! Implementation of the IEEE_ARITHMETIC standard intrinsic module ! Copyright (C) 2013-2015 Free Software Foundation, Inc. ! Contributed by Francois-Xavier Coudert ! ! This file is part of the GNU Fortran runtime library (libgfortran). ! ! Libgfortran is free software; you can redistribute it and/or ! modify it under the terms of the GNU General Public ! License as published by the Free Software Foundation; either ! version 3 of the License, or (at your option) any later version. ! ! Libgfortran is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! Under Section 7 of GPL version 3, you are granted additional ! permissions described in the GCC Runtime Library Exception, version ! 3.1, as published by the Free Software Foundation. ! ! You should have received a copy of the GNU General Public License and ! a copy of the GCC Runtime Library Exception along with this program; ! see the files COPYING3 and COPYING.RUNTIME respectively. If not, see ! . */ #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #include "fpu-target.inc" module IEEE_ARITHMETIC use IEEE_EXCEPTIONS implicit none private ! Every public symbol from IEEE_EXCEPTIONS must be made public here public :: IEEE_FLAG_TYPE, IEEE_INVALID, IEEE_OVERFLOW, & IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, IEEE_INEXACT, IEEE_USUAL, & IEEE_ALL, IEEE_STATUS_TYPE, IEEE_GET_FLAG, IEEE_GET_HALTING_MODE, & IEEE_GET_STATUS, IEEE_SET_FLAG, IEEE_SET_HALTING_MODE, & IEEE_SET_STATUS, IEEE_SUPPORT_FLAG, IEEE_SUPPORT_HALTING ! Derived types and named constants type, public :: IEEE_CLASS_TYPE private integer :: hidden end type type(IEEE_CLASS_TYPE), parameter, public :: & IEEE_OTHER_VALUE = IEEE_CLASS_TYPE(0), & IEEE_SIGNALING_NAN = IEEE_CLASS_TYPE(1), & IEEE_QUIET_NAN = IEEE_CLASS_TYPE(2), & IEEE_NEGATIVE_INF = IEEE_CLASS_TYPE(3), & IEEE_NEGATIVE_NORMAL = IEEE_CLASS_TYPE(4), & IEEE_NEGATIVE_DENORMAL = IEEE_CLASS_TYPE(5), & IEEE_NEGATIVE_ZERO = IEEE_CLASS_TYPE(6), & IEEE_POSITIVE_ZERO = IEEE_CLASS_TYPE(7), & IEEE_POSITIVE_DENORMAL = IEEE_CLASS_TYPE(8), & IEEE_POSITIVE_NORMAL = IEEE_CLASS_TYPE(9), & IEEE_POSITIVE_INF = IEEE_CLASS_TYPE(10) type, public :: IEEE_ROUND_TYPE private integer :: hidden end type type(IEEE_ROUND_TYPE), parameter, public :: & IEEE_NEAREST = IEEE_ROUND_TYPE(GFC_FPE_TONEAREST), & IEEE_TO_ZERO = IEEE_ROUND_TYPE(GFC_FPE_TOWARDZERO), & IEEE_UP = IEEE_ROUND_TYPE(GFC_FPE_UPWARD), & IEEE_DOWN = IEEE_ROUND_TYPE(GFC_FPE_DOWNWARD), & IEEE_OTHER = IEEE_ROUND_TYPE(0) ! Equality operators on the derived types interface operator (==) module procedure IEEE_CLASS_TYPE_EQ, IEEE_ROUND_TYPE_EQ end interface public :: operator(==) interface operator (/=) module procedure IEEE_CLASS_TYPE_NE, IEEE_ROUND_TYPE_NE end interface public :: operator (/=) ! IEEE_IS_FINITE interface elemental logical function _gfortran_ieee_is_finite_4(X) real(kind=4), intent(in) :: X end function elemental logical function _gfortran_ieee_is_finite_8(X) real(kind=8), intent(in) :: X end function end interface interface IEEE_IS_FINITE procedure _gfortran_ieee_is_finite_4, _gfortran_ieee_is_finite_8 end interface public :: IEEE_IS_FINITE ! IEEE_IS_NAN interface elemental logical function _gfortran_ieee_is_nan_4(X) real(kind=4), intent(in) :: X end function elemental logical function _gfortran_ieee_is_nan_8(X) real(kind=8), intent(in) :: X end function end interface interface IEEE_IS_NAN procedure _gfortran_ieee_is_nan_4, _gfortran_ieee_is_nan_8 end interface public :: IEEE_IS_NAN ! IEEE_IS_NEGATIVE interface elemental logical function _gfortran_ieee_is_negative_4(X) real(kind=4), intent(in) :: X end function elemental logical function _gfortran_ieee_is_negative_8(X) real(kind=8), intent(in) :: X end function end interface interface IEEE_IS_NEGATIVE procedure _gfortran_ieee_is_negative_4, _gfortran_ieee_is_negative_8 end interface public :: IEEE_IS_NEGATIVE ! IEEE_IS_NORMAL interface elemental logical function _gfortran_ieee_is_normal_4(X) real(kind=4), intent(in) :: X end function elemental logical function _gfortran_ieee_is_normal_8(X) real(kind=8), intent(in) :: X end function end interface interface IEEE_IS_NORMAL procedure _gfortran_ieee_is_normal_4, _gfortran_ieee_is_normal_8 end interface public :: IEEE_IS_NORMAL ! IEEE_COPY_SIGN interface elemental real(kind=4) function _gfortran_ieee_copy_sign_4_4 (X,Y) real(kind=4), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental real(kind=4) function _gfortran_ieee_copy_sign_4_8 (X,Y) real(kind=4), intent(in) :: X real(kind=8), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_copy_sign_8_4 (X,Y) real(kind=8), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_copy_sign_8_8 (X,Y) real(kind=8), intent(in) :: X real(kind=8), intent(in) :: Y end function end interface interface IEEE_COPY_SIGN procedure _gfortran_ieee_copy_sign_4_4, _gfortran_ieee_copy_sign_4_8, & _gfortran_ieee_copy_sign_8_4, _gfortran_ieee_copy_sign_8_8 end interface public :: IEEE_COPY_SIGN ! IEEE_UNORDERED interface elemental logical function _gfortran_ieee_unordered_4_4 (X,Y) real(kind=4), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental logical function _gfortran_ieee_unordered_4_8 (X,Y) real(kind=4), intent(in) :: X real(kind=8), intent(in) :: Y end function elemental logical function _gfortran_ieee_unordered_8_4 (X,Y) real(kind=8), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental logical function _gfortran_ieee_unordered_8_8 (X,Y) real(kind=8), intent(in) :: X real(kind=8), intent(in) :: Y end function end interface interface IEEE_UNORDERED procedure _gfortran_ieee_unordered_4_4, _gfortran_ieee_unordered_4_8, & _gfortran_ieee_unordered_8_4, _gfortran_ieee_unordered_8_8 end interface public :: IEEE_UNORDERED ! IEEE_LOGB interface elemental real(kind=4) function _gfortran_ieee_logb_4 (X) real(kind=4), intent(in) :: X end function elemental real(kind=8) function _gfortran_ieee_logb_8 (X) real(kind=8), intent(in) :: X end function end interface interface IEEE_LOGB procedure _gfortran_ieee_logb_4, _gfortran_ieee_logb_8 end interface public :: IEEE_LOGB ! IEEE_NEXT_AFTER interface elemental real(kind=4) function _gfortran_ieee_next_after_4_4 (X, Y) real(kind=4), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental real(kind=4) function _gfortran_ieee_next_after_4_8 (X, Y) real(kind=4), intent(in) :: X real(kind=8), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_next_after_8_4 (X, Y) real(kind=8), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_next_after_8_8 (X, Y) real(kind=8), intent(in) :: X real(kind=8), intent(in) :: Y end function end interface interface IEEE_NEXT_AFTER procedure _gfortran_ieee_next_after_4_4, _gfortran_ieee_next_after_4_8, & _gfortran_ieee_next_after_8_4, _gfortran_ieee_next_after_8_8 end interface public :: IEEE_NEXT_AFTER ! IEEE_REM interface elemental real(kind=4) function _gfortran_ieee_rem_4_4 (X, Y) real(kind=4), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_rem_4_8 (X, Y) real(kind=4), intent(in) :: X real(kind=8), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_rem_8_4 (X, Y) real(kind=8), intent(in) :: X real(kind=4), intent(in) :: Y end function elemental real(kind=8) function _gfortran_ieee_rem_8_8 (X, Y) real(kind=8), intent(in) :: X real(kind=8), intent(in) :: Y end function end interface interface IEEE_REM procedure _gfortran_ieee_rem_4_4, _gfortran_ieee_rem_4_8, & _gfortran_ieee_rem_8_4, _gfortran_ieee_rem_8_8 end interface public :: IEEE_REM ! IEEE_RINT interface elemental real(kind=4) function _gfortran_ieee_rint_4 (X) real(kind=4), intent(in) :: X end function elemental real(kind=8) function _gfortran_ieee_rint_8 (X) real(kind=8), intent(in) :: X end function end interface interface IEEE_RINT procedure _gfortran_ieee_rint_4, _gfortran_ieee_rint_8 end interface public :: IEEE_RINT ! IEEE_SCALB interface elemental real(kind=4) function _gfortran_ieee_scalb_4 (X, I) real(kind=4), intent(in) :: X integer, intent(in) :: I end function elemental real(kind=8) function _gfortran_ieee_scalb_8 (X, I) real(kind=8), intent(in) :: X integer, intent(in) :: I end function end interface interface IEEE_SCALB procedure _gfortran_ieee_scalb_4, _gfortran_ieee_scalb_8 end interface public :: IEEE_SCALB ! IEEE_VALUE interface IEEE_VALUE module procedure IEEE_VALUE_4, IEEE_VALUE_8 end interface public :: IEEE_VALUE ! IEEE_CLASS interface IEEE_CLASS module procedure IEEE_CLASS_4, IEEE_CLASS_8 end interface public :: IEEE_CLASS ! Public declarations for contained procedures public :: IEEE_GET_ROUNDING_MODE, IEEE_SET_ROUNDING_MODE public :: IEEE_GET_UNDERFLOW_MODE, IEEE_SET_UNDERFLOW_MODE public :: IEEE_SELECTED_REAL_KIND ! IEEE_SUPPORT_ROUNDING interface IEEE_SUPPORT_ROUNDING module procedure IEEE_SUPPORT_ROUNDING_4, IEEE_SUPPORT_ROUNDING_8, & #ifdef HAVE_GFC_REAL_10 IEEE_SUPPORT_ROUNDING_10, & #endif #ifdef HAVE_GFC_REAL_16 IEEE_SUPPORT_ROUNDING_16, & #endif IEEE_SUPPORT_ROUNDING_NOARG end interface public :: IEEE_SUPPORT_ROUNDING ! Interface to the FPU-specific function interface pure integer function support_rounding_helper(flag) & bind(c, name="_gfortrani_support_fpu_rounding_mode") integer, intent(in), value :: flag end function end interface ! IEEE_SUPPORT_UNDERFLOW_CONTROL interface IEEE_SUPPORT_UNDERFLOW_CONTROL module procedure IEEE_SUPPORT_UNDERFLOW_CONTROL_4, & IEEE_SUPPORT_UNDERFLOW_CONTROL_8, & #ifdef HAVE_GFC_REAL_10 IEEE_SUPPORT_UNDERFLOW_CONTROL_10, & #endif #ifdef HAVE_GFC_REAL_16 IEEE_SUPPORT_UNDERFLOW_CONTROL_16, & #endif IEEE_SUPPORT_UNDERFLOW_CONTROL_NOARG end interface public :: IEEE_SUPPORT_UNDERFLOW_CONTROL ! Interface to the FPU-specific function interface pure integer function support_underflow_control_helper(kind) & bind(c, name="_gfortrani_support_fpu_underflow_control") integer, intent(in), value :: kind end function end interface ! IEEE_SUPPORT_* generic functions #if defined(HAVE_GFC_REAL_10) && defined(HAVE_GFC_REAL_16) # define MACRO1(NAME) NAME/**/_4, NAME/**/_8, NAME/**/_10, NAME/**/_16, NAME/**/_NOARG #elif defined(HAVE_GFC_REAL_10) # define MACRO1(NAME) NAME/**/_4, NAME/**/_8, NAME/**/_10, NAME/**/_NOARG #elif defined(HAVE_GFC_REAL_16) # define MACRO1(NAME) NAME/**/_4, NAME/**/_8, NAME/**/_16, NAME/**/_NOARG #else # define MACRO1(NAME) NAME/**/_4, NAME/**/_8, NAME/**/_NOARG #endif #define SUPPORTGENERIC(NAME) \ interface NAME ; module procedure MACRO1(NAME) ; end interface ; \ public :: NAME SUPPORTGENERIC(IEEE_SUPPORT_DATATYPE) SUPPORTGENERIC(IEEE_SUPPORT_DENORMAL) SUPPORTGENERIC(IEEE_SUPPORT_DIVIDE) SUPPORTGENERIC(IEEE_SUPPORT_INF) SUPPORTGENERIC(IEEE_SUPPORT_IO) SUPPORTGENERIC(IEEE_SUPPORT_NAN) SUPPORTGENERIC(IEEE_SUPPORT_SQRT) SUPPORTGENERIC(IEEE_SUPPORT_STANDARD) contains ! Equality operators for IEEE_CLASS_TYPE and IEEE_ROUNDING_MODE elemental logical function IEEE_CLASS_TYPE_EQ (X, Y) result(res) implicit none type(IEEE_CLASS_TYPE), intent(in) :: X, Y res = (X%hidden == Y%hidden) end function elemental logical function IEEE_CLASS_TYPE_NE (X, Y) result(res) implicit none type(IEEE_CLASS_TYPE), intent(in) :: X, Y res = (X%hidden /= Y%hidden) end function elemental logical function IEEE_ROUND_TYPE_EQ (X, Y) result(res) implicit none type(IEEE_ROUND_TYPE), intent(in) :: X, Y res = (X%hidden == Y%hidden) end function elemental logical function IEEE_ROUND_TYPE_NE (X, Y) result(res) implicit none type(IEEE_ROUND_TYPE), intent(in) :: X, Y res = (X%hidden /= Y%hidden) end function ! IEEE_SELECTED_REAL_KIND integer function IEEE_SELECTED_REAL_KIND (P, R, RADIX) result(res) implicit none integer, intent(in), optional :: P, R, RADIX integer :: p2, r2 p2 = 0 ; r2 = 0 if (present(p)) p2 = p if (present(r)) r2 = r ! The only IEEE types we support right now are binary if (present(radix)) then if (radix /= 2) then res = -5 return endif endif ! Does IEEE float fit? if (precision(0.) >= p2 .and. range(0.) >= r2) then res = kind(0.) return endif ! Does IEEE double fit? if (precision(0.d0) >= p2 .and. range(0.d0) >= r2) then res = kind(0.d0) return endif if (precision(0.d0) < p2 .and. range(0.d0) < r2) then res = -3 return endif if (precision(0.d0) < p2) then res = -1 return endif res = -2 end function ! IEEE_CLASS elemental function IEEE_CLASS_4 (X) result(res) implicit none real(kind=4), intent(in) :: X type(IEEE_CLASS_TYPE) :: res interface pure integer function _gfortrani_ieee_class_helper_4(val) real(kind=4), intent(in) :: val end function end interface res = IEEE_CLASS_TYPE(_gfortrani_ieee_class_helper_4(X)) end function elemental function IEEE_CLASS_8 (X) result(res) implicit none real(kind=8), intent(in) :: X type(IEEE_CLASS_TYPE) :: res interface pure integer function _gfortrani_ieee_class_helper_8(val) real(kind=8), intent(in) :: val end function end interface res = IEEE_CLASS_TYPE(_gfortrani_ieee_class_helper_8(X)) end function ! IEEE_VALUE elemental real(kind=4) function IEEE_VALUE_4(X, C) result(res) implicit none real(kind=4), intent(in) :: X type(IEEE_CLASS_TYPE), intent(in) :: C select case (C%hidden) case (1) ! IEEE_SIGNALING_NAN res = -1 res = sqrt(res) case (2) ! IEEE_QUIET_NAN res = -1 res = sqrt(res) case (3) ! IEEE_NEGATIVE_INF res = huge(res) res = (-res) * res case (4) ! IEEE_NEGATIVE_NORMAL res = -42 case (5) ! IEEE_NEGATIVE_DENORMAL res = -tiny(res) res = res / 2 case (6) ! IEEE_NEGATIVE_ZERO res = 0 res = -res case (7) ! IEEE_POSITIVE_ZERO res = 0 case (8) ! IEEE_POSITIVE_DENORMAL res = tiny(res) res = res / 2 case (9) ! IEEE_POSITIVE_NORMAL res = 42 case (10) ! IEEE_POSITIVE_INF res = huge(res) res = res * res case default ! IEEE_OTHER_VALUE, should not happen res = 0 end select end function elemental real(kind=8) function IEEE_VALUE_8(X, C) result(res) implicit none real(kind=8), intent(in) :: X type(IEEE_CLASS_TYPE), intent(in) :: C select case (C%hidden) case (1) ! IEEE_SIGNALING_NAN res = -1 res = sqrt(res) case (2) ! IEEE_QUIET_NAN res = -1 res = sqrt(res) case (3) ! IEEE_NEGATIVE_INF res = huge(res) res = (-res) * res case (4) ! IEEE_NEGATIVE_NORMAL res = -42 case (5) ! IEEE_NEGATIVE_DENORMAL res = -tiny(res) res = res / 2 case (6) ! IEEE_NEGATIVE_ZERO res = 0 res = -res case (7) ! IEEE_POSITIVE_ZERO res = 0 case (8) ! IEEE_POSITIVE_DENORMAL res = tiny(res) res = res / 2 case (9) ! IEEE_POSITIVE_NORMAL res = 42 case (10) ! IEEE_POSITIVE_INF res = huge(res) res = res * res case default ! IEEE_OTHER_VALUE, should not happen res = 0 end select end function ! IEEE_GET_ROUNDING_MODE subroutine IEEE_GET_ROUNDING_MODE (ROUND_VALUE) implicit none type(IEEE_ROUND_TYPE), intent(out) :: ROUND_VALUE interface integer function helper() & bind(c, name="_gfortrani_get_fpu_rounding_mode") end function end interface ROUND_VALUE = IEEE_ROUND_TYPE(helper()) end subroutine ! IEEE_SET_ROUNDING_MODE subroutine IEEE_SET_ROUNDING_MODE (ROUND_VALUE) implicit none type(IEEE_ROUND_TYPE), intent(in) :: ROUND_VALUE interface subroutine helper(val) & bind(c, name="_gfortrani_set_fpu_rounding_mode") integer, value :: val end subroutine end interface call helper(ROUND_VALUE%hidden) end subroutine ! IEEE_GET_UNDERFLOW_MODE subroutine IEEE_GET_UNDERFLOW_MODE (GRADUAL) implicit none logical, intent(out) :: GRADUAL interface integer function helper() & bind(c, name="_gfortrani_get_fpu_underflow_mode") end function end interface GRADUAL = (helper() /= 0) end subroutine ! IEEE_SET_UNDERFLOW_MODE subroutine IEEE_SET_UNDERFLOW_MODE (GRADUAL) implicit none logical, intent(in) :: GRADUAL interface subroutine helper(val) & bind(c, name="_gfortrani_set_fpu_underflow_mode") integer, value :: val end subroutine end interface call helper(merge(1, 0, GRADUAL)) end subroutine ! IEEE_SUPPORT_ROUNDING pure logical function IEEE_SUPPORT_ROUNDING_4 (ROUND_VALUE, X) result(res) implicit none real(kind=4), intent(in) :: X type(IEEE_ROUND_TYPE), intent(in) :: ROUND_VALUE res = (support_rounding_helper(ROUND_VALUE%hidden) /= 0) end function pure logical function IEEE_SUPPORT_ROUNDING_8 (ROUND_VALUE, X) result(res) implicit none real(kind=8), intent(in) :: X type(IEEE_ROUND_TYPE), intent(in) :: ROUND_VALUE res = (support_rounding_helper(ROUND_VALUE%hidden) /= 0) end function #ifdef HAVE_GFC_REAL_10 pure logical function IEEE_SUPPORT_ROUNDING_10 (ROUND_VALUE, X) result(res) implicit none real(kind=10), intent(in) :: X type(IEEE_ROUND_TYPE), intent(in) :: ROUND_VALUE res = .false. end function #endif #ifdef HAVE_GFC_REAL_16 pure logical function IEEE_SUPPORT_ROUNDING_16 (ROUND_VALUE, X) result(res) implicit none real(kind=16), intent(in) :: X type(IEEE_ROUND_TYPE), intent(in) :: ROUND_VALUE res = .false. end function #endif pure logical function IEEE_SUPPORT_ROUNDING_NOARG (ROUND_VALUE) result(res) implicit none type(IEEE_ROUND_TYPE), intent(in) :: ROUND_VALUE #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) res = .false. #else res = (support_rounding_helper(ROUND_VALUE%hidden) /= 0) #endif end function ! IEEE_SUPPORT_UNDERFLOW_CONTROL pure logical function IEEE_SUPPORT_UNDERFLOW_CONTROL_4 (X) result(res) implicit none real(kind=4), intent(in) :: X res = (support_underflow_control_helper(4) /= 0) end function pure logical function IEEE_SUPPORT_UNDERFLOW_CONTROL_8 (X) result(res) implicit none real(kind=8), intent(in) :: X res = (support_underflow_control_helper(8) /= 0) end function #ifdef HAVE_GFC_REAL_10 pure logical function IEEE_SUPPORT_UNDERFLOW_CONTROL_10 (X) result(res) implicit none real(kind=10), intent(in) :: X res = .false. end function #endif #ifdef HAVE_GFC_REAL_16 pure logical function IEEE_SUPPORT_UNDERFLOW_CONTROL_16 (X) result(res) implicit none real(kind=16), intent(in) :: X res = .false. end function #endif pure logical function IEEE_SUPPORT_UNDERFLOW_CONTROL_NOARG () result(res) implicit none #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) res = .false. #else res = (support_underflow_control_helper(4) /= 0 & .and. support_underflow_control_helper(8) /= 0) #endif end function ! IEEE_SUPPORT_* functions #define SUPPORTMACRO(NAME, INTKIND, VALUE) \ pure logical function NAME/**/_/**/INTKIND (X) result(res) ; \ implicit none ; \ real(INTKIND), intent(in) :: X(..) ; \ res = VALUE ; \ end function #define SUPPORTMACRO_NOARG(NAME, VALUE) \ pure logical function NAME/**/_NOARG () result(res) ; \ implicit none ; \ res = VALUE ; \ end function ! IEEE_SUPPORT_DATATYPE SUPPORTMACRO(IEEE_SUPPORT_DATATYPE,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_DATATYPE,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_DATATYPE,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_DATATYPE,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_DATATYPE,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_DATATYPE,.true.) #endif ! IEEE_SUPPORT_DENORMAL SUPPORTMACRO(IEEE_SUPPORT_DENORMAL,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_DENORMAL,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_DENORMAL,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_DENORMAL,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_DENORMAL,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_DENORMAL,.true.) #endif ! IEEE_SUPPORT_DIVIDE SUPPORTMACRO(IEEE_SUPPORT_DIVIDE,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_DIVIDE,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_DIVIDE,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_DIVIDE,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_DIVIDE,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_DIVIDE,.true.) #endif ! IEEE_SUPPORT_INF SUPPORTMACRO(IEEE_SUPPORT_INF,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_INF,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_INF,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_INF,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_INF,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_INF,.true.) #endif ! IEEE_SUPPORT_IO SUPPORTMACRO(IEEE_SUPPORT_IO,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_IO,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_IO,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_IO,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_IO,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_IO,.true.) #endif ! IEEE_SUPPORT_NAN SUPPORTMACRO(IEEE_SUPPORT_NAN,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_NAN,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_NAN,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_NAN,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_NAN,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_NAN,.true.) #endif ! IEEE_SUPPORT_SQRT SUPPORTMACRO(IEEE_SUPPORT_SQRT,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_SQRT,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_SQRT,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_SQRT,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_SQRT,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_SQRT,.true.) #endif ! IEEE_SUPPORT_STANDARD SUPPORTMACRO(IEEE_SUPPORT_STANDARD,4,.true.) SUPPORTMACRO(IEEE_SUPPORT_STANDARD,8,.true.) #ifdef HAVE_GFC_REAL_10 SUPPORTMACRO(IEEE_SUPPORT_STANDARD,10,.false.) #endif #ifdef HAVE_GFC_REAL_16 SUPPORTMACRO(IEEE_SUPPORT_STANDARD,16,.false.) #endif #if defined(HAVE_GFC_REAL_10) || defined(HAVE_GFC_REAL_16) SUPPORTMACRO_NOARG(IEEE_SUPPORT_STANDARD,.false.) #else SUPPORTMACRO_NOARG(IEEE_SUPPORT_STANDARD,.true.) #endif end module IEEE_ARITHMETIC