-13

C H A P T E R 9

CFM-68K Application Structure 9-3

C
F

M
-68K

 A
pplication and S

hared Library
9

CFM-68K Application and Shared Library Structure 9

This chapter describes the file structure of CFM-68K runtime applications and
shared libraries. You need to read this section only if you need specific details
about segment structure and the storage of items such as transition vectors and
jump table entries in CFM-68K runtime programs.

Note
Some sections specifically describe MPW implementations
for the CFM-68K runtime environment. Other
implementations are possible, however. �

CFM-68K Application Structure 9

Although CFM-68K runtime shared libraries are virtually identical to their
PowerPC counterparts, CFM-68K runtime applications are hybrids that retain
the segmented form of classic 68K applications.

CFM-68K runtime applications use some classic 68K structures ('CODE' resources,
for example), but many of these structures have been modified for the
CFM-based architecture. CFM-68K applications have different segment headers
and jump tables, as well as a new table for transition vectors. The %A5Init
segment does not exist in CFM-68K applications, and the 'CODE'0 resource does
not hold the jump table. The following sections describe the CFM-68K
application structure in detail.

Note
If you are not familiar with the structure of classic 68K
applications, you may want to refer to Chapter 10, “Classic
68K Runtime Architecture,” as you read this section. �

The Segment Header 9

Each CFM-68K runtime segment contains a header that gives information about
the segment. Figure 9-1 shows the structure of a CFM-68K runtime segment
header.

C H A P T E R 9

CFM-68K Application and Shared Library Structure

9-4 CFM-68K Application Structure

Note
The CFM-68K runtime segment header is the same size as a
classic 68K far model (32-bit everything) header (see
Figure 10-11 (page 10-24)), but it contains different
information. �

Figure 9-1 Structure of a CFM-68K runtime segment header

The version number $FFFD indicates that the segment header was built for the
CFM-68K runtime architecture. This value must match the version number in
the jump table flag entry (see Figure 9-2 (page 9-5)).

$0

$2

$4

$8

$C

$10

$14

$18

$1C

$20

$24

$28

$FFFD (version number)

$0000 (reserved)

A5 offset of first
jump table entry

Number of jump table entries

A5 offset of first transition vectors

Number of transition vectors

$0000 (reserved)

$0000 (reserved)

$0000 (reserved)

$0000 (reserved)

$0000 (reserved)

Code

C H A P T E R 9

CFM-68K Application and Shared Library Structure

CFM-68K Application Structure 9-5

C
F

M
-68K

 A
pplication and S

hared Library
9

Note
In MPW you must build your application with the same
size constraints as a classic 68K near model program unless
you specify the -bigseg compiler option. �

The Jump Table 9

Figure 9-2 shows the structure of a CFM-68K runtime jump table. This jump
table is similar to the classic 68K far model jump table as shown in Figure 10-10
(page 10-23).

Figure 9-2 CFM-68K runtime jump table structure

32 bytes of zero

$0004

MOVE.W #6,–(SP)

_LoadSeg
$0000 (reserved)

$FFFD (version number)

$0000 (reserved)

$0000 (reserved)

Segment number

_LoadSeg
First regular entry

Reserved entry

Segment offset

Flag entry

Classic format entry

CurJTOffset

A5

C H A P T E R 9

CFM-68K Application and Shared Library Structure

9-6 CFM-68K Application Structure

Transition Vectors and the Transition Vector Table 9

The transition vector table resides in the direct data world (the A5 world in
classic 68K) above the jump table. It contains a transition vector for every
exported routine and every routine whose address is accessed in any way. The
transition vectors contain the entry point address for the desired routine and
the value to be placed in the A5 base register when the routine executes.
Figure 9-3 shows the structure of an application transition vector.

Figure 9-3 An application transition vector

%_segLoader address

Prepared transition vector before segment loading

A5 address

Segment offsetSegment number0

031 30 20

%_segLoader offset

Unprepared transition vector

A5 offset

Segment offsetSegment number0

031 30 20

Function address

Prepared transition vector after segment loading

A5 address

Segment offsetSegment number0

031 30 20

C H A P T E R 9

CFM-68K Application and Shared Library Structure

CFM-68K Application Structure 9-7

C
F

M
-68K

 A
pplication and S

hared Library
9

The Code Fragment Manager sets the %_segLoader address and A5 address
portions of the transition vector at preparation time. (See “The 'rseg' 1
Resource” (page 9-10) for more information about the %_segLoader routine.) The
application transition vector is larger than the corresponding shared library
transition vector (12 bytes versus 8 bytes) because it needs additional segment
information to properly address routines in a segmented application.

The segment offset field in a transition vector contains a word (2 byte) offset.
This differs from a jump table entry’s segment offset field, which contains a byte
offset.

The 'CODE' 0 Resource 9

A CFM-68K runtime application’s 'CODE'0 resource contains a small “start-up”
jump table that loads and executes the code that launches the application. In
MPW, this code is stored in the 'CODE'6 resource. Figure 9-4 shows the structure
of a CFM-68K runtime 'CODE'0 resource.

Note
In classic 68K applications, the 'CODE'0 resource contains
the application’s jump table. �

Figure 9-4 The 'CODE'0 resource

$0

$4

$8

$C

$10

$12

$16

$18

Above A5 size

Below A5 size

Jump table size

Jump table offset

$0004

MOVE.W #6,-(SP)

LoadSeg

C H A P T E R 9

CFM-68K Application and Shared Library Structure

9-8 CFM-68K Application Structure

The 'CODE' 6 Resource 9

In MPW, code stored in the 'CODE'6 resource handles the launching of CFM-68K
runtime applications for the Process Manager in System 7.1.

Note
The Process Manager in System 7.5 or later can launch
CFM-68K runtime applications directly without having to
execute routines in the 'CODE'6 resource. �

The CFM Launch code segment in the 'CODE'6 resource takes the following steps
when launching a CFM-68K runtime application.

1. Checks to see if the computer is a PowerPC-based machine. If so, the CFM
Launch segment displays the message, “Sorry, this application doesn’t run on
PowerPC platforms. You may only run it on 68K platforms.” If you want to
create a custom version of this message, you must install a 'STR ' resource
with ID -20227 in your CFM-68K runtime application.

2. Checks to see that the CFM-68K Runtime Enabler is installed on the computer.
If the CFM-68K Runtime Enabler is missing, the CFM Launch segment displays
the message, “This application requires installation of the CFM-68K Runtime
Enabler.” If you want to create a custom version of this message, you must
install a 'STR ' resource with ID -20029 in your CFM-68K runtime application.

3. Reads the 'cfrg'0 resource and calls the Code Fragment Manager to select
the proper fragment from the 'cfrg'0 entries.

4. Tells the Code Fragment Manager to prepare the application fragment, along
with any necessary import libraries.

5. Adds code to the ExitToShell routine to perform the necessary CFM
clean-up operations when an application quits or aborts.

6. Calls the application’s main entry point.

The 'rseg' 0 Resource 9

The 'rseg'0 resource is the resource loaded and retained by the Code Fragment
Manager and is the fragment referenced from the 'cfrg'0 resource. Since the
Code Fragment Manager does not release an “active” fragment, the 'rseg'0
resource does not contain the executable fragment, but only a small data
structure. This structure specifies the location of the actual executable fragment
as well as some additional information about the fragment. The actual

C H A P T E R 9

CFM-68K Application and Shared Library Structure

CFM-68K Application Structure 9-9

C
F

M
-68K

 A
pplication and S

hared Library
9

executable fragment is stored in the 'rseg'1 resource, which can be released
after the application launch procedures are completed. The 'rseg'0 resource
contains a copy of the PEF container header from the 'rseg'1 resource along
with other information, as shown in Figure 9-5. For more information about
PEF headers, see “The Container Header,” beginning on page 8-4.

Figure 9-5 The 'rseg'0 resource

$0

$4

$8

$C

$10

$14

$18

$1C

$20

$28

$24

$22

$2C

$30

$32

$34

$38

Format identifier

Container ID = 'rseg'

Architecture ID = ' m68k'

Version = 1

Date/time stamp

Old definition version number

Old implementation version number

Current version number

Number of sections

Memory address

Number of loadable sections

Number of exported symbols

(Reserved)

Secondary resource ID

Last valid 'CODE' resource

Below A5 size

C H A P T E R 9

CFM-68K Application and Shared Library Structure

9-10 CFM-68K Shared Library Structure

The 'rseg' 1 Resource 9

The 'rseg'1 resource holds a PEF container consisting of the following sections:

� A data section containing the application’s jump table, transition vector table,
and global data, all in a compressed format. This section replaces the %A5Init
segment used for classic 68K runtime applications.

� A loader section that specifies the import libraries needed by the application.
This section also includes a list of symbols imported from each library and a
list of symbols (if any) exported from the application.

� A code section containing the %_segLoader routine. This code patches the
_LoadSeg and _UnloadSeg A-line instructions, so they can function properly in
the CFM-68K runtime environment.

See Chapter 8, “PEF Structure,” for more information about PEF containers.

The Code Fragment Manager uses the 'rseg' resources to create a direct data
area, perform A5 relocations, and bind shared libraries to the application. While
preparing the launch of a CFM-68K application, the Code Fragment Manager
stores the 'rseg'1 resource in the application heap (much the way the %A5Init
segment is stored for classic 68K applications). After preparations are complete,
the Code Fragment Manager releases the 'rseg'1 resource.

CFM-68K Shared Library Structure 9

In some development environments, creating a CFM-68K shared library
involves first creating a segmented version of the library and then flattening it
to produce a contiguous program that is stored in the file’s data fork. In MPW,
the mechanism for flattening segmented shared libraries is the MakeFlat tool.
This section describes what conversions are necessary to go from a segmented
state to a flattened state and how MakeFlat implements these conversions.

You need to read this section in either of these two cases:

� You want to understand how the MPW MakeFlat tool flattens CFM-68K
shared libraries.

� You are writing a library flattening tool and want to understand what
conversions are necessary.

C H A P T E R 9

CFM-68K Application and Shared Library Structure

CFM-68K Shared Library Structure 9-11

C
F

M
-68K

 A
pplication and S

hared Library
9

An unflattened shared library has a structure very similar to that of a CFM-68K
runtime application. The main differences are as follows:

� The transition vectors are 8 bytes long instead of 12.

� The PEF container’s data section is not compressed.

� The 'cfrg'0 resource indicates that the fragment is a library, not an
application.

The structure changes radically, however, when you flatten the segmented
library using the MakeFlat tool. MakeFlat makes the following changes to a
segmented shared library:

� Converts the shared library’s 'CODE' resources (except for 'CODE'0 and
'CODE'6) into code sections in the output PEF container.

� Modifies the PEF relocations.

� Converts jump table entries and transition vectors to their flattened state.

� Compresses the PEF container’s data section.

� Creates a new 'cfrg'0 resource specifying the new location of the
PEF container.

� Adds a debug section to the output PEF container so you can use the 68K
Macintosh Debugger to debug shared libraries.

� Adds code to properly call static constructor or destructor routines if they
exist in the shared library.

After making these changes, MakeFlat writes the PEF container to the data fork
of the output file.

The following sections describe some of the conversions in greater detail.

Jump Table Conversion 9

When MakeFlat flattens jump table entries, it changes the addressing method
from one that is segment oriented to one that is code section oriented. This
involves removing the segment number (since it serves no purpose in a flat file),
changing the LoadSeg instruction to a Jmp Abs.L instruction, and copying the
routine’s offset into the new entry. Then, MakeFlat generates a relocation
instruction for each jump table entry that adds the code section’s address to the
routine’s offset. Figure 9-6 compares the two jump table versions.

C H A P T E R 9

CFM-68K Application and Shared Library Structure

9-12 CFM-68K Shared Library Structure

Figure 9-6 Segmented versus flattened jump table entries

Transition Vector Conversion 9

As with the jump table entries, MakeFlat converts the transition vector
addressing scheme from one that is segment oriented to one that is code
section oriented. MakeFlat generates a relocation instruction for each
transition vector that adds the section’s address and A5 address to the offset
in each transition vector. Figure 9-7 shows a transition vector before and after
conversion (flattening).

Figure 9-7 A transition vector before and after flattening

Segment number

Segmented jump table entry

Function’s offset in segment

(Unused)

LoadSeg ($A9F0) Jmp Abs.L ($4EF9)

Flattened jump table entry

Function’s offset in section

Unflattened transition vector

A5 offset

Function’s offset in segmentSegment number

031 24

Function’s offset in section

Flattened transition vector

A5 offset

C H A P T E R 9

CFM-68K Application and Shared Library Structure

CFM-68K Shared Library Structure 9-13

C
F

M
-68K

 A
pplication and S

hared Library
9

Note that the function offset in the unflattened transition vector is a word offset,
and the A5 offset is a byte offset. In a flattened transition vector, MakeFlat has
converted the function’s word offset into a byte offset.

At runtime, the transition vector offset values are replaced with absolute
addresses, as shown in Figure 9-8.

Figure 9-8 A transition vector at runtime

Static Constructors and Destructors 9

In MPW, if the input shared library contains static constructors or destructors,
the MakeFlat tool performs special processing to ensure these routines are
called at the proper time.

MakeFlat adds a block of data to the top of the A5 world and adds a new code
section. The data block consists of two new transition vectors, offsets to the
library’s original initialization and termination routines, and the contents of the
code segment %_Static_Constructor_Destructor_Pointers. The new code
section, %_CPlus_Static_Init_Term, contains the two routines that call the static
constructors and destructors. These two routines are then marked as being the
library’s initialization and termination routines.

Note
Because MakeFlat takes care of static object construction
and destruction, you do not need to call the MPW routines
__init_lib and __term_lib when creating your own
initialization and termination routines for shared libraries.
However, when creating routines for CFM-68K runtime
applications, you must call the corresponding __init_app
and __term_app routines. �

Function address

A5 address

C H A P T E R 1 0

Contents 10-1

Contents

10

Figure 10-0
Listing 10-0
Table 10-0

10 Classic 68K Runtime Architecture

The A5 World 10-3
Program Segmentation 10-5
The Jump Table 10-6
Bypassing MC68000 Addressing Limitations 10-12

Increasing Global Data Size 10-14
Increasing Segment Size 10-15
Increasing the Size of the Jump Table 10-16
32-Bit Everything 10-17

How 32-Bit Everything Is Implemented 10-19
Expanding Global Data and the Jump Table 10-19
Intrasegment References 10-20
The Far Model Jump Table 10-20
The Far Model Segment Header Structure 10-23
Relocation Information Format 10-25

C H A P T E R 1 0

The A5 World 10-3

C
lassic 68K

 R
untim

e A
rchitecture

10
Classic 68K Runtime Architecture 10

The classic 68K runtime architecture is the original Macintosh runtime
architecture, designed for computers running a Motorola 68000-series
microprocessor. Applications are stored as segments that can be loaded into
the application heap as necessary. The application space contains the
application heap, the application stack, and the A5 world.

This chapter gives an overview of the classic 68K runtime architecture, with
information about the following topics:

� the A5 world

� program segmentation

� the jump table

� addressing limitations of the original classic 68K architecture and MPW
solutions for bypassing these limitations

The first three sections, which discuss the A5 world, program segmentation,
and the jump table, assume the near model classic 68K architecture. Programs
built using the near model rely on 16-bit addressing for code and data. The
sections that follow introduce the far model, which relies on 32-bit addressing
for code and data. Note that you have the option of incorporating only some of
the far model characteristics when building your application.

For additional information you should consult the various volumes of the Inside
Macintosh series.

Note
Classic 68K runtime code cannot use shared libraries.
However, classic 68K runtime code can run transparently
under emulation on PowerPC-based computers. �

The A5 World 10

Every classic 68K application contains an A5 world, an area of memory that
stores the following items:

� the jump table, which allows the application to make calls between segments

� the application’s global variables

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-4 The A5 World

� the application’s QuickDraw global variables, which contain information
about the drawing environment

� the application parameters, which are reserved for use by the Mac OS

The data is referenced as offsets from the value of the A5 register, hence the
name A5 world. The application’s global variables and QuickDraw global
variables are referenced with negative offsets from A5, while application
parameters and jump table entries are referenced with positive offsets.

Figure 10-1 shows a classic 68K A5 world.

Figure 10-1 Classic 68K A5 world

The system global variable CurrentA5 holds the value of the A5 register.

High memory

CurrentA5

Jump table

Application parameters

Pointer to QuickDraw global variables

QuickDraw global
variables

Application global
variables

Low memory

C H A P T E R 1 0

Classic 68K Runtime Architecture

Program Segmentation 10-5

C
lassic 68K

 R
untim

e A
rchitecture

10

Program Segmentation 10

The classic 68K runtime architecture reflects the need for maximum memory
efficiency in the original Macintosh computer which had 128 KB of RAM and an
MC68000 CPU. To run large applications in this limited memory environment,
Macintosh applications were broken up into segments ('CODE' resources) that
could be loaded into the application heap as necessary.

When you compile and link a program, the linker places your program’s
routines into code segments and constructs 'CODE' resources for each program
segment. The Process Manager loads some code segments into memory when
you launch an application. Later, if the code calls a routine stored in an unloaded
segment, the Segment Manager loads that new segment into memory. These
operations occur automatically by using information stored in the application’s
jump table and in the individual code segments themselves.

Note that although the Segment Manager loads segments automatically, it does
not unload segments. The Segment Manager locks the segment when it is first
loaded into memory and any time thereafter when routines in that segment are
executing. This locking prevents the segment from being moved during heap
compaction and from being purged during heap purging.

Your development environment lets you specify compiler directives to indicate
which routines should be grouped together in the same segment. For example,
if you have code that is not executed very often (for example, code for printing
a document), you can store that in a separate segment, so it does not occupy
memory when it is not needed. Here are some general guidelines for grouping
routines into segments:

� Group related routines in the same segment.

� Put your main event loop into the main segment (that is, the segment that
contains the main entry point).

� Put any routines that handle low-memory conditions into a locked segment
(usually the main segment). For example, if your application provides a
grow-zone function, you should put that function in a locked segment.

� Put any routines that execute at interrupt time, including VBL tasks and
Time Manager tasks, into a locked segment.

� Any initialization routines that are executed only once at application startup
time should be put in a separate segment. This grouping allows you to

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-6 The Jump Table

unload the segment after executing the routines. However, routines that
allocate non relocatable objects (for example, MoreMasters or InitWindows) in
your application heap should be called in the main segment, before loading
any code segments that will later be unloaded. If you put such allocation
routines in a segment that is later unloaded and purged, you increase heap
fragmentation.

A typical strategy is to unload all segments except segment 1 (the main segment)
and any other essential code segments each time through your application’s
main loop.

To unload a segment you must call the UnloadSeg routine from your application.
The UnloadSeg routine does not actually remove a segment from memory, but
merely unlocks it, indicating to the Segment Manager that it may be relocated
or purged if necessary. To unload a particular segment, you pass the address of
any externally referenced routine contained in that segment. For example, if
you wanted to unload the segment that contains the routine happyMoo, you can
execute the following:

UnloadSeg(&happyMoo);

� W AR N I N G

Before you unload a segment, make sure that your
application no longer needs it. Never unload a segment
that contains a completion routine or other interrupt task
(such as a Time Manager or VBL task) that might be
executed after the segment is unloaded. Also, you must
never unload a segment that contains routines in the
current call chain. �

The Jump Table 10

The loading and unloading of segments are controlled by the linker and the
Segment Manager through the use of the jump table ('CODE'0), a data structure
created by the linker. The jump table is always located at a fixed offset above A5
as shown previously in Figure 10-1.

The jump table is used to track the state (loaded or unloaded) and the location
of 'CODE' resources. The jump table keeps track of the location of each 'CODE'
resource and the offset of each routine inside each segment.

C H A P T E R 1 0

Classic 68K Runtime Architecture

The Jump Table 10-7

C
lassic 68K

 R
untim

e A
rchitecture

10

� If one routine needs to call another routine in a different segment
(intersegment reference), it must go through the jump table to determine the
address where the other routine starts. If the segment containing the
externally referenced routine is unloaded, it must be loaded before jumping
to the routine address.

� If a routine calls another routine in its own segment (intrasegment reference),
it does not need the jump table. Although 'CODE' resources move in the heap,
their contents are constant, so the routines always keep a constant distance
apart and can be accessed using a self-relative (that is, a PC-relative) branch.

Figure 10-2 shows a call that goes through the jump table and a call that uses
self-relative branching.

Figure 10-2 Using the jump table and using self-relative branching

When procedure A calls procedure B, procedure A must go through the jump
table because the procedures are in different segments. But procedure C can call

Low-memory

Procedure A

Procedure B

Procedure C

Stack

Jump table

Application global variables

High-memory RAM

32 KB

32 KB

A5

'CODE' 2

'CODE' 1

Application heap

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-8 The Jump Table

procedure B without going through the jump table because the procedures are
in the same segment.

If you trace through code and see an instruction such as

JSR 60(A5)

you are looking at a call to a routine in another code segment—that is, a call that
must go through the jump table. Remember that A5 is used to reference the
application’s global variables and the jump table. Negative offsets from A5
reference global variables, while positive offsets that are greater than 32 refer to
jump-table entries.

The jump table is created by the linker when you build your application, and it
is stored in the 'CODE'0 resource (sometimes called segment 0). The structure of
the 'CODE'0 resource is shown in Figure 10-3.

C H A P T E R 1 0

Classic 68K Runtime Architecture

The Jump Table 10-9

C
lassic 68K

 R
untim

e A
rchitecture

10

Figure 10-3 The 'CODE'0 resource

The elements of the 'CODE'0 resource are as follows:

� Above A5 size. The size (in bytes) from the location pointed to by A5 to the
upper end of the application space.

� Below A5 size. The size (in bytes) of the application’s global variables plus
the QuickDraw global variables.

� Jump table size. The size of the jump table. The jump table contains one
8-byte entry for each externally referenced routine.

Above A5 size

Entry 1

Entry n

Jump table offset

Entry 2

$0

$4

$8

$C

$10

$18

$20

Below A5 size

Jump table size

Jump
table

Jump
table
header

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-10 The Jump Table

� Jump table offset. The offset (in bytes) of the jump table from the location
pointed to by A5. This offset is stored in the global variable CurJTOffset.

� Jump table. A contiguous list of jump table entries.

Note
For all applications, the offset to the jump table from the
location pointed to by A5 is 32. The number of bytes above
A5 is 32 plus the length of the jump table. �

When the application is launched, the Segment Manager uses this information
to place the jump table in the A5 world.

The linker creates a jump table entry for every routine that is called by a routine
from a different segment. All entries for a particular segment are stored
contiguously in the jump table. The structure of the entry varies depending on
whether the referenced routine is in a loaded or unloaded segment. If the
segment has not been loaded into memory, the jump table entry has the
structure shown in Figure 10-4.

Figure 10-4 An unloaded jump table entry

Note
The jump table structure for unloaded segments is different
if you are building with the -model far option. See “The
Far Model Jump Table” (page 10-20) for more details. �

Offset of this routine
from beginning of segment

_LoadSeg trap number

$0

$2

$4

$6

$8

Instruction that moves
the segment number onto

the stack for
_LoadSeg

C H A P T E R 1 0

Classic 68K Runtime Architecture

The Jump Table 10-11

C
lassic 68K

 R
untim

e A
rchitecture

10

A call that goes through the jump table has the form

JSR offset (A5)

where offset is the offset of the jump table entry for the routine from A5 plus 2
bytes. This results in the execution of the MOVE.W #n, -SP instruction, which
places the number of the segment containing the routine on the stack. (The
jump table refers to segments by the segment numbers assigned by the linker.)

The next instruction invokes the _LoadSeg trap, which loads the specified
segment into memory. Then the Segment Manager can transform all the jump
table entries for the segment into their loaded states as follows:

1. The Segment Manager loads the segment, locks it, double-dereferences it,
and adds the offset, which is stored in the first word of the unloaded entry.
This results in the actual address of the routine.

2. The Segment Manager then builds the loaded entry format: it stores the
segment number in the entry’s first 2 bytes, and it stores a JMP instruction to
the address it has calculated in the entry’s last 6 bytes.

Figure 10-5 shows the structure of a loaded jump table entry.

Figure 10-5 A loaded jump table entry

After transforming the jump table entries, the Segment Manager then calls
the actual routine by executing the instruction in the last 6 bytes of the (now
loaded) jump table entry. Any subsequent calls to the routine also execute
this instruction.

Segment number

Instruction that jumps to
the address of this routine

$0

$2

$8

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-12 Bypassing MC68000 Addressing Limitations

Note that the last 6 bytes of the jump table entry are executed whether the
segment is loaded or not. The effect of the instruction depends on the state of
the entry at the time.

The jump table entries remain in their loaded state unless you call the
_UnloadSeg routine, which restores them to their unloaded state.

Note that to set all the jump table entries for a segment to their loaded or
unloaded state, the Segment Manager needs to know where in the jump table
all the entries are located. It gets this information from the segment header. The
segment header, which is 4 bytes long for the near model environment, contains
the offset of the first routine’s entry from the start of the jump table (2 bytes)
and the number of entries for the segment (2 bytes). Figure 10-6 shows the
segment header.

Figure 10-6 Near model segment header

Note
The segment header is different for the far model
environment. See “The Far Model Segment Header
Structure” (page 10-23), for more information. �

Bypassing MC68000 Addressing Limitations 10

68K compilers typically generate PC-relative instructions for intrasegment
references. This restricts the size of segments to 32 KB because the PC-relative
instructions on the MC68000 processor use a 16-bit offset. Similarly, references
to addresses expressed as offsets from the address stored in A5 are also limited
to 16-bit offsets on the MC68000 processor.

Offset of first
jump table entry

Number of
jump table entries

$0

$2

$4

C H A P T E R 1 0

Classic 68K Runtime Architecture

Bypassing MC68000 Addressing Limitations 10-13

C
lassic 68K

 R
untim

e A
rchitecture

10

Since references to the jump table are expressed as positive offsets from A5, this
effectively limits the size of the jump table to 32 KB. References to global
variables are expressed as negative offsets from A5, so the size of the global
data area is limited to 32 KB as well.

In the past, the Resource Manager used to limit resources to 32 KB, so 16-bit
offsets were guaranteed to be sufficient.

Table 10-1 summarizes existing MPW solutions to these limitations. The
sections that follow provide detail on how to implement these solutions. The
section “32-Bit Everything” (page 10-17) describes a mechanism that allows you
to remove all three limits. Which solution you choose depends on the specific
needs of your program.

Note
Other development environments may use different
methods to work around the 16-bit addressing
limitations. �

In general, it is recommended that if you need to remove only one of the limits,
you use the solution given for that limit. If you need to remove two or more
limits, the 32-bit everything solution is probably your best choice.

Table 10-1 Classic 68K runtime architecture limits and solutions

Problem Solution
Restrictions and
effect on performance

Globals > 32 KB SC/SCpp –model
farData option

No restrictions. Code is
bigger. Must link with -model
far option.

Use assembly
language for 32-bit
references

No restrictions.

Segment > 32 KB SC/SCpp –bigseg
option

Restricted to single-segment
C programs running on 68020
and or higher CPU.

ILink –br 68k option No restrictions.

ILink -br 020 option Program must run on a 68020
or higher.

continued

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-14 Bypassing MC68000 Addressing Limitations

Increasing Global Data Size 10

To permit your application to use more than 32 KB of global data, you have the
following options:

� Use the -model farData option when you compile C files that reference far
data. See “Expanding Global Data and the Jump Table” (page 10-19) for
additional information.

� Implement 32-bit references in assembly language when necessary.

When linking files compiled with the -model farData option, ILink sorts data
modules into near and far groups by default, placing all 16-bit referenced global
data as close to A5 as possible and all 32-bit referenced data farther away. Thus,
any data with a 16-bit reference is forced to within 32 KB of A5 if possible.

If you are using assembly language, you must explicitly code 32-bit references
when you want to avoid fixing a data module to within 32 KB of A5. For the
MC68000, you could write something like this:

IMPORT LONGDATA:DATA
MOVE.L indirect(PC),D0 ; [4/7/9 clocks]offset -> scratch

; register
MOVE.x (A5,D0.L),dest ; [ea: 3/6/7 clocks]access var

; (PEA,etc.)
…

indirect: DC.L LONGDATA; ; 32-bit offset of data

Jump table > 32 KB ILink –wrap option No restrictions. It decreases
memory available for global
data.

Everything > 32 KB See the section
“32-Bit Everything”
(page 10-17).

No restrictions. Code is up to
30% bigger.

Table 10-1 Classic 68K runtime architecture limits and solutions (continued)

Problem Solution
Restrictions and
effect on performance

C H A P T E R 1 0

Classic 68K Runtime Architecture

Bypassing MC68000 Addressing Limitations 10-15

C
lassic 68K

 R
untim

e A
rchitecture

10

In code that is intended to run only on a 68020 microprocessor, you can do this:

MACHINE MC68020
IMPORT LONGDATA:DATA
MOVE.x ((LONGDATA).L,A5),dest ; move to destination

; (or PEA)
 ; [ea: 11/15/25 clocks]

The 68020 code, while smaller, runs more slowly than the 68000 code shown
above if you ignore the possible impact of the temporary register required
(11 versus 7 clock cycles best case, 15 versus 13 clocks cache case, and 25 versus
16 clocks worst case). Also note that the operand addressing mode shown in the
last instruction uses normal 68000 syntax; it does not, in this instance, represent
far model syntax.

Increasing Segment Size 10

There are two methods for increasing segment size:

� You can use the –bigseg compiler option. This causes function calls within
the same segment to be encoded with the BSR.L instruction (available on
68020 or higher CPUs), which is a PC-relative instruction with a 32-bit offset.
This solution is right for single-code segments like command extensions
(type 'XCMD') written in C. It does not work on 68000 machines.

� You can use the –br 68k or -br 020 option of the ILink command. ILink then
inserts small assembly-language modules called branch islands that transmit
calls between two distant modules. The original call is modified to be a JSR
instruction to the branch island, and the latter contains instructions to branch
to the desired target.

Note
If the program you are writing is intended to run on a
68020 or higher CPU, you can use the -br 020 option. This
reduces code size and improves execution speed. �

Creating branch islands solves intrasegment reference problems, but is not a
complete solution in the case where a routine located beyond the 32 KB limit is
externally referenced. Figure 10-7 shows two segments, one of which is larger
than 32 KB.

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-16 Bypassing MC68000 Addressing Limitations

Figure 10-7 Branch islands and intersegment references

As you can see, the only reference that cannot be resolved is that to procedure B
if it is made through the jump table. The ILink tool automatically tries to place
externally referenced routines in the first 32 KB of a segment, but if this is not
possible, it generates a linker error. In such cases, you should resegment your
code or build your program with the -model far (32-bit everything) option.

Increasing the Size of the Jump Table 10

To increase the size of the jump table, use the –wrap option of the ILink command.
This increases the memory allocated for the jump table at the expense of
memory reserved for global data. In effect, this puts some of the jump table at
negative offsets from A5.

This method is particularly useful for MacApp programs because they make
little demand on global data space. However, at best, this method can only
double the jump table size.

'CODE'14

Out of range

32 KB

50 KB

Procedure A

Procedure B

'CODE'13

Jump table

Procedure C

C H A P T E R 1 0

Classic 68K Runtime Architecture

Bypassing MC68000 Addressing Limitations 10-17

C
lassic 68K

 R
untim

e A
rchitecture

10

If you choose this option, intersegment calls, which are always routed through
the jump table, might look like global references, as in this example:

JSR –48(A5)

The instruction used, JSR or BSR, makes it plain that it is not a global variable
that is being referenced.

32-Bit Everything 10

The 32-bit everything method allows you to remove limitations on segment
size, global data size, and jump-table size by using compiler and linker -model
far options instead of the default value, which is -model near. For each
compilation unit, the compiler allows you to choose

� full 32-bit offsets for global data by specifying the –model farData option

� full 32-bit offsets for code references by specifying the –model farCode option

� full 32-bit offsets for data and code by specifying the –model far option

You can link any combination of near and far model compiled modules, but if
any of the modules are compiled with the -model far, –model farData, or –model
farCode options, you must specify the –model far linker option.

� W AR N I N G

Because the 32-bit everything solution is implemented by
modifications to the LoadSeg, UnloadSeg, Launch, Chain, and
ExitToShell traps, it will not work if your application
patches these traps without calling the original traps when
your patch completes. If you need to use _LoadSeg or
_UnloadSeg in the 32-bit everything environment, you must
use the routines in the RTLib.o library. For details, see
Appendix B. �

In assembly language, the use of a 32-bit reference for the target address of an
instruction must be explicitly demanded by use of the absolute long address
syntax (expr).L, where expr is a relocatable expression. Two other requirements
must be met:

� The relevant operand symbol must be imported. This means that the
defining occurrence of the symbol must be in a different module than the
module or modules containing its use as a 32-bit reference.

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-18 Bypassing MC68000 Addressing Limitations

� The option –model far must be used for the assembly. Since the absolute long
address syntax specifies absolute operands by definition, the use of this form
with a relocatable symbol is an error unless you specify the -model far
option.

Global data references, references to code in the same segment, and references
to code in a different segment all cause the assembler to produce similar records
that tell the linker that a 32-bit patch is needed. The linker determines whether
the references are to code or data. If the reference is to code, the linker can also
determine whether the reference is internal or external.

The example shown in Listing 10-1 illustrates using 32-bit references for the
target address of an instruction.

Listing 10-1 Using 32-bit references for the target address of an instruction

MAIN
IMPORT STUFF ; Symbols from other
IMPORT THERE ; modules must be
IMPORT ELSEWHERE ; imported.
JSR (THERE).L ; Symbols are written using
JSR (ELSEWHERE).L ; (xxx).L syntax.
ADD.W (STUFF).L,DO
ENDMAIN

PROC ; Note that THERE is in the MAIN
EXPORT THERE ; segment

THERE NOP
ENDPROC
SEG 'SG1 ' ; Note that ELSEWHERE
PROC ; is in a different segment
EXPORT ELSEWHERE

ELSEWHERE NOP
ENDPROC
PROC
DATA
EXPORT STUFF

STUFF DS 1
ENDPROC
END

C H A P T E R 1 0

Classic 68K Runtime Architecture

How 32-Bit Everything Is Implemented 10-19

C
lassic 68K

 R
untim

e A
rchitecture

10

How 32-Bit Everything Is Implemented 10

The implementation of the 32-bit everything solution affects the way global
data, intrasegment references, and intersegment references are generated by the
compiler and relocated by the linker. This section describes the changes that
result from using this option. If you are using a low-level debugger or if your
application depends on walking through jump-table entries, you need to be
familiar with the details of this implementation.

Expanding Global Data and the Jump Table 10

Because jump-table entries and global data are both referenced relative to A5,
far references to global data and to jump table entries are handled in a
similar way.

If you compile and link units with any option that specifies the far model for
data, any instruction that references global data is generated with a 32-bit
absolute address. This address is the byte offset of the data item relative to the
address stored in A5. The address of any instruction that references global data
is stored in compressed form in an area called A5 relocation information. The
modified _LoadSeg trap, using this information and the address stored in A5 at
load time, relocates each instruction during loading by subtracting the 32-bit
address field of the instruction from the value of A5.

If you compile and link units with any option that specifies the far model for
code, any JSR instruction that references a jump-table entry is generated with
a 32-bit absolute address. The address of any instruction that makes such a
reference is recorded in compressed form in the A5 relocation information area.
The modified _LoadSeg trap adds the value of A5 to the address fields of the JSR
instruction at load time.

Note that because intersegment references linked under this model appear in
the disassembled code as JSR instructions to an absolute address, it is no longer
obvious that you are going through the jump table. If the value of the address is
greater than that in A5, it is possible you are going through the jump table.

For additional information about A5 relocation information, see the section
“The Far Model Segment Header Structure” (page 10-23).

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-20 How 32-Bit Everything Is Implemented

Intrasegment References 10

If you compile and link units with any option that specifies the far model for
code, any instruction that makes an intrasegment reference is generated with
a 32-bit absolute address. This address is the byte offset from the beginning of
the segment to the referenced entry point. The address of any instruction making
such a reference is stored in compressed form in an area called segment
relocation information. The modified _LoadSeg trap, using this information and
the load address of the segment, relocates each such instruction by adding the
load address of the segment to the instruction’s 32-bit address field.

The Far Model Jump Table 10

Compilation and linking with the option -model far results in a change in the
format of the jump table and a change in the format of unloaded entries.

� Because a segment can be larger than 32 KB, 4 bytes are required to describe
the offset of a routine from the beginning of its segment. As the model near
unloaded entry for a routine allowed only 2 bytes to specify the offset of the
routine, this requires a change in the unloaded format of jump table entries.

� Because segments compiled with the option -model near can be linked with
segments compiled with the option -model far, jump-table entries for the
same segment are not necessarily contiguous.

Figure 10-8 shows the unloaded jump table entry for a routine in a segment that
is linked using the far model. As you can see, the modified entry omits the
instruction that puts the segment number on the stack. The 2 bytes saved are
then used to store the larger 4-byte offset that locates the routine within the
segment. The Segment Manager gets the segment number from the entry itself
and loads that segment.

C H A P T E R 1 0

Classic 68K Runtime Architecture

How 32-Bit Everything Is Implemented 10-21

C
lassic 68K

 R
untim

e A
rchitecture

10

Figure 10-8 Far model unloaded jump table entry

In the standard near model jump table, entries for routines in the same segment
are stored contiguously. In a jump table created for a program linked under the
far model, entries for routines in the same segment might not be contiguous.
Consider the case shown in Figure 10-9. When the linker builds segment 1 and
segment 2, it places code compiled with -model near within the first 32 KB and
code with -model far beyond the 32 KB limit.

When the jump table is built, the linker places near-referenced entries within
the first 32 KB; far-referenced entries are placed after all near references. Thus
near and far references for the same segment can be stored in different areas of

Segment number

LoadSeg

Offset of routine from
the beginning of the

segment

Modified LoadSeg trap fetches
segment number from the entry
and loads the segment

Modified LoadSeg trap adds
this offset to the load address
of the segment to obtain the
address for the JMP instruction
in the loaded entry

2

4

2

Bytes

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-22 How 32-Bit Everything Is Implemented

the jump table. In Figure 10-9, the entry for Module E is not contiguous with near
entries for the other modules contained in segment 2.

Figure 10-9 Separation of near and far references in the far model jump table

The format of the jump table built for programs linked under the far model is
different from that for programs built under the near model. Figure 10-10 shows
the format of the far model jump table.

Near entry for C

Near entry for D

Far entry for E

Near entries for
Segment 2

32 KB

Far entries for
Segment 2

32 KB

Module C

Module D

Module E

Module A

Jump tableSegment 2Segment 1

Ref to C
Ref to D
Ref to E

Module B

Ref to C
Ref to D
Ref to E

C H A P T E R 1 0

Classic 68K Runtime Architecture

How 32-Bit Everything Is Implemented 10-23

C
lassic 68K

 R
untim

e A
rchitecture

10

Figure 10-10 The far model jump table structure

The first entry in the jump table is a near model format entry used to load a
segment that patches the _LoadSeg trap, segment n. The next entry is an entry
used to flag the far model format jump table. The third entry is a far model
format entry. Remember that what’s different about it affects only the
information stored for its unloaded state. This third entry is used to load
segment 1, which is the segment containing the program’s main entry point.

The Far Model Segment Header Structure 10

Near model segments have a 4-byte header that provides the information
required by the Segment Manager to transform jump table entries from their
unloaded state to their loaded state. Segments linked with the -model far
option have a larger header and contain relocation information. The format of

$0004

MOVE.W #n,–(SP)

_LoadSeg

$0000 (reserved)

$FFFF (version number)

$0000 (reserved)

Segment number

_LoadSeg

Segment offset

Entry used to bootstrap
the far model linked
application

Entry to flag new format
jump table entries that
follow. $FFFF is treated
as a version number

First far model format
entry loads main
segment

Near model
format entry

Flag entry

First far model
format entry

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-24 How 32-Bit Everything Is Implemented

the far model segment header is shown in Figure 10-11. Following the header
are the code, the A5 relocation information, and the segment relocation
information.

Figure 10-11 The far model segment header

Far model
segment header

$0

$2

$4

$8

$C

$10

$14

$18

$1C

$20

$24

A5 offset of near entries

Number of near entries

A5 offset of far entries

Number of far entries

Current value of A5

Load address of segment

$0000 (reserved)

Code

Offset of A5-relative
relocation information

Offset of segment-relative
relocation information

Segment relocation
information

A5 relocation information

$0000

$FFFF

C H A P T E R 1 0

Classic 68K Runtime Architecture

How 32-Bit Everything Is Implemented 10-25

C
lassic 68K

 R
untim

e A
rchitecture

10

The meaning of each field in Figure 10-11 is as follows.

Relocation Information Format 10

Relocation information consists of a consecutive list of offsets between longwords
that need to be relocated at load time, beginning with the offset of the first such
longword from the start of the segment.

Some data compression is used in recording this information. Because
instructions start at even addresses, it suffices to record the offset values

Address Entry

$0 This field determines whether the segment has been
built according to the far model option. Namely, the
first word of the segment header must match the
version field in the jump-table flag entry, $FFFF.

$2 Reserved.

$4 The byte offset from A5 of the first near model jump
table entry.

$8 The number of near entries.

$C The byte offset from A5 of the first far model jump
table entry.

$10 The number of far model entries.

$14 The offset (from the beginning of the segment) of the
relocation information for A5-relative references.
A5-relocation information contains the addresses of
all instructions in a segment that references far model
global data or far model jump table entries.

$18 The current A5 value, which is added to the offset
specified in the A5-relative address field of the
instruction to calculate the actual address.

$1C The offset, from the beginning of the segment, of the
relocation information for PC-relative references.

$20 The segment load address, which is added to the
offset specified in the A5-relative address field of
the instruction to calculate the actual address of the
entry point.

$24 Reserved.

C H A P T E R 1 0

Classic 68K Runtime Architecture

10-26 How 32-Bit Everything Is Implemented

divided by two. In Table 10-2, the various encodings are shown as bit strings.
The part of the value represented by “bbb...” gives, when doubled, the desired
offset value.

Table 10-2 Relocation information

Relocation item Interpretation

00000000 00000000 End of relocation information

0bbbbbbb Offsets between $02 and $FE

1bbbbbbb bbbbbbbb Offsets between $0100 and $FFFE

00000000 1bbbbbbb

bbbbbbbb bbbbbbbb

bbbbbbbb Offsets between $00010000 and $FFFFFFFE

C H A P T E R 1 1

Contents 11-1

Contents

11

Figure 11-0
Listing 11-0
Table 11-0

11 Classic 68K Runtime Conventions

Data Types 11-3
Classic 68K Stack Structure and Calling Conventions 11-4

Pascal Calling Conventions 11-6
SC Compiler C Calling Conventions 11-7
Register Preservation 11-9

C H A P T E R 1 1

Data Types 11-3

C
lassic 68K

 R
untim

e C
onventions

11
Classic 68K Runtime Conventions 11

This chapter covers data storage and parameter-passing conventions for the
classic 68K runtime environment. Classic 68K conventions can vary depending
on the programming language and the compiler you use; this chapter assumes
you are using the SC/SCpp compiler and C or Pascal calling conventions.

Data Types 11

Table 11-1 lists the various binary data types and their sizes in the classic 68K
runtime environment.

Table 11-1 Data types in the classic 68K runtime environment

Type
Size
(bytes)

Alignment
(bytes) Range Notes

UInt8 1 1 0 to 255

SInt8 1 1 –128 to 127

SInt16 2 2 –32,768 to 32,767

UInt16 2 2 0 to 65,535

SInt32 4 2 –2–31 to 231 –1

UInt32 4 2 0 to 232–1

Boolean 1 1 0 = false,
nonzero = true

float 4 2 ±(2–149 to 2127) IEEE 754
standard

double 8 2 ±(2–1074 to 21023) IEEE 754
standard

Pointer 4 2 0 to FFFFFFFF

extended 10 or 12 2 SANE or
MC68881
data type

C H A P T E R 1 1

Classic 68K Runtime Conventions

11-4 Classic 68K Stack Structure and Calling Conventions

All numeric and pointer data types are stored in big-endian format (that is, high
bytes first, then low bytes). Signed integers use two’s-complement
representation.

IMPORTANT

The layout of the extended data type is either that of the
SANE 80-bit data type or that of the 96-bit MC68881 data
type, depending on the software development environment
used. �

The size of data structures and unions must be a multiple of two (2-byte
alignment), and an extra byte may be added at the end to meet this
requirement. Items inside a data structure (except for types UInt8 and SInt8) are
placed on a 2-byte boundary with an extra padding byte inserted if necessary.
Type UInt8 and type SInt8 items (single variables or arrays) are merely placed
in the next available byte.

Classic 68K Stack Structure and Calling Conventions 11

The classic 68K runtime architecture uses a stack-based parameter-passing
system, as shown in Figure 11-1.

C H A P T E R 1 1

Classic 68K Runtime Conventions

Classic 68K Stack Structure and Calling Conventions 11-5

C
lassic 68K

 R
untim

e C
onventions

11

Figure 11-1 A 68K stack frame before and after calling a routine

The stack grows from high-memory addresses towards low-memory addresses.
The end that grows or shrinks is usually referred to the “top” of the stack,
despite the fact that it is at the lower end of memory occupied by the stack.

The boundaries of the stack are defined by two pointers:

� The stack pointer (SP), which points to the top of the stack and defines its
current downward limit. Operations that push data onto the stack or pop
data off of it do so by adjusting the value of the stack pointer. The classic 68K
runtime architecture uses the A7 register as the stack pointer.

� The frame pointer (FP), which points to the base in memory of the current
stack frame, the area of the stack used by a routine for its parameters, return
address, local variables, and temporary storage. By keeping track of the
frame pointer value, the operating system can find the beginning of the stack
frame when it has to pop data off the stack. The classic 68K runtime
architecture uses the A6 register as the frame pointer.

Stack
frame

Stack grows
down

Local variables

Parameters

Previous FP

Local variables

Stack after
calling a
routine

Stack before
calling a
routine

Local variables

FP

SP

FP

SP

Return address

Stack grows
down

C H A P T E R 1 1

Classic 68K Runtime Conventions

11-6 Classic 68K Stack Structure and Calling Conventions

Parameters passed by a routine are always placed on the stack above the frame
pointer, while local variables are always placed below the frame pointer. Data
passed onto the stack is always aligned to 2 bytes. If you pass a single-byte
parameter (such as a single character), a padding byte is added by decrementing
the stack pointer by 2 bytes instead of 1 (the padding byte is the most
significant byte).

The classic 68K runtime environment supports many non-standard calling
conventions. For example, C calling conventions can vary depending on the
type of call (some system calls have their own conventions) and the
development environment. However, in C you can specify Pascal conventions
for a routine by using the pascal keyword. Pascal calling conventions are
standardized and supported in all 68K development environments.

For example, the routine declared in C as

int mooFunc(UInt8, double);

uses C calling conventions, while

pascal int mooFunc(UInt8, double);

uses Pascal calling conventions.

Note
These parameter passing conventions are part of Apple’s
standard for procedural interfaces. Object-oriented
languages may use different rules for their own method
calls. For example, the conventions for C++ virtual function
calls may be different from those for C functions. �

Pascal Calling Conventions 11

When following Pascal calling conventions, the caller passes space for the
return value before pushing any parameters. The caller then passes parameters
from left to right. For example, given the code

cow = PasFunc(moo1, moo2, moo3);

the calling routine first pushes the value of moo1 onto the stack, followed by moo2
and then moo3 as shown in Figure 11-2.

C H A P T E R 1 1

Classic 68K Runtime Conventions

Classic 68K Stack Structure and Calling Conventions 11-7

C
lassic 68K

 R
untim

e C
onventions

11

Figure 11-2 Passing parameters onto the stack in Pascal

Pascal allows only a fixed number of parameters to be passed to the called
routine. However, this means the size of the stack frame can be determined at
compile time, so the called routine assumes responsibility for deallocating
(popping) parameters before returning.

Function values are returned on the stack, as follows:

� If the value is 4 bytes or smaller in size, the item on the stack is the
return value.

� If the return value is larger than 4 bytes, the item on the stack is a pointer to
the return value.

The calling routine must allocate space on the stack for the return value before
pushing any parameters, and the same routine is responsible for popping the
result after the call.

SC Compiler C Calling Conventions 11

As mentioned earlier, the classic 68K runtime environment supports several
different C calling conventions. This section describes the C calling conventions
used by the SC compiler in the MPW development environment.

Stack
frame

moo1

moo2

moo3

FP

SP

Return address

Local variables

Previous FP

PasFunc(moo1, moo2, moo3)

C H A P T E R 1 1

Classic 68K Runtime Conventions

11-8 Classic 68K Stack Structure and Calling Conventions

C allows either a fixed or variable number of parameters to be passed to the
called routine. In an ANSI-style C syntax definition, a routine with a variable
number of arguments typically appears with ellipsis points (…) at the end of its
input parameter list.

A variable-argument function may have several required (that is, fixed)
parameters preceding the variable parameter portion. For example, the function
definition

mooColor(number,[color1. . .])

gives no restriction on the number of color arguments, but you must always
precede them with a number argument. Therefore, number is a fixed parameter.

Parameters passed by routines are pushed onto the stack from right to left. For
example, given the code

cow = CFunc(moo1, moo2, moo3);

the calling routine first pushes the value of moo3 onto the stack, followed by moo2
and then moo1, as shown in Figure 11-3.

Figure 11-3 Passing parameters onto the stack in C

Stack
frame

moo3

moo2

moo1

FP

SP

Return address

Local variables

Previous FP

CFunc(moo1, moo2, moo3)

C H A P T E R 1 1

Classic 68K Runtime Conventions

Classic 68K Stack Structure and Calling Conventions 11-9

C
lassic 68K

 R
untim

e C
onventions

11

The return address of the routine is the last item pushed onto the stack.

The calling function is responsible for parameter deallocation (that is, popping
parameters off the stack) after the called routine has returned. If the called
routine is a function, the function value is normally returned in register D0 (or,
for floating-point values, in register F0). In the case of data structures or values
larger than 4 bytes, however, the caller must allocate space for the return
value and pass a pointer to that storage space as the first (that is, the leftmost)
parameter.

Register Preservation 11

Table 11-2 lists registers used in the classic 68K runtime environment and their
volatility in routine calls. Registers that retain their value after a routine call are
called nonvolatile. Note that these register conventions are for C and Pascal-style
calls. Certain system calls may use different conventions, so you should check
their definitions in the appropriate Inside Macintosh book before using them. All
registers are 4 bytes long.

Table 11-2 Volatile and nonvolatile registers

Type Register
Preserved by a
function call? Notes

Data register D0 through D2 No

D3 through D7 Yes

Address
register

A0 No

A1 No

A2 through A4 Yes

A5 See note Used to access global
data objects and the
jump table.

A6 Yes Used as the frame
pointer, which points
to the base of the stack
frame.

continued

C H A P T E R 1 1

Classic 68K Runtime Conventions

11-10 Classic 68K Stack Structure and Calling Conventions

A7 See note A7 is the stack pointer
used to push and pop
parameters and other
temporary data items.

Floating-
point register

F0 through F3 No When present.

F4 through F7 Yes When present.

Condition
Register

CR No Bits are set by compare
instructions and used
for conditional
branching.

Table 11-2 Volatile and nonvolatile registers (continued)

Type Register
Preserved by a
function call? Notes

A
P

P
E

N
D

IX
E

S

Appendixes

A-1

A P P E N D I X A
A

Terminology Changes A

Some of the terminology, constant names, and data type names in this book
have been changed from previous documentation. The lists here describe the
terminology used as of the E.T.O. 21 software development release. In some
cases, the terminology has changed due to conceptual shifts, with the result that
the old term and the new term are not directly interchangeable. Such changes
are explained in the notes.

Table A-1 lists old terms used in previous documentation and the current terms
used in this book.

Table A-1 Changes to terminology

Old term New term Notes

A5 world Direct data area This change applies only to the
CFM-68K runtime environment.

Global data
world

Direct data area Direct data area entries can contain
either the data itself or a pointer to
indirect data.

Table of Contents Direct data area The old Table of Contents is the set
of pointers in the direct data area
that point to indirect data.

Table of Contents
Register (RTOC)

Base register Also referred to as simply GPR2.

XDataPointer See next column XDataPointers are now simply
referred to as pointers to
indirect data.

XPointer See next column XPointers are now simply referred to
as the pointer to the transition
vector.

XVector Transition
vector

Changed to emphasize the
commonality between the PowerPC
and CFM-68K implementations.

Figure A-0
Listing A-0
Table A-0

A P P E N D I X A

Terminology Changes

A-2

Table A-2 lists names used in previous versions of the codeFragments.h header
file and the new names.

Table A-2 Changes to names in the CodeFragments.h header file

Old name New name Notes

LoadFlags kCFragLoadOptions Possible values for this
flag are kReferenceCFrag,
kFindCFrag, and
kPrivateCFragCopy.

kFindLib kFindCFrag

kFullLib kIsCompleteCFrag

kInMem kMemoryCFragLocator

kIsApp kApplicationCFrag

kIsDropIn kDropInAdditionCFrag Drop-in additions are
now called plug-ins.

kIsLib kImportLibraryCFrag

kLoadCFrag kReferenceCFrag

kLoadLib kReferenceCFrag

kLoadNewCopy kPrivateCFragCopy

kMotorola68K kMotorola68KCFragArch

kMotorola68KArch kMotorola68KCFragArch

kNewCFragCopy kPrivateCFragCopy

kOnDiskFlat kDataForkCFragLocator

kOnDiskSegmented kResourceCFragLocator

kPowerPC kPowerPCCFragArch

kPowerPCArch kPowerPCCFragArch

kPrivateConnection kPrivateCFragCopy

kWholeFork kCFragGoesToEOF

A P P E N D I X A

Terminology Changes

A-3

Term
inology C

hanges
A

Table A-3 lists older “source code” data types and the binary counterparts used
in this book. Note that these mappings assume you are using MPW compilers.
Other development environments may assume different sizes (2 bytes for type
int rather than 4, for example).

Table A-3 Changes to names of data types

Old type New type

char UInt8

signed char SInt8

short SInt16

unsigned short UInt16

int SInt32

unsigned int UInt32

long SInt32

unsigned long UInt32

Runtime Interface B-1

A P P E N D I X B
B

The RTLib.o and NuRTLib.o LibrariesB

This appendix describes the interface to the MPW RTLib libraries RTLib.o and
NuRTLib.o, which allow access to the Segment Manager routines in the classic
68K far model (32-bit everything) and CFM-68K runtime environments
respectively. These routines are useful if an application needs to have knowledge
of its execution environment or if it needs to have knowledge of another
application’s environment. Specifically, if your application needs to patch the
_LoadSeg trap or the _UnloadSeg trap in the far model or CFM-68K runtime
environments, you need to use the RTLib libraries.

The interface for the RTLib routines is identical for both far model and
CFM-68K runtime environments. The only difference is that you must link to
different libraries when you build your application.

Note
Traditional classic 68K near model applications can patch
the _LoadSeg and _UnloadSeg traps normally without having
to go through the RTLib routines. �

IMPORTANT

The RTLib libraries can be used only for calls from a
segmented application. CFM-68K runtime shared libraries
cannot use the NuRTLib.o library, and any A5 or fA5
referenced calls made to a nonsegmented A5 world returns
an error. �

Runtime Interface B

The RTLib runtime interface consists of a single procedure call (as defined in
RTLib.h):

pascal OSErr Runtime (RTPB* runtimeParams);

Figure B-0
Listing B-0
Table B-0

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-2 Runtime Interface

The RTPB data type is a structure in which you specify one of four posssible
parameter blocks:

struct RTPB {
short fOperation;
void* fA5;
union {

RTGetVersionParam fVersionParam;
RTGetJTAddrParam fJTAddrParam;
RTSetSegLoadParam fSegLoadParam;
RTLoadSegbyNumParam fLoadbyNumParam;
} fRTParams;

};
typedef struct RTPB RTPB;

The fields of the RTPB structure are as follows:

� The fOperation field indicates the type of operation to be performed, and it
can be set to any value shown in Table B-1 (page B-3). See “Runtime
Operations” (page B-4) for more detailed information.

� Any operation whose name ends in A5 requires a value for the fA5 field,
which indicates the address of an A5 world. The similarly named operation
without the A5 suffix uses the current value of A5 for this parameter.

� The fRTParams field is a parameter block consisting of one of four structures
that hold the parameters for the appropriate operation. See the descriptions
for each operation in “Runtime Operations” (page B-4) for more details about
these structures.

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

Runtime Interface B-3

T
he R

T
Lib.o and N

uR
T

Lib.o Libraries
B

Table B-1 Runtime routine operation values

Value Description

kRTSetPreLoad kRTSetPreLoadA5 Arranges for a user handler to be
called by the Segment Manager
before loading a segment.

kRTSetSegLoadErr kRTSetSegLoadErrA5 Arranges for a user handler to be
called if a segment load fails.

kRTSetPostLoad kRTSetPostLoadA5 Arranges for a user handler to be
called by the Segment Manager
immediately after loading
a segment.

kRTSetPreUnload kRTSetPreUnloadA5 Arranges for a user handler to be
called by the Segment Manager
before unloading a segment.

kRTGetVersion kRTGetVersionA5 Returns version number of
A5 world.

kRTGetJTAddress kRTGetJTAddressA5 Returns address of the code
pointed to by the specified
function address.

kRTPreLaunch Required if you need to call the
_Launch or _Chain routine.KRTPostLaunch

KRTLoadSegbyNum KRTLoadSegbyNumA5 Loads a segment by segment
number (CFM-68K only).

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-4 Runtime Operations

The Runtime routine can return an error value as shown in Table B-2.

Runtime Operations B

This section describes the operations in Table B-1 in more detail. Note that
operations are grouped according to which structure they use in the fRTParams
field of the RTPB structure.

Segment Manager Hooks B

Several Runtime operations allow the application to take control and execute a
user-defined handler routine during the segment loading or unloading process.
These operations are

� kRTSetPreLoad and kRTSetPreLoadA5, which pass control to the handler before
loading a segment

� kRTSetSegLoadErr and kRTSetSegLoadErrA5, which pass control to the handler
if the segment load fails

� kRTSetPostLoad and kRTSetPostLoadA5, which pass control to the handler after
loading a segment

� kRTSetPreUnload and kRTSetPreUnloadA5, which pass control to the handler
before calling _UnloadSeg

Table B-2 Runtime routine error values

Error Description

eRTNoErr No error (success)

eRTInvalidOP Invalid operation

eRTBadVersion Invalid version

eRTInvalidJTPtr Invalid jump table pointer

eRT_not_segmented A5 world not segmented (for example, the A5 world
of a CFM-68K shared library)

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

Runtime Operations B-5

T
he R

T
Lib.o and N

uR
T

Lib.o Libraries
B

In each of these cases, control is passed by replacing the null user vector (set up
by the patched Segment Manager) with a user handler.

The fRTParams structure used with these operations is as follows:

struct RTSetSegLoadParam {
SegLoadHdlrPtr fUserHdlr;
SegLoadHdlrPtr fOldUserHdlr;
};

typedef struct RTSetSegLoadParam RTSetSegLoadParam;

The pointer fUserHdlr points to the user handler to be called at the time
indicated by the operation. A pointer to the original (bypassed) handler is
returned in fOldUserHdlr.

User Handlers B

A user handler is defined as follows:

typedef pascal short (*SegLoadHdlrPtr)(RTState* state)

The handler may return a result code of type short. This code is ignored by the
Segment Manager except in the case of the error handler. See “Error Handling
With kRTSetSegLoadErr” (page B-7) for more details.

� W AR N I N G

User handlers must be defined within the segment to be
loaded into memory when the handler is invoked (usually
the main segment). Also, the user handler must not call any
routines in unloaded segments as this may result in a
system crash. �

Information about the Segment Manager operation is passed to the user handler
through the RTState structure. This structure has the following form:

struct RTState {
unsigned short fVersion; /* runtime version */
void* fSP; /* SP: address of user return address */
void* fJTAddr; /* PC: address of jump table entry */

/* or (see fCallType) */
/* address of a transition vector*/

long fRegisters[15]; /* registers D0-D7 and A0-A6 */

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-6 Runtime Operations

short fSegNo; /* segment number */
ResType fSegType; /* segment type (normally 'CODE') */
long fSegSize; /* segment size */
Boolean fSegInCore; /* true if segment is in memory */
Boolean fCallType; /* 0 = _LoadSeg, */

/* 1 = fJTAddr, address of TVector */
OSErr fOSErr; /* error number */
long fReserved2; /* (reserved for future use) */
};

typedef struct RTState RTState;

The fields in the structure are as follows:

� fVersion is the version number from the A5 or fA5 runtime world.

� fSP has the value of the stack pointer when either _LoadSeg or _UnloadSeg was
executed.

� In the case of _LoadSeg, if the jump table entry was reached using a JSR
instruction, fSP is a pointer to the user return address. You can modify the
stack pointer value within an error handler to change the return address if
you want to continue execution after trapping an error. See “Error
Handling With kRTSetSegLoadErr” (page B-7) for more information.
However, this is not recommended since there may not be a user return
address on the stack.

� In the case of _UnloadSeg, fSP points to the return adress from the
_UnloadSeg call.

� fJTAddr points to either a jump table entry or a transition vector depending
on the runtime environment and the value of fCallType:

� In a _LoadSeg call (fCallType is 0), fJTAddr points to the jump table entry
called by the user code prior to the _LoadSeg call. You can modify the value
of fJTAddr within an error handler if you want to retry the segment load
procedure.

� In an _UnloadSeg call, fJTAddr points to the function address passed
to _UnloadSeg.

� In the CFM-68K runtime environment, the fJTAddr field is always the
address of a transition vector. You cannot modify this field when
fCallType is 1.

Note that you should not make any assumptions about the layout of the
jump table entry since it varies between the far model and CFM-68K runtme
environments and may change in the future.

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

Runtime Operations B-7

T
he R

T
Lib.o and N

uR
T

Lib.o Libraries
B

� fRegisters is an array of long integers that contains the register values at the
time _LoadSeg was called. The registers are saved in the order D0 through D7,
then A0 through A6.

� fSegType and fSegNo contain the segment’s resource type and ID. fSegType is
usually 'CODE' but this may change in the future.

� fSegSize contains the size of the segment, in bytes.

� fSegInCore indicates whether the segment is in memory. If fSegInCore is true,
the segment is already in the heap but has not been locked. (If the segment is
resident, no memory needs to be allocated for it.)

� The fCallType field is used by other fields whose meanings are dependent on
how the segment load was invoked. If fCallType is 1, the segment load was
invoked through a function call by a pointer (or by a virtual method dispatch
in C++).

� fOSErr contains an error number. This field is valid only when this structure
is passed to an error handler.

All attempts to modify the RTState structure are ignored except for alterations
of fJTAddr by the user error handler.

Error Handling With kRTSetSegLoadErr B

When kRTSetSegLoadErr invokes the user error handler (that is, when a segment
loading error occurs), the stack has the form shown in Figure B-1.

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-8 Runtime Operations

Figure B-1 The stack when a user error handler is called

The error handler should use the information at the following locations:

� The word at 8(SP) is reserved for the error handler’s action code (as
described later in this section).

� The value at 4(SP) points to the RTState structure, which contains
information about the error.

� The value at (SP) is the return address from the error handler. This value
may or may not be used depending on how the routine handles the error.

Pushed by user
code (optional)

SP at time of
_LoadSeg

Present on stack
when error handler
gets control

User parameters
(optional)

User return address
(optional)

User return address
(optional)

Error handler result

Address of RTState structure

Error handler return address

8(SP)

4(SP)

(SP)

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

Runtime Operations B-9

T
he R

T
Lib.o and N

uR
T

Lib.o Libraries
B

Items on the stack labeled as optional may not actually appear. For example, a
simple JMP instruction would not push user parameters or a return address onto
the stack.

The error handler should examine the RTState structure and then take
appropriate action (for example, release some memory). After doing so, the
handler can do one of the following:

� Return an action code on the stack for the Segment Manager and then return.
Current action codes are shown in Table B-3. Attempts to pass any other
value to the Segment Manager results in the system error daLoadErr.

� use a LONGJMP (or the equivalent) instruction to pass control to another error
handler set up in a parent stack frame. This second handler could save the
current document, alert the end user, and quit the application.

Table B-3 Error handler action codes

Value Action

kRTRetry Retry. This action restores the stack to its state
before the call to _LoadSeg and reexecutes the jump
table entry. If no errors occur this second time,
execution continues normally. If the handler
modified fJTAddr in the RTState structure,
execution resumes at the new address.

Note that this technique can easily create an
infinite loop if the segment loading attempt always
fails. Your routine should include a retry counter
to break out of the loop after a specified number of
tries.

kRTContinue Continue. This action restores the stack to its state
before the _LoadSeg call and sets the program
counter (PC) to the user return address in the
stack. Note that this action is risky since a return
address may not always be present on the stack.

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-10 Runtime Operations

kRTGetVersion and kRTGetVersionA5 B

The operation kRTGetVersion returns the value of the current A5 world and
kRTGetVersionA5 returns the value of the specified A5 world.

The fRTParams structure (page B-2) used with these operations is as follows:

struct RTGetVersionParam {
unsigned short fVersion;
};

typedef struct RTGetVersionParam RTGetVersionParam;

The kRTGetVersion operation assumes the current A5 world, while
RTGetVersionA5 lets you specify one in the fA5 field of the RTPB structure
(page B-2).

The fVersion field holds the returned version number as shown in Table B-4.

kRTGetJTAddress and kRTGetJTAddressA5 B

The operation kRTGetJTAddress returns the address of the code that the specified
function address points to in the current A5, and kRTGetJTAddressA5 does the
same for a specified A5 world.

Table B-4 Current version numbers

Version
number Description

$0000 Classic 68K near model A5 world

$FFFD CFM-68K runtime A5 world

$FFFF Classic 68K far model (32-bit
everything) A5 world

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

Runtime Operations B-11

T
he R

T
Lib.o and N

uR
T

Lib.o Libraries
B

The fRTParams structure (page B-2) used with these operations is as follows:

struct RTGetJTAddrParam {
void*fJTAddr;
void*fCodeAddr;
};

typedef struct RTGetJTAddrParam RTGetJTAddrParam;

� In the classic 68K runtime environment, fJTAddr is a function address. In the
CFM-68K runtime environment, fJTAddr is the address of a transition vector.

� fCodeAddr contains the returned code address. If the segment is not loaded,
fCodeAddr is set to 0.

The kRTGetJTAddress operation assumes the current A5 world, while
RTGetJTAddressA5 lets you specify one in the fA5 field of the RTPB structure
(page B-2).

kRTPreLaunch and kRTPostLaunch B

In the classic 68K near model environment, you cannot call _Launch or _Chain
directly, but must instead use the Process Manager call LaunchApplication (See
Inside Macintosh: Processes for more details). If you need to call _Launch or _Chain
under the far model environment, you must wrap a call to _Launch with calls to
Runtime using the kPreLaunch and KPostLaunch operations as follows:

IMPORT(Runtime): CODE

MOVE.W#kRTPreLaunch,-(SP) ; push fOperation
SUBQ.W#2,-(SP) ; room for result
PEA 2(SP) ; push ptr to RTPB
JSR Runtime ; prepare for launch

_Launch ; attempt a launch

MOVE.W#kRTPostLaunch,-(SP) ; push fOperation
SUBQ.W#2,-(SP) ; room for result
PEA 2(SP) ; push ptr to RTPB
JSR Runtime ; post-launch housekeeping

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-12 Runtime Operations

The only field used in the RTPB structure (page B-2) is fOperation. Neither
kPreLaunch or kPostLaunch require an fRTParams parameter block.

If you need to call _Chain, you must wrap the routine with kPreLaunch and
kPostLaunch in the same manner as with the _Launch routine.

IMPORTANT

You must never call the _Chain trap since it is not
implemented by the System 7 Process Manager. �

The CFM-68K runtime environment does not support calling _Launch or _Chain
directly from a CFM-68K application. You can call kPreLaunch and kPostLaunch
in the CFM-68K runtime environment, but the routines do nothing.

kRTLoadSegbyNum and kRTLoadSegbyNumA5 B

This operation (available only for CFM-68K) allows you to explicitly load a
segment by segment number. kRTLoadSegbyNum assumes the current A5 world,
while kRTLoadSegbyNumA5 lets you specify one in the fA5 field of the RTPB
structure (page B-2).

No user vectors are called while attempting to load the segment. If for any
reason the segment cannot be loaded, the operation returns OSErr.

The fRTParams structure (page B-2) used with these operations is as follows:

struct RTLoadSegbyNumParam{
short fSegNumber;
};

typedef struct RTLoadSegbyNumParam RTLoadSegbyNumParam;

The fSegNumber field holds the specified segment number. If there is insufficient
memory to load the segment, the GetResource call returns a Memory Manager
error. If fSegNumber is not a valid segment number, GetResource also returns
an error.

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

A Preload Example B-13

T
he R

T
Lib.o and N

uR
T

Lib.o Libraries
B

A Preload Example B

Listing B-1 shows a C program that installs a preload handler and uses it to
print information about the segment.

To compile and link this example for the classic 68K far model environment, use
the following MPW commands:

SC -model far example.c -o example.c.o -i {CIncludes}
ILink -model far -w -t MPST -c 'MPS ' -o example ∂

example.c.o ∂
{Libraries}RTLib.o ∂
{Libraries}Interface.o ∂
{Libraries}IntEnv.o ∂
{Libraries}MacRuntime.o ∂
{CLibraries}StdCLib.o ∂

For the CFM-68K runtime environment, use the following commands:

SC -model cfmseg example.c -o example.c.o -i {CIncludes}
Ilink -model cfmseg -xm e -w -t MPST -c 'MPS ' -o example ∂

example.c.o ∂
{CFM68KLibraries}NuRTLib.o ∂
{CFM68KLibraries}NuMacRuntime.o ∂
{SharedLibraries}InterfaceLib ∂
{SharedLibraries}StdCLib

Listing B-1 A preload handler example

#include <stdio.h>
#include <types.h>
#include <RTLib.h>
#pragma segment One
one ()
{

/* do something */
}

A P P E N D I X B

The RTLib.o and NuRTLib.o Libraries

B-14 A Preload Example

#pragma segment Main
pascal short preload_handler(RTState* state)
{

/* print segment information */

printf("segno= %d\n",state->fSegNo);
printf("segtype= %.4s\n",&(state->fSegType));
printf("segsize= %d\n",state->fSegSize);
if (state->fSegInCore) printf("incore = yes\n");
else printf("incore = no\n");
return(0);

}
main ()
{

RTPBparam_block, *p;
OSErrerror;

/* load printf segment so that the preload handler does not */
/* invoke another call to _LoadSeg */

printf("load printf segment\n");
/* load the handler */

p = ¶m_block;
p->fOperation = kRTSetPreLoad;
p->fRTParam.fSegLoadParam.fUserHdlr = (void*)&preload_handler;
error = Runtime(p);

/* load the segment */

one();
}

GL-1

Glossary

68K application An application that
contains code only for a 68K microprocessor.
Compare fat application, PowerPC
application.

68K-based Macintosh computer Any
computer containing a 680x0 central
processing unit that runs the Mac OS.
Compare PowerPC-based Macintosh
computer.

68K microprocessor Any member of the
Motorola 68000 family of microprocessors.

accelerated resource An executable
resource consisting of a routine descriptor
and PowerPC code that specifically models
the behavior of a 68K stand-alone code
resource.

A5 world In classic 68K and CFM-68K
runtime programs, a memory partition that
contains the QuickDraw global variables,
the application global variables, the
application parameters, and the jump
table—all of which are accessed through the
A5 register. Sometimes called the global
variable world.

A-line instruction An instruction used to
execute Toolbox and Operating System
routines. The first word of an A-line
instruction is binary 1010 (hexadecimal A).
Also known informally as an A-trap.

application A program of type 'APPL' that
is launched from the Finder. Applications
typically use event-driven programming
and have a user interface. See also program.

application transition vector A 12-byte
transition vector used in the CFM-68K
runtime environment. The first two fields
contain the address of a function and the
value to be placed in A5 when the function
executes. Because applications can be
segmented, the third field contains
information to locate the function within a
particular segment. See also shared library
transition vector, transition vector.

A-trap See A-line instruction.

base register The register that holds a
reference address used to access a
fragment’s data area.

branch island A small assembly-language
module used to transmit calls between two
independently compiled modules. Branch
islands are generated by the ILink linker to
allow intrasegment calls to reach beyond
32 KB.

CFM-68K runtime architecture A 68K
Mac OS runtime architecture that uses the
Code Fragment Manager. Its handling of
fragments and the ability to use shared
libraries is analogous to that of the PowerPC
runtime architecture, but it differs in a
number of details because of system
limitations. In particular, it uses segmented

G L O S S A R Y

GL-2

application code addressed through a jump
table. Compare classic 68K runtime
architecture, PowerPC runtime architecture.

classic 68K runtime architecture The
runtime architecture that has been used
historically for 68K-based Macintosh
computers. Its defining characteristics are
the A5 world, segmented applications
addressed through the jump table, and the
application heap for dynamic storage
allocation. Compare CFM-68K runtime
architecture, PowerPC runtime architecture.

closure The set of connections for a root
fragment and all the import libraries
required for its execution. See also root
fragment.

closure ID A unique value assigned by the
Code Fragment Manager to each
active closure.

code fragment See fragment.

Code Fragment Manager (CFM) The part
of the Mac OS that loads fragments into
memory and prepares them for execution.
There are separate internal components to
manage PowerPC code and CFM-68K code,
but the APIs to the Code Fragment Manager
are identical for each type of code. In general,
the context determines which version of the
Code Fragment Manager is being referred to.

code fragment resource In CFM-based
runtime architectures, a resource of type
'cfrg' with ID 0. The code fragment
resource contains information used by the
Code Fragment Manager to identify and
prepare fragments.

code resource A resource created by the
linker that contains the program’s code.
Code resources can be of many types—most
commonly'CODE', 'MPST', or 'DRVR'.

code section A part of a fragment that
holds executable code. The code must be
position independent and read-only. A
fragment may contain multiple code sections.

connection An incarnation of a fragment
within a process. A fragment may have
several unique connections, each local to a
particular process.

connection ID A unique value assigned by
the Code Fragment Manager to each active
connection.

container The physical storage area for a
fragment. Containers can be a file, a section
of ROM, or even a resource.

container header A data structure that
contains information about a given
container, such as the number of code and
data sections, the number of imported
symbols it requires, and so on.

data fork One of two forks of a Macintosh
file. The data fork can contain text, code, or
data, or it can be empty. PowerPC runtime
fragments and CFM-68K shared library
fragments are stored in the data fork.
Compare resource fork.

data section The part of a fragment that
contains the static data used by the code
section. A fragment may contain multiple
data sections.

definition stub library The import library
used by the linker to resolve imports in the
application (or other fragment) being linked.
The definition stub library defines the

G L O S S A R Y

GL-3

external programming interface and data
format of the library. Also called link-time
library. Compare implementation library,
stub library.

direct data area The area of memory that
can be accessed directly through the base
register. The direct data area can hold data
items or pointers to data items.

drop-in addition See plug-in.

embedding alignment The alignment of a
data item within a composite data item
(such as a data structure). Compare natural
alignment.

entry point A location (offset) within a
module.

epilog A sequence of code that cleans up
the stack after a procedure call (restoring
registers, restoring the stack pointer, and
so on).

executable resource Any resource that
contains executable code. See also
accelerated resource.

export A data item or executable routine
within a fragment that is made available for
use by other fragments.

Extended Common Object File Format
(XCOFF) An executable file format
generated by some PowerPC compilers. See
also Preferred Executable Format.

external entry point In the CFM-68K
runtime architecture, the entry point to a
routine when called indirectly or from
another fragment. Typically this entry point
allows inclusion of instructions to set up an

A5 world for the called routine before
entering the internal entry point. Compare
internal entry point.

external reference A reference to a routine
or variable defined in a separate compilation
unit or assembly.

far model The model of the classic 68K
runtime architecture that specifies 32-bit
addressing for code and data. Compare near
model.

fat application An application that
contains code of two or more runtime
architectures. For example, a fat application
may contain both CFM-68K and PowerPC
runtime code.

fat binary program Any piece of
executable code (application, shared library,
code resource, trap, or trap patch) that
contains code of multiple runtime
architectures. See also fat application, fat
library, fat resource.

fat library A shared library that contains
code of two or more runtime architectures.
For example, a fat library may contain both
CFM-68K and PowerPC versions of a shared
library.

fat resource A resource that contains
executable code for two or more runtime
architectures. See also safe fat resource.

filename A sequence of up to 31 printing
characters (excluding colons) that identifies
a file.

file type The type of a file, such as 'APPL',
'shlb', or 'TEXT', which determines how the
file is used by the Mac OS or other
programs.

G L O S S A R Y

GL-4

fragment An executable unit of code and
its associated data. A fragment is produced
by the linker and loaded for execution by
the Code Fragment Manager.

frame pointer (FP) A pointer to the
beginning of a stack frame.

hashing A method of organizing symbol
information in tables that allows them to be
searched for quickly.

hash word An 4-byte value that contains
the length and encoded name of a symbol.

implementation library The import
library that is connected at load time to the
application (or other fragment) being
loaded. The implementation library provides
the actual executable code and data
exported by the library. Also called runtime
library. Compare definition stub library.

import A data item or executable routine
referenced by a fragment but not contained
in it. An import is identified by name to the
linker, but its actual address is bound at load
time by the Code Fragment Manager.

import library A shared library that is
automatically loaded at runtime by the
Code Fragment Manager. The library’s
name is bound to a client at link time.
Import libraries are a subset of shared
libraries. Compare plug-in.

initialization function A function
contained in a fragment that is executed
immediately after the fragment is loaded
and prepared. Compare termination
routine.

internal entry point In the CFM-68K
runtime architecture, the entry point to a
routine when accessed through a direct call.

The internal entry point skips any A5
switching and simply enters the beginning
of the actual routine. Compare external
entry point.

intersegment reference In 68K-based
runtime architectures, a reference to a
routine in another segment.

intrasegment reference In 68K-based
runtime architectures, a reference to a
routine in the same segment.

jump table In 68K-based runtime
architectures, a table that contains one entry
for every externally referenced routine in
an application or MPW tool and provides
the means by which segments are loaded
and unloaded.

leaf procedure A routine that calls no
other routines.

linkage area The area in the PowerPC
stack that holds the calling routine’s RTOC
value and the saved values of the Condition
Register and the Link Register. Compare
parameter area.

link-time library See definition stub
library.

main segment In 68K-based runtime
architectures, the segment that contains the
main entry point.

main symbol For applications, the main
routine or main entry point. Shared libraries
do not require a main symbol.

Mixed Mode Manager The part of the
Mac OS that allows code with different
calling conventions to call each other. For

G L O S S A R Y

GL-5

example, the Mixed Mode Manager makes it
possible for PowerPC code to call emulated
classic 68K code.

module A contiguous region of memory
that contains code or static data; the smallest
unit of memory that is included or removed
by the linker. See also segment.

natural alignment The alignment of a data
type when allocated in memory or assigned
a memory address. Compare embedding
alignment.

near model The default model of the
classic 68K runtime architecture, which
specifies 16-bit addressing for code and
data. Compare far model.

noncode resource A resource containing
the data structures on which the program
operates, for example, 'WIND', 'DLOG',
'DITL', or 'SIZE' resources. You use the
resource compiler Rez or a resource editor to
create noncode resources.

parameter area The area in the PowerPC
stack that holds the parameters for any
routines called by a given routine. Compare
linkage area.

PEF See Preferred Executable Format.

PEF container An addressable entity that
contains PEF information.

plug-in A shared library that must be
explicitly prepared by the client application
before use. Plug-ins typically contain code
and data that extend the capabilities of an
application. Also called an application
extension or a drop-in addition. Compare
import library.

PowerPC application An application that
contains code only for a PowerPC
microprocessor. Compare 68K application,
fat application.

PowerPC-based Macintosh computer Any
computer containing a PowerPC CPU that
runs the Mac OS. Compare 68K-based
Macintosh computer.

PowerPC microprocessor Any member of
the family of PowerPC microprocessors.
Members of the PowerPC family include the
MPC601, 603, and 604 CPUs.

PowerPC runtime architecture The
runtime architecture for Mac OS–based
computers using the PowerPC
microprocessor. Its characteristics include
storage of code and data in contiguous
fragments, the absence of an A5 world, and
the ability to use shared libraries. Compare
CFM-68K runtime architecture, classic 68K
runtime architecture.

Preferred Executable Format (PEF) The
format of executable files used for PowerPC
applications and shared libraries. It is also
used for CFM-68K runtime import libraries
that have been flattened. CFM-68K runtime
applications are stored in a combination of
PEF containers and 'CODE' resources. See
also Extended Common Object File Format.

preparation A general term in CFM-based
runtime architectures to describe the actions
of the Code Fragment Manager prior to
executing a fragment. These actions include
identifying imports, bringing fragments into
memory, and resolving imports.

private connection A connection that
cannot be shared between closures. A
fragment can have multiple private

G L O S S A R Y

GL-6

connections within a process, all serving the
same client. Private connections are not
visible as import libraries

private resource Any executable resource
whose behavior is defined by your
application (or other kind of software) alone.

process A prepared application and its
associated fragments (including plug-ins). A
process holds connections and closures.

program An executable unit that contains
executable code (stored in either the data
fork or resource fork) and noncode resources
(stored in the resource fork). See also code
resource, noncode resource.

prolog A sequence of code that prepares
the stack for a procedure call (by saving
registers, adjusting the stack, and so on).

Red Zone On PowerPC-based computers,
the area of memory immediately above the
address pointed to by the stack pointer. The
Red Zone is reserved for temporary use by a
routine’s prolog and as an area to store a leaf
procedure’s nonvolatile registers.

reference The location within one module
that contains the address of another module
or entry point.

reference count For each prepared
fragment, a value indicating the number of
closures that contain the fragment.

relocation The process of replacing
references to symbols with actual addresses
during fragment preparation.

relocation block A 2-byte portion of
relocation instruction information.
A relocation instruction can span one or
more relocation blocks.

resource A data structure used to store a
program’s data or code. This structure is
declared and defined using the Rez
language. Resources used to store code are
built by the linker; resources used to store
data are built by a resource compiler.

resource attributes Values associated with
a resource that determine where and when
the resource is loaded in memory, whether it
can be changed, and whether it can
be purged.

resource fork One of two forks of a
Macintosh file. It can contain code resources
or noncode resources, or it can be empty.
68K-based runtime applications store their
code in the resource fork. Compare data fork.

resource specification The information
used to identify a resource: the resource
name, the resource type, and the values of
its attributes.

root fragment The initial fragment in the
preparation process when the Code
Fragment Manager prepares a fragment and
its imports.

routine descriptor A data structure used
by the Mixed Mode Manager to execute a
routine. A routine descriptor contains
information about the routine being called
such as its architecture and calling
conventions. Defined by the RoutineRecord
data type.

runtime architecture A set of basic rules
that define how software operates. It
dictates how code and data are addressed,
the form of generated code, how applications
are handled, and how to enable system calls.

G L O S S A R Y

GL-7

The runtime architecture defines the core of
the runtime environment. Compare runtime
environment.

runtime environment The execution
environment provided by the Process
Manager and other system software
services. The runtime environment dictates
how executable code is loaded into memory,
where data is stored, and how routines call
other routines and system software routines.
Compare runtime architecture.

runtime library See implementation
library.

safe fat resource A fat resource that
contains extra classic 68K code at its entry
point to check for the presence of the Code
Fragment Manager. This guards against
calling the Mixed Mode trap when the
Mixed Mode Manager is not present. See
also fat resource.

section A storage unit in a PEF container
that contains object code or data. PEF
containers usually contain multiple sections.

section header A data structure in a PEF
container that contains information (size,
alignment, and so on) about the sections
stored within it.

segment A named collection of modules in
68K-based runtime programs.

segment header A collection of fields that
provides information about a segment. In
the classic 68K near model architecture, it
describes the location of the jump table and
the number of jump table entries.

segment relocation information Part of a
segment header used to store information
that allows the relocation of intrasegment
references for programs compiled and
linked using the -model far option.

shadow library A small stub library that
can load a larger import library on demand.

shared library A fragment that exports
functions and global variables to other
fragments. A shared library is not included
with the application code at link time but is
linked in dynamically at runtime. A shared
library is stored in a file of type 'shlb'.
There are two types of shared libraries:
import libraries and plug-ins.

shared library transition vector An 8-byte
transition vector in the CFM-68K runtime
environment. Its two fields contain the
address of a function and the value to be
placed in A5 when the function executes. A
transition vector for a flattened shared
library is identical to the PowerPC transition
vector. See also application transition
vector, transition vector.

stack An area of memory in the application
partition that is used for temporary storage
of data during the operation of that
application or other software.

stack frame The area of the stack used by a
routine for its parameters, return address,
local variables, and temporary storage.

stack pointer (SP) A pointer to the top of
the stack.

G L O S S A R Y

GL-8

stand-alone code A type of program used
to supplement the standard features
provided by the Mac OS , to execute startup
functions, or to control peripherals. This
term generally refers to classic 68K programs.

static library A library whose code is
included in the application at link time.

stub library A library that contains symbol
definitions but no code. See also definition
stub library.

switch frame A stack frame, created by the
Mixed Mode Manager during a mode
switch, that contains information about the
routine to be executed, the state of various
registers, and the address of the previous
frame.

termination routine A function contained
in a fragment that is executed just before the
fragment is unloaded. Compare
initialization function.

transition vector In the PowerPC runtime
architecture, an 8-byte data structure that
describes the entry point and base register
address of a routine. In the CFM-68K
runtime environment, a structure that
contains the entry point address of a
function and the value to be placed in the
A5 register when the function executes. A
CFM-68K transition vector may be 12 bytes
long or 8 bytes long depending on whether
it is created for an application or a shared
library. See also application transition
vector, shared library transition vector.

universal procedure pointer A
generalized procedure pointer that can be
either a 68K procedure pointer or the
address of a routine descriptor.

update library A shared library that
contains additions or changes to an existing
import library.

weak library A shared library that does
not need to be present at runtime for the
client application to run. Sometimes called a
soft library.

weak symbol A symbol that does not need
to be present in any of the client
application’s import libraries at runtime.
Also known as a weak import or soft import.

XCOFF See Extended Common Object
File Format.

IN-1

Index

Numerals

68K processors
addressing limitations 10-12
standard registers 5-8 to 5-9, 11-9 to 11-10

A, B

A5 register
CFM-68K 2-11
classic 68K 10-8

A5 world
A5 relocation information 10-19, 10-24, 10-25
classic 68K 10-3 to 10-4
version numbers B-10

A6 frame 5-8
A7 register, use in 68K machines 11-5
accelerated resources 7-4 to 7-12

compared to other executable resources 7-8
defined 7-4
restrictions on building 7-9 to 7-12

addressing limitations, in 68K 10-12
aliases to fragments 3-13, 3-20 to 3-21
applications

CFM-68K file structure 9-3 to 9-10
defined 1-4
launch procedure for CFM-68K runtime 9-8 to

9-10
application transition vectors, in CFM-68K 2-12,

9-6 to 9-7

C

calling conventions. See routine calling
conventions

C calling conventions
in CFM-68K 5-4 to 5-8
in classic 68K 11-7 to 11-9
in PowerPC 4-12 to 4-16

CFM-68K implementation of CFM-based
architecture

application structure 9-3 to 9-10
checking for availability of 3-10
conventions for 5-3 to 5-9
data types 5-3
indirect addressing 2-11 to 2-15
patching segment loader routines in B-1
requirements to run 3-10
routine calling conventions 5-4 to 5-5
shared library structure 9-10 to 9-13

CFM-68K Runtime Enabler 3-10
'cfrg'0 resource. See code fragment resource
_Chain routine, patching B-11, 10-17
changing names of newer import libraries 3-19
Clarus, the dogcow 3-12
classic 68K code, converting to PowerPC 4-5
classic 68K far model environment 10-17 to 10-26

patching segment loader routines in B-1
classic 68K runtime architecture 10-3 to 10-26

A5 world 10-3 to 10-4
conventions for 11-3 to 11-10
data types 11-3
jump table 10-6 to 10-12
routine calling conventions 11-6 to 11-9

closure ID, defined 1-7
closures 1-6 to 1-14

connection IDs 1-7
defined 1-6
reference count of 1-9

'CODE'0 resource 9-7, 10-8

I N D E X

IN-2

'CODE'6 resource 9-8
Code Fragment Manager

calling from code 3-3 to 3-9
checking availability of on 68K machines 3-10
fragment preparation process 1-15 to 1-16
import library search path 1-16 to 1-18
import library version checking 1-19 to 1-23

code fragment resource
CFM-68K application 1-32 to 1-33
changing application stack size in 1-32
changing library directory in 1-27
defined 1-25 to 1-34
extended entries 1-29 to 1-31
fat binary files 7-4
multiple fragment entries 1-26
PowerPC application 1-31 to 1-32
shared library 1-33 to 1-34

code sections 1-8, 1-24. See also PEF containers
code segments

far model modified header 10-23 to 10-25
far model segment relocation

information 10-20
size limitations 10-12
standard header 10-12

compiler pragmas, to enforce alignment 4-5
connection ID, defined 1-5
container header, PEF 8-4 to 8-5
containers, defined 1-6. See also PEF containers

D

data alignment
on CFM-68K stack 5-5
on classic 68K stack 11-6
on PowerPC stack 4-12

data-only fragments 3-24 to 3-26
data sections 1-8, 1-24. See also PEF containers
data types, standard

CFM-68K 5-3
classic 68K 11-3
PowerPC 4-3

definition stub library 1-19 to 1-23
direct calls, in assembly language 2-12

direct data area
defined 2-3
switching in CFM-68K 2-11 to 2-15
switching in PowerPC 2-10 to 2-11

drop-in additions. See plug-ins

E

epilog, used with PowerPC stack 4-9
error handler routines. See also user handler

routines
action codes B-9
used with kRTSetSegLoadErr operation B-7 to

B-9
ExitToShell routine, patching 10-17
exported symbols, getting information about 3-6

to 3-7
exported symbol table, in PEF container 8-40
export hash table, in PEF container 8-38
export key table, in PEF container 8-39
Extended Common Object File Format

(XCOFF) 1-25
extensions. See plug-ins
extensions to the code fragment resource 1-29 to

1-31
external entry points of CFM-68K routines 2-12

F

far model environment 10-17 to 10-26
patching segment loader routines in B-1
relocation information 10-20, 10-24, 10-25
segment header structure 10-23 to 10-25

fat applications 7-3 to 7-4
fat binaries. See fat programs
fat programs

applications 7-3 to 7-4
defined 7-3 to 7-4
resources 7-6 to 7-7
safe fat resources 7-7
shared libraries 7-4

I N D E X

IN-3

fat resources 7-6 to 7-7
fat shared libraries 7-4
file structure. See also PEF containers

CFM-68K application 9-3 to 9-10
CFM-68K shared library 9-10 to 9-13
fragments 1-23

file type 'shlb' 1-6
fixed-argument passing conventions

CFM-68K 5-6
classic 68K C 11-7 to 11-9
classic 68K Pascal 11-7
PowerPC 4-12

fragments
code section 1-8, 1-24
data section 1-8, 1-24
data sharing 3-24 to 3-26
defined 1-3
distinguishing by container rather than by

name 3-26 to 3-28
loading from disk 3-4
loading from resource 3-5
multiple listings in 'cfrg'0 resource 3-13
multiple names for the same fragment 3-13,

3-20 to 3-21
preparing 1-15 to 1-16, 3-3 to 3-6
referencing versus finding 1-10
storage of 1-24 to 1-25
structure of 1-23

frame pointer, 68K 11-5
function calling conventions. See routine calling

conventions
function value return

CFM-68K 5-7
classic 68K C 11-9
classic 68K Pascal 11-7
PowerPC 4-17

G

Gestalt function 3-10
global data, references to in classic 68K 10-13
global data world. See direct data area; A5 world

global instantiation of data. See systemwide
instantiation of data

glue code
for PowerPC cross-fragment calls 2-10
for PowerPC pointer-based calls 2-11

H

hardware, requirements for running CFM-68K
programs 3-10

hashing exported symbols 8-36 to 8-43
hashing functions 8-41 to 8-43

exported symbol count to hash table size 8-42
hash word to hash index 8-42
name to hash word 8-41

hash table entry, for PEF container 8-39

I

implementation library 1-19 to 1-23
imported data, addressing 2-6

in CFM-68K 2-11
in PowerPC 2-8

imported routines, addressing 2-6 to 2-7
in CFM-68K 2-11 to 2-15
in PowerPC 2-8 to 2-9

imported symbol table, in PEF container 8-19 to
8-20

import libraries. See also shared libraries
aliasing 3-13, 3-20 to 3-21
assigning logical library names 3-21
changing library names 3-19
changing to plug-ins 1-34
compared to shared libraries 1-5
defined 1-5
descriptions in PEF containers 8-18 to 8-19
file type of 1-6
initialization order 8-19
maintaining compatibility when

modifying 3-14 to 3-23

I N D E X

IN-4

import libraries (continued)
reexport libraries 3-22 to 3-23
search path to find 1-16 to 1-18
shadow library 3-7
version checking 1-19 to 1-23
weak 3-11 to 3-12

indirect addressing
advantages of 2-4 to 2-6
in the CFM-based architecture 2-3 to 2-7
in PowerPC 2-8 to 2-11

indirect calls, in assembly language 2-13
initialization functions 1-35
initialization order for import libraries 8-19
__init_lib routine 9-13
internal entry points of CFM-68K routines 2-12
intersegment references 10-7, 10-20

J

jump table 10-6 to 10-12
A5 world 10-3
conversion for CFM-68K shared libraries 9-11
entries 10-20
function of 10-6
increasing size of 10-16
references to in classic 68K 10-13
structure in CFM-68K segmented file 9-5

jump table entry
CFM-68K shared library 9-11
classic 68K 10-10 to 10-12

K

kRTGetJTAddress operation B-10
kRTGetVersion operation B-10
kRTPostLaunch operation B-11
kRTPreLaunch operation B-11
kRTSetPostLoad operations B-4
kRTSetPreLoad operations B-4
kRTSetPreUnload operations B-4
kRTSetSegLoadErr operations B-4

using error handler routine with B-7 to B-9

L

_Launch routine, patching B-11, 10-17
leaf procedure, defined 4-10
libraries. See import libraries; shared libraries;

shadow libraries
library directory, changing in 'cfrg'0

resource 1-27
linkage area, on PowerPC stack 4-7
linker, near and far data references in 10-14
loader header, PEF 8-16 to 8-18
loader section, PEF 8-15 to 8-43
loader string table, in PEF container 8-35
_LoadSeg routine

modified 10-19
patching 10-17

logical names for import libraries 3-21

M

main entry point 1-34
main symbol 1-34, 3-24
MakeFlat tool, changes to file structure when

flattening 9-11 to 9-13
Mixed Mode Manager 6-3 to 6-9

calling CFM-68K code from classic 68K
code 6-15 to 6-16

calling classic 68K code from CFM-68K
code 6-16 to 6-17

calling emulated classic 68K code from
PowerPC code 6-13 to 6-15

calling PowerPC code from emulated classic
68K code 6-10 to 6-13

details of mode switching 6-10 to 6-17
mode switching 6-10 to 6-17

CFM-68K code to classic 68K code 6-16 to 6-17
classic 68K code to CFM-68K code 6-15 to 6-16
emulated classic 68K code to PowerPC

code 6-10 to 6-13
PowerPC code to emulated classic 68K

code 6-13 to 6-15

I N D E X

IN-5

multiple fragment names in 'cfrg'0
resource 3-13

multiple fragments with the same name 3-26 to
3-28

N

near model segment header 10-12
NuRTLib.o library B-1

O

opcodes
for pattern-initialization 8-12 to 8-14
for relocations 8-27 to 8-35

P

parameter area
in 68K stack 11-6
in PowerPC stack 4-7, 4-13 to 4-16

parameter passing conventions. See routine
calling conventions

Pascal calling conventions, for classic 68K 11-6 to
11-7

pascal keyword 11-6
pattern-initialized data 8-8, 8-10 to 8-14
PEF containers

container header 8-4 to 8-5
exported symbol table 8-40
export hash table 8-38
export key table 8-39
hash procedure for exported symbols 8-36 to

8-43
hash table entry 8-39
imported library descriptions 8-18 to 8-19
imported symbol table 8-19 to 8-20
indicating weak libraries in 8-19
initialization order for import libraries 8-19
introduced 1-24

loader header 8-16 to 8-18
loader section 8-15 to 8-43
loader string table 8-35
major parts of 8-3
pattern-initialized data 8-8, 8-10 to 8-14
relocation example 8-24 to 8-27
relocation header 8-23 to 8-24
relocation instructions 8-21 to 8-35
relocation variables 8-22
section contents 8-10
section header 8-5 to 8-9
section name table 8-10
sections 8-5 to 8-14
section types 8-8 to 8-9
size limits 8-43
symbol classes 8-20

PEF version numbers, guidelines for import
libraries 3-16 to 3-19

per-load instantiation. See private connections
per-process instantiation of data 1-8
pidata. See pattern-initialized data
plug-ins. See also shared libraries

changing from import library 1-34
defined 1-5
using main symbol with 3-24

pointer-based function calls
PowerPC glue code for 2-11
using PowerPC transition vectors for 2-11

PowerPC implementation of CFM-based
architecture

conventions for 4-3 to 4-19
data types 4-3
indirect addressing 2-8 to 2-11
routine calling conventions 4-11 to 4-17

PowerPC processor, standard registers in 4-17 to
4-19

private connections 1-13
private resources 7-8
process, defined 1-5
prolog, used with PowerPC stack 4-8

I N D E X

IN-6

Q

QuickDraw global variables 10-4

R

Red Zone, defined 4-10
reexport libraries 3-22 to 3-23
reference count, defined 1-9
registers, CFM-68K environment

and function value return 5-7
preservation 5-8 to 5-9

registers, classic 68K environment
and function value return 11-9
preservation 11-9 to 11-10

registers, PowerPC environment
and function value return 4-17
and parameter passing 4-13 to 4-16
preservation 4-17 to 4-19
saving and restoring values in 4-8 to 4-10
and saving local variables 4-8
used in indirect calls 2-8 to 2-11

register types
68K processor 5-8 to 5-9, 11-9 to 11-10
PowerPC processor 4-17 to 4-19

relocation headers, in PEF container 8-23 to 8-24
relocation instructions, in PEF container 8-21 to

8-35
relocation variables, in PEF container 8-22
reserved frame slots, in CFM-68K 5-8
resources
'cfrg'0. See code fragment resource
'CODE'0 9-7, 10-8
'CODE'6 9-8
'rseg'0 9-8
'rseg'1 9-10

root fragment, defined 1-6
routine calling conventions

C, for classic 68K 11-7 to 11-9
CFM-68K 5-4 to 5-8
fixed arguments

CFM-68K 5-6
classic 68K C 11-7 to 11-9

classic 68K Pascal 11-7
PowerPC 4-12

function value return
CFM-68K 5-7
classic 68K C 11-9
classic 68K Pascal 11-7
PowerPC 4-17

parameter deallocation
in CFM-68K 5-5
in classic 68K C 11-9
in classic 68K Pascal 11-7
in PowerPC 4-9

parameter passing
in CFM-68K 5-4 to 5-5
in classic 68K 11-4 to 11-9
PowerPC 4-12 to 4-16

Pascal, for classic 68K 11-6 to 11-7
PowerPC 4-11 to 4-17
register preservation

CFM-68K 5-8 to 5-9
classic 68K 11-9 to 11-10
PowerPC 4-17 to 4-19

stack alignment
CFM-68K 5-5
classic 68K 11-6
PowerPC 4-12

stack frames
CFM-68K 5-8
classic 68K 11-5
PowerPC 4-7

variable arguments
CFM-68K 5-7
classic 68K C 11-7 to 11-9
PowerPC 4-15

routine descriptors
defined 6-5
used in accelerated resources 7-4 to 7-7
used with universal procedure pointers 6-6,

6-7
'rseg'0 resource 9-8
'rseg'1 resource 9-10
RTLib.o library B-1
RTLib patch example B-13
RTPB data structure B-2
RTState data structure B-5 to B-7

I N D E X

IN-7

Runtime RTLib routine B-1 to B-12
error return values B-4
operations B-4 to B-12
RTPB structure B-2

S

safe fat resources. See fat programs
search path for import libraries 1-16 to 1-18
section contents, PEF 8-10
section header, PEF 8-5 to 8-9
section name table in PEF container 8-10
sections, PEF 8-5 to 8-14
section types, PEF 8-8 to 8-9
segmentation, in classic 68K applications 10-5 to

10-6
segment header structure 9-3 to 9-5
segment loader routines, patching B-1
segment relocation information for far

model 10-20, 10-24, 10-25
shadow libraries 3-7
shared libraries. See also import libraries; plug-ins

benefits of 1-4
file structure in CFM-68K 9-10 to 9-13
forms of 1-5
introduced 1-4 to 1-5

shared library transition vectors, conversion by
MakeFlat 9-12 to 9-13

'shlb' file type 1-6
size limits, of PEF containers 8-43
soft imports 3-11 to 3-12
special symbols in the CFM-based

architecture 1-34 to 1-37
stack alignment

CFM-68K 5-5
classic 68K 11-6
PowerPC 4-12

stack frames
CFM-68K 5-8
classic 68K 11-5
PowerPC 4-7

stack pointer
68K, defined 11-5
PowerPC, defined 4-6

stack size, changing in 'cfrg'0 resource 1-32
stack structure

68K 11-4 to 11-6
PowerPC 4-6 to 4-11

epilog 4-9
leaf procedure 4-10
linkage area 4-7
parameter area 4-7
prolog 4-8
Red Zone 4-10

standard data types
CFM-68K 5-3
classic 68K 11-3
PowerPC 4-3

standard registers
68K processor 5-8 to 5-9, 11-9 to 11-10
PowerPC processor 4-17 to 4-19

stub libraries 3-11
switch frame

CFM-68K code to classic 68K code 6-16 to 6-17
classic 68K code to CFM-68K code 6-15 to 6-16
emulated classic 68K code to PowerPC

code 6-10 to 6-13
PowerPC code to emulated classic 68K

code 6-13 to 6-15
switching global data worlds. See direct data area
symbol, main 1-34, 3-24
symbol classes, PEF 8-20
syntax conventions xix
systemwide instantiation of data 1-8, 3-24 to 3-26

T

target computer, requirements for CFM-68K 3-10
termination routines 1-36
__term_lib routine 9-13
32-bit everything 10-17 to 10-26

I N D E X

IN-8

transition vectors
in CFM-68K 2-12
defined 2-6
in PowerPC 2-8
structure for CFM-68K application 9-6 to 9-7
structure for CFM-68K shared library 9-12 to

9-13

U

universal procedure pointers 6-5
_UnloadSeg routine

described 10-6
patching 10-17

user handler routines B-5 to B-7

V

variable-argument passing conventions
CFM-68K 5-7
classic 68K C 11-7 to 11-9
PowerPC 4-15

version checking for import libraries 1-19 to 1-23

W

weak libraries 3-11 to 3-12
during fragment preparation 1-16
indicating in PEF containers 8-19

weak symbols 3-11 to 3-12
during fragment preparation 1-16
and PEF versioning 3-18
and version checking 3-16

X, Y, Z

XCOFF containers 1-25

	Mac OS Runtime Architectures
	Contents
	Figures, Tables, and Listings
	What’s in This Book
	How to Use This Book
	Related Documentation
	Conventions Used in This Book
	Special Fonts
	Command Syntax
	Types of Notes

	For More Information

	CFM-Based Runtime Architecture
	Overview
	Closures
	Code and Data Sections
	Reference Counts
	Using Code Fragment Manager Options

	Preparing a Closure
	Searching for Import Libraries
	Checking for Compatible Import Libraries

	The Structure of Fragments
	Fragment Storage
	The Code Fragment Resource
	Extensions to Code Fragment Resource Entries
	Sample Code Fragment Resource Entry Definitions

	Special Symbols
	The Main Symbol
	The Initialization Function
	The Termination Routine

	Indirect Addressing in the CFM-Based Architecture
	Overview
	PowerPC Implementation
	Glue Code for Named Indirect Calls
	Glue Code for Pointer-Based Calls

	CFM-68K Implementation
	Direct and Indirect Calls
	The Direct Data Area Switching Method

	Programming for the CFM-Based Runtime Architecture
	Calling the Code Fragment Manager
	Preparing Code Fragments
	Releasing Fragments
	Getting Information About Exported Symbols
	Using Shadow Libraries

	Requirements for Executing CFM-68K Runtime Programs
	Using Stub Libraries at Build Time
	Weak Libraries and Symbols
	Multiple Names for the Same Fragment
	Import Library Techniques
	Use No Version Numbers and No Weak Symbols
	Declare Weak Symbols in Client
	Use PEF Version Numbering
	Change Names for Newer Import Libraries
	Create an Alias Library Name Using Multiple 'cfrg' 0 Entries
	Put New Symbols in New Logical Libraries
	Use Reexport Libraries

	Using the Main Symbol as a Data Structure
	Systemwide Sharing and Data-Only Fragments
	Multiple Fragments With the Same Name

	PowerPC Runtime Conventions
	Data Types
	Data Alignment
	PowerPC Stack Structure
	Prologs and Epilogs
	The Red Zone

	Routine Calling Conventions
	Function Return
	Register Preservation

	CFM-68K Runtime Conventions
	Data Types
	Routine Calling Conventions
	Parameter Deallocation
	Stack Alignment
	Fixed-Argument Passing Conventions
	Variable-Argument Passing Conventions
	Function Value Return
	Stack Frames, A6, and Reserved Frame Slots
	Register Preservation

	The Mixed Mode Manager
	Overview
	Universal Procedure Pointers and Routine Descriptors
	CFM-Based Code Originates the Call
	Classic 68K Code Originates the Call

	Mixed Mode Manager Performance Issues
	Mode Switching Implementations
	Calling PowerPC Code From Classic 68K Code
	Calling Classic 68K Code From PowerPC Code
	Calling CFM-68K Code From Classic 68K Code
	Calling Classic 68K Code From CFM-68K Code

	Fat Binary Programs
	Creating Fat Binary Programs
	Accelerated and Fat Resources

	PEF Structure
	Overview
	The Container Header
	PEF Sections
	The Section Name Table
	Section Contents
	Pattern-Initialized Data
	Pattern-Initialization Opcodes

	The Loader Section
	The Loader Header
	Imported Libraries and Symbols
	Imported Library Descriptions
	The Imported Symbol Table

	Relocations
	The Relocation Headers Table
	The Relocation Area
	A Relocation Example
	Relocation Instruction Set

	The Loader String Table
	Exported Symbols
	The Export Hash Table
	The Export Key Table
	The Exported Symbol Table
	Hashing Functions

	PEF Size Limits

	CFM-68K Application and Shared Library Structure
	CFM-68K Application Structure
	The Segment Header
	The Jump Table
	Transition Vectors and the Transition Vector Table
	The 'CODE' 0 Resource
	The 'CODE' 6 Resource
	The 'rseg' 0 Resource
	The 'rseg' 1 Resource

	CFM-68K Shared Library Structure
	Jump Table Conversion
	Transition Vector Conversion
	Static Constructors and Destructors

	Classic 68K Runtime Architecture
	The A5 World
	Program Segmentation
	The Jump Table
	Bypassing MC68000 Addressing Limitations
	Increasing Global Data Size
	Increasing Segment Size
	Increasing the Size of the Jump Table
	32-Bit Everything

	How 32-Bit Everything Is Implemented
	Expanding Global Data and the Jump Table
	Intrasegment References
	The Far Model Jump Table
	The Far Model Segment Header Structure
	Relocation Information Format

	Classic 68K Runtime Conventions
	Data Types
	Classic 68K Stack Structure and Calling Conventions
	Pascal Calling Conventions
	SC Compiler C Calling Conventions
	Register Preservation

	Terminology Changes
	The RTLib.o and NuRTLib.o Libraries
	Runtime Interface
	Runtime Operations
	Segment Manager Hooks
	User Handlers
	Error Handling With kRTSetSegLoadErr

	kRTGetVersion and kRTGetVersionA5
	kRTGetJTAddress and kRTGetJTAddressA5
	kRTPreLaunch and kRTPostLaunch
	kRTLoadSegbyNum and kRTLoadSegbyNumA5

	A Preload Example

	Glossary
	Index

